OI-OPPA. European Social Fund Prague \& EU: We invest in your future.

DEPARTMENT OF COMPUTER GRAPHICS AND INTERACTION

Overlay of planar subdivisions

Radek Smetana

Overlay of planar subdivisions

$$
\begin{aligned}
& x+x+x+ \\
& x+x+5
\end{aligned}
$$

Overlay of planar subdivisions

$$
\begin{aligned}
& x \neq \pm+ \\
& x+ \pm+ \text { DCS }
\end{aligned}
$$

Overlay of planar subdivisions

Requirements and Goals

- Representation of planar subdivision
- Computing intersections of line segments
- Merging subdivisions
- Boolean operations

The Doubly-Connected Edge List

- Data structure with basic operations
- Edges are the straight lines, not crossing each other (only in verteces)
- Three collections: verteces, edges and faces

(6)

The Doubly-Connected Edge List

- Edge
- Open - endpoints (= verteces) not included
- Divided to half-edges - Two vectors in both directions

(7)

The Doubly-Connected Edge List

- Half-edge
- Walk around a face in counterclockwise order
- Holes have oposite direction
- Half-edge e and Twin (e)

(8)

The Doubly-Connected Edge List

- Half-edge
- e
- Twin(e)
- Origin(e)
- IncidentFace(e)
- Next(e)
- Prev(e)

The Doubly-Connected Edge List

- Vertex
- Coordinates(v)
- IncidentEdge(v) - (náhodná) arbitary half-edge

The Doubly-Connected Edge List

- Face
- Do not contain a point on an edge or a vertex
- On the left side of the half-edge

The Doubly-Connected Edge List

- Face
- OuterComponent (f) - Unbounded has nil
- InnerComponents (f) - Each hole - one pointer

(12)

The Doubly-Connected Edge List

Vertex	Coordinates	IncidentEdge
v_{1}	$(0,4)$	$\vec{e}_{1,1}$
v_{2}	$(2,4)$	$\vec{e}_{4,2}$
v_{3}	$(2,2)$	$\vec{e}_{2,1}$
v_{4}	$(1,1)$	$\vec{e}_{2,2}$

Face	OuterComponent	InnerComponents
f_{1}	nil	$\vec{e}_{1,1}$
f_{2}	$\vec{e}_{4,1}$	nil

Half-edge	Origin	Twin	IncidentFace	Next	Prev
$\vec{e}_{1,1}$	v_{1}	$\vec{e}_{1,2}$	f_{1}	$\vec{e}_{4,2}$	$\vec{e}_{3,1}$
$\vec{e}_{1,2}$	v_{2}	$\vec{e}_{1,1}$	f_{2}	$\vec{e}_{3,2}$	$\vec{e}_{4,1}$
$\vec{e}_{2,1}$	v_{3}	$\vec{e}_{2,2}$	f_{1}	$\vec{e}_{2,2}$	$\vec{e}_{4,2}$
$\vec{e}_{2,2}$	v_{4}	$\vec{e}_{2,1}$	f_{1}	$\vec{e}_{3,1}$	$\vec{e}_{2,1}$
$\vec{e}_{3,1}$	v_{3}	$\vec{e}_{3,2}$	f_{1}	$\vec{e}_{1,1}$	$\vec{e}_{2,2}$
$\vec{e}_{3,2}$	v_{1}	$\vec{e}_{3,1}$	f_{2}	$\vec{e}_{4,1}$	$\vec{e}_{1,2}$
$\vec{e}_{4,1}$	v_{3}	$\vec{e}_{4,2}$	f_{2}	$\vec{e}_{1,2}$	$\vec{e}_{3,2}$
$\vec{e}_{4,2}$	v_{2}	$\vec{e}_{4,1}$	f_{1}	$\vec{e}_{2,1}$	$\vec{e}_{1,1}$

[Berg]

Computing intersections of line segments

- Have to handle intercestion of edges
- For now - Line segments

Computing intersections of line segments

- Have to handle intercestion of edges
- For now - Line segments

Computing intersections of line segments

- Intersection of two lines - just take equation of the line and make it equal to the second line
- Segments are not infinite
- Indicate if segments has intersection
- Brute force $O\left(n^{2}\right)$
- When each segment has intersection - $\Omega\left(\mathrm{n}^{2}\right)$

