

OI-OPPA. European Social Fund Prague & EU: We invest in your future.

Overlay of planar subdivisions **Radek Smetana**

Overlay of planar subdivisions

2 (2)

Overlay of planar subdivisions

Overlay of planar subdivisions

Requirements and Goals

- Representation of planar subdivision
- Computing intersections of line segments

* * + + * * + + +

+ + + + + + +

- Merging subdivisions
- Boolean operations

- Data structure with basic operations
- Edges are the straight lines, not crossing each other (only in verteces)
- Three collections: verteces, edges and faces

Edge

- **Open** endpoints (= verteces) not included
- Divided to half-edges Two vectors in both directions

Half-edge

- Walk around a face in counterclockwise order
- Holes have oposite direction
- Half-edge e and Twin (e)

- Half-edge
 - e
 - Twin(e)
 - Origin(e)

- IncidentFace(e)
- Next(e)
- Prev(e)

Vertex

- Coordinates(v)
- IncidentEdge(v) (náhodná) arbitary half-edge

Face

- Do not contain a point on an edge or a vertex
- On the left side of the half-edge

Face

- OuterComponent (f) Unbounded has nil
- InnerComponents (f) Each hole one pointer

Vertex	Coordinates	IncidentEdge	
<i>v</i> ₁	(0, 4)	$\vec{e}_{1,1}$	
v_2	(2, 4)	$\vec{e}_{4,2}$	
<i>v</i> ₃	(2,2)	$\vec{e}_{2,1}$	
v_4	(1,1)	$\vec{e}_{2,2}$	

Face	OuterComponent	InnerComponents
f_1	nil	$\vec{e}_{1,1}$
f_2	$\vec{e}_{4,1}$	nil

Half-edge	Origin	Twin	IncidentFace	Next	Prev
$\vec{e}_{1,1}$	v_1	$\vec{e}_{1,2}$	f_1	$\vec{e}_{4,2}$	$\vec{e}_{3,1}$
$\vec{e}_{1,2}$	v_2	$\vec{e}_{1,1}$	f_2	$\vec{e}_{3,2}$	$\vec{e}_{4,1}$
$\vec{e}_{2,1}$	V3	$\vec{e}_{2,2}$	f_1	$\vec{e}_{2,2}$	$\vec{e}_{4,2}$
$\vec{e}_{2,2}$	<i>v</i> ₄	$\vec{e}_{2,1}$	f_1	$\vec{e}_{3,1}$	$\vec{e}_{2,1}$
$\vec{e}_{3,1}$	<i>v</i> ₃	ē3,2	f_1	$\vec{e}_{1,1}$	<i>e</i> 2,2
$\vec{e}_{3,2}$	v_1	$\vec{e}_{3,1}$	f_2	$\vec{e}_{4,1}$	$\vec{e}_{1,2}$
$\vec{e}_{4,1}$	<i>v</i> ₃	ē4,2	f_2	$\vec{e}_{1,2}$	ē3,2
$\vec{e}_{4,2}$	v_2	$\vec{e}_{4,1}$	f_1	$\vec{e}_{2,1}$	$\vec{e}_{1,1}$

Computing intersections of line segments

- Have to handle intercestion of edges
- For now Line segments

Computing intersections of line segments

- Have to handle intercestion of edges
- For now Line segments

Computing intersections of line segments

- Intersection of two lines just take equation of the line and make it equal to the second line
- Segments are not infinite
- Indicate if segments has intersection
- Brute force O(n²)
- When each segment has intersection $\Omega(n^2)$

- Output sensitive algorithm
- **Basic thoughts**
 - Projection on y-axis

- Output sensitive algorithm
- **Basic thoughts**
 - Projection on y-axis
 - Divide by sweep line by x-axis
 - Test only horizontal neighbors

Event queue Q

- Event endpoints of segments (two for each) or possible intersections
- Balanced binary search tree implemetation
 - dynamic structure with removing and adding events on the fly
- Ordering: p is first if p.y > q.y holds or py = qy and p.x < q.x

+ + + + + + + + + +

 If event is the endpoint, where its segment starts, this segment is stored as well

+ + + + + + + + + +

+ + + + + (19)

Ordered sequence of segments T

- To create order of segments defined by intersecting sweep line = dynamic structure of neighbors
- Balanced binary search tree
- Left-to-right order
- Leaves store segments itself

