
OI-OPPA. European Social Fund
Prague & EU: We invest in your future.

Overlay of planar
subdivisions
Radek Smetana

Overlay of planar subdivisions

(2)

1

2

Overlay of planar subdivisions

(3)

1
2

3

4

5

Overlay of planar subdivisions

(4)

1
2 3

4 5
6 7

8
9

10

Requirements and Goals

 Representation of planar subdivision

 Computing intersections of line segments

 Merging subdivisions

 Boolean operations

(5)

The Doubly-Connected Edge List

 Data structure with basic operations
 Edges are the straight lines, not crossing each

other (only in verteces)
 Three collections: verteces, edges and faces

(6)

The Doubly-Connected Edge List

 Edge
– Open - endpoints (= verteces) not included
– Divided to half-edges - Two vectors in both directions

(7)

The Doubly-Connected Edge List

 Half-edge
– Walk around a face in counterclockwise order
– Holes have oposite direction
– Half-edge e and Twin (e)

(8)

e
Twin(e)

The Doubly-Connected Edge List

 Half-edge
– e
– Twin(e)
– Origin(e)

(9)

– IncidentFace(e)
– Next(e)
– Prev(e)

The Doubly-Connected Edge List

 Vertex
– Coordinates(v)
– IncidentEdge(v) – (náhodná) arbitary half-edge

(10)

The Doubly-Connected Edge List

 Face
– Do not contain a point on an edge or a vertex
– On the left side of the half-edge

(11)

The Doubly-Connected Edge List

 Face
– OuterComponent (f) - Unbounded has nil
– InnerComponents (f) – Each hole – one pointer

(12)

The Doubly-Connected Edge List

(13)

[Berg]

Computing intersections of line segments

 Have to handle intercestion of edges
 For now - Line segments

(14)

Computing intersections of line segments

 Have to handle intercestion of edges
 For now - Line segments

(15)

Computing intersections of line segments

 Intersection of two lines – just take equation of the
line and make it equal to the second line

 Segments are not infinite
 Indicate if segments has intersection
 Brute force O(n²)
 When each segment has intersection - Ω(n²)

(16)

Plane sweep algorithm (to find intersections)

 Output sensitive algorithm
 Basic thoughts

– Projection on y-axis

(17)

y

x

Plane sweep algorithm (to find intersections)

 Output sensitive algorithm
 Basic thoughts

– Projection on y-axis
– Divide by sweep line

by x-axis
– Test only horizontal

neighbors

(18)

y

x

Plane sweep algorithm (to find intersections)

 Event queue Q
– Event – endpoints of segments (two for each) or

possible intersections
– Balanced binary search tree implemetation

• dynamic structure with removing and adding events
on the fly

– Ordering: p is first if p.y > q.y holds or
py = qy and p.x < q.x

– If event is the endpoint, where its segment starts,
this segment is stored as well

(19)

Plane sweep algorithm (to find intersections)

 Ordered sequence of segments T
– To create order of segments defined by intersecting

sweep line = dynamic structure of neighbors
– Balanced binary search tree
– Left-to-right order
– Leaves store segments itself
– Internal node store the segment from the rightmost

leaf in its left subtree to guide search

(20)

Plane sweep algorithm (to find intersections)

 Ordered sequence of segments T
– Testing in each internal node position of the searched

point
– Result is the leaf or immediately to the left of it

(21)

sl
s1 s2

s3
s4

s1

s1 s2

s2

s3

s3 s4

T

Plane sweep algorithm (to find intersections)

(22)

Plane sweep algorithm (to find intersections)

(23)

Plane sweep algorithm (to find intersections)

(24)

Plane sweep algorithm (to find intersections)

(25)

Plane sweep algorithm (to find intersections)

(26)

Plane sweep algorithm (to find intersections)

(27)

Plane sweep algorithm (to find intersections)

(28)

Plane sweep algorithm (to find intersections)

(29)

Plane sweep algorithm (to find intersections)

(30)

Plane sweep algorithm (to find intersections)

Create event queue Q with endpoints of all segments
(when an upper endpoint is inserted, the corresponding segment should be stored with it)