Plane sweep algorithm (to find intersections)

- Output sensitive algorithm
- Basic thoughts
- Projection on y-axis

Plane sweep algorithm (to find intersections)

- Output sensitive algorithm
- Basic thoughts
- Projection on y-axis
- Divide by sweep line by x -axis
- Test only horizontal neighbors

Plane sweep algorithm (to find intersections)

- Event queue Q
- Event - endpoints of segments (two for each) or possible intersections
- Balanced binary search tree implemetation
- dynamic structure with removing and adding events on the fly
- Ordering: p is first if $p . y>q . y$ holds or $p y=q y$ and $p . x<q . x$
- If event is the endpoint, where its segment starts, this segment is stored as well

Plane sweep algorithm (to find intersections)

- Ordered sequence of segments T
- To create order of segments defined by intersecting sweep line = dynamic structure of neighbors
- Balanced binary search tree
- Left-to-right order
- Leaves store segments itself
- Internal node store the segment from the rightmost leaf in its left subtree to guide search

Plane sweep algorithm (to find intersections)

- Ordered sequence of segments T
- Testing in each internal node position of the searched point
- Result is the leaf or immediately to the left of it

Plane sweep algorithm (to find intersections)

$$
\text { 情 } \begin{aligned}
& \text { DCG1 }
\end{aligned}
$$

Plane sweep algorithm (to find intersections)

Plane sweep algorithm (to find intersections)

Create event queue Q with endpoints of all segments
(when an upper endpoint is inserted, the corresponding segment should be stored with it) Initialize an empty status structure T.
while Q is not empty
Determine the next event point \mathbf{p} in Q and delete it.
Let $U(\mathbf{p})$ be the set of segments whose upper endpoint is \mathbf{p}
Find all segments stored in \mathbf{T} that contain \mathbf{p}; they are adjacent in \mathbf{T}
Let $L(\mathbf{p})$ denote the subset of segments found whose lower endpoint is \mathbf{p}
Let $C(p)$ denote the subset of segments found that contain \mathbf{p} in their interior
if $L(\mathbf{p}) \cup \cup(\mathbf{p}) \cup C(p)$ contains more than one segment
then \quad Report \mathbf{p} as an intersection, together with $L(\mathbf{p}), U(\mathbf{p})$, and $C(p)$
Delete the segments in $L(p) \cup C(p)$ from T
Insert the segments in $U(p) \cup C(p)$ into T (below sweep, =reversing order of $C(p)$)
if $U(p) \cup C(p)=$ empty
then \quad Let sl and sr be the left and right neighbors of p in T
FindEvent(sl , sr, p) - (see below)
else Let s be the leftmost segment of $U(p) \cup C(p)$ in T
Let $s l$ be the left neighbor of s in T
FindEvent (sl, s, p) - (see below)
Let s be the rightmost segment of $U(p) \cup C(p)$ in T
Let $s r$ be the right neighbor of s in T
FindEvent ($s, s r, p$) - if intersect is below the sweep line and was not added yet- add event point to T

Plane sweep algorithm (to find intersections)

- Event queue $O(n \log n)$
- Deletions, insertions and neighbor finding on Q take O(log n) time each
- The running time is $O(n \log n+I \log n)$, where I is the number of intersections

Merging subdivisions

- Two subdivisions - S1 and S2
- Looking for O (S1, S2)
- Using plane sweep algorithm
- Closed edges - like segments
- Preserve names

Merging subdivisions - edges

- Copy S1 and S2 into doubly-connected edge list D
- Not valid, transform into O (S1, S2)
- T has edges; D has half-edges
- Intercesion points are counted when event involves edges of both subdivisions
- By dividing - the directions are preserved

Merging subdivisions - edges

- Two new edges; four new half-edges but two new records
- Set Twin(e), Next(e), Last(e)
- Linear time depending on degree of spliting point

Merging subdivisions - edges

- Two new edges; four new half-edges but two new records
- Set Twin(e), Next(e), Last