+ + + + +

 Internal node store the segment from the rightmost leaf in its left subtree to guide search

(20) + +

Ordered sequence of segments T

- Testing in each internal node position of the searched point
- Result is the leaf or immediately to the left of it

Create event queue Q with endpoints of all segments (when an upper endpoint is inserted, the corresponding segment should be stored with it) Initialize an empty status structure T. while Q is not empty Determine the next event point **p** in Q and delete it. Let U(**p**) be the set of segments whose upper endpoint is **p** Find all segments stored in T that contain p; they are adjacent in T Let L(p) denote the subset of segments found whose lower endpoint is p Let C(p) denote the subset of segments found that contain p in their interior if $L(\mathbf{p}) \cup U(\mathbf{p}) \cup C(\mathbf{p})$ contains more than one segment then Report **p** as an intersection, together with $L(\mathbf{p})$, $U(\mathbf{p})$, and $C(\mathbf{p})$ Delete the segments in $L(p) \cup C(p)$ from T Insert the segments in $U(p) \cup C(p)$ into T (below sweep, =reversing order of C(p)) if $U(p) \cup C(p) = empty$ then Let sl and sr be the left and right neighbors of p in T FindEvent(sl, sr, p) - (see below) else Let s be the leftmost segment of $U(p) \cup C(p)$ in T Let sl be the left neighbor of s in T FindEvent (sl, s, p) – (see below) Let s be the rightmost segment of $U(p) \cup C(p)$ in 7 Let sr be the right neighbor of s in T FindEvent (s, sr, p) – if intersect is below the sweep line and was not added yet- add event point to T (31)

- Event queue O(n log n)
- Deletions, insertions and neighbor finding on Q take
 O(log n) time each
- The running time is O(n log n + I log n), where I is the number of intersections

Merging subdivisions

- Two subdivisions S1 and S2
- Looking for O (S1, S2)
- Using plane sweep algorithm
- Closed edges like segments

+ + + + + +

+ + + + + + + + + + +

+ + + (33)

Preserve names

Copy S1 and S2 into doubly-connected edge list D

+ + + + + + +

+ + + + (34)

- Not valid, transform into O (S1, S2)
- T has edges; D has half-edges

+ + + + + +

- Intercesion points are counted when event involves edges of both subdivisions
- By dividing the directions are preserved

Two new edges; four new half-edges but

two new records

- Set Twin(e), Next(e), Last(e)
- Linear time depending on degree of spliting point

- Two new edges; four new half-edges but
 - two new records
- Set Twin(e), Next(e), Last(e)
- Linear time depending on degree of spliting point

 Two new edges; four new half-edges but

two new records

- Set Twin(e), Next(e), Last(e)
- Linear time depending on degree of spliting point

(38)

 Two new edges; four new half-edges but

two new records

- Set Twin(e), Next(e), Last(e)
- Linear time depending on degree of spliting point

+ + + + +

- New face records
- OuterComponent(f), set of InnerComponents(f) for new faces
- IncidentFace() for half-edges in their boundaries

(39)

 Label with the names of the faces in the old subdivisions that contain it.

- Need to know holes of faces
- Cycle is hole, when on its leftmost vertex lies angle bigger than 180° (or the lowest when there are more of them)

Graph G

- Node is the boundary cycle
- Connection if one of the cycles is the boundary of a hole and the other cycle has a half-edge immediately to the left of the leftmost vertex of that hole cycle

Labeling faces

- Need to know in which face from both merged subdivisions new face lies
- Sweep line algorithm again

Merging subdivisions

- Copying list O (n)
- The plane sweep takes O(n log n + k log n)
- Fill in the face records takes time linear in the complexity of O(S1,S2)
- Labeling takes O(n log n + k log n)

+ + + + + +

Construction in O(n log n + k log n), where k is the complexity of the overlay

+ + + + + + + +

+ + + + (43)

- Which face did belonge which subdivision of the operation
- Operations: union, difference, intersection

- Which face did belonge which subdivision of the operation
- Operations: union, difference, intersection

- Which face did belonge which subdivision of the operation
- Operations: union, difference, intersection

- Which face did belonge which subdivision of the operation
- Operations: union, difference, intersection

Thank for your attention Radek Smetana, 7. 11. 2012

Sources

- [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer- Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapter 2
- Jiří Žára, slide template

OI-OPPA. European Social Fund Prague & EU: We invest in your future.