Initialize an empty status structure T.
while Q is not empty

Determine the next event point p in Q and delete it.
Let U(p) be the set of segments whose upper endpoint is p
Find all segments stored in T that contain p; they are adjacent in T
Let L(p) denote the subset of segments found whose lower endpoint is p
Let C(p) denote the subset of segments found that contain p in their interior
if L(p) ∪ U(p) ∪ C(p) contains more than one segment
then Report p as an intersection, together with L(p), U(p), and C(p)
Delete the segments in L(p) ∪ C(p) from T
Insert the segments in U(p) ∪ C(p) into T (below sweep, =reversing order of C(p))
if U(p) ∪ C(p) = empty
then Let sl and sr be the left and right neighbors of p in T

FindEvent(sl , sr, p) - (see below)
else Let s be the leftmost segment of U(p)∪C(p) in T

Let sl be the left neighbor of s in T
FindEvent (sl , s, p) – (see below)
Let s be the rightmost segment of U(p)∪C(p) in T
Let sr be the right neighbor of s in T
FindEvent (s, sr, p) – if intersect is below the sweep line and was not added yet- add event point to T

(31)

Plane sweep algorithm (to find intersections)

– Event queue O(n log n)
– Deletions, insertions and neighbor finding on Q take

O(log n) time each
– The running time is O(n log n + l log n), where I is the

number of intersections

(32)

Merging subdivisions

 Two subdivisions – S1 and S2
 Looking for O (S1, S2)
 Using plane sweep algorithm
 Closed edges – like segments
 Preserve names

(33)

Merging subdivisions - edges

 Copy S1 and S2 into doubly-connected edge list D
– Not valid, transform into O (S1, S2)

 T has edges; D has half-edges
 Intercesion points are counted when event

involves edges of both subdivisions
 By dividing – the directions are preserved

(34)

Merging subdivisions - edges

 Two new edges; four new
half-edges but
two new records

 Set Twin(e), Next(e), Last(e)
 Linear time depending on

degree of spliting point

(35)

Merging subdivisions - edges

 Two new edges; four new
half-edges but
two new records

 Set Twin(e), Next(e), Last(e)
 Linear time depending on

degree of spliting point

(36)

Merging subdivisions - edges

 Two new edges; four new
half-edges but
two new records

 Set Twin(e), Next(e), Last(e)
 Linear time depending on

degree of spliting point

(37)

Merging subdivisions - edges

 Two new edges; four new
half-edges but
two new records

 Set Twin(e), Next(e), Last(e)
 Linear time depending on

degree of spliting point

(38)

Merging subdivisions - faces

 New face records
 OuterComponent(f), set of InnerComponents(f)

for new faces
 IncidentFace() for half-edges in their boundaries
 Label with the names of the faces in the old

subdivisions that contain it.

(39)

Merging subdivisions - faces

 Need to know holes of faces
 Cycle is hole, when on its leftmost vertex lies angle

bigger than 180° (or the lowest when there are more of them)

(40)

Merging subdivisions - faces

 Graph G
– Node is the boundary cycle
– Connection if one of the cycles is the boundary of a hole

and the other cycle has a half-edge immediately to the
left of the leftmost vertex of that hole cycle

(41)

G

[Berg]

Merging subdivisions - faces

 Labeling faces
– Need to know in which face from both merged

subdivisions new face lies
– Sweep line algorithm again

(42)

f1
f2

Merging subdivisions

 Copying list O (n)
 The plane sweep takes O(n log n + k log n)
 Fill in the face records takes time linear in the

complexity of O(S1,S2)
 Labeling takes O(n log n + k log n)
 Construction in O(n log n + k log n), where k is the

complexity of the overlay

(43)

Boolean operations

 Labels of faces
– Which face did belonge which subdivision of the

operation

 Operations: union, difference, intersection

(44)

Boolean operations

 Labels of faces
– Which face did belonge which subdivision of the

operation

 Operations: union, difference, intersection

(45)

Boolean operations

 Labels of faces
– Which face did belonge which subdivision of the

operation

 Operations: union, difference, intersection

(46)

Boolean operations

 Labels of faces
– Which face did belonge which subdivision of the

operation

 Operations: union, difference, intersection

(47)

Thank for your attention
Radek Smetana, 7. 11. 2012

(48)

Sources
– [Berg] Mark de Berg, Otfried Cheong, Marc van

Kreveld, Mark Overmars: Computational Geometry:
Algorithms and Applications, Springer- Verlag, 3rd rev.
ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5,
Chapter 2

– Jiří Žára, slide template

(49)

OI-OPPA. European Social Fund
Prague & EU: We invest in your future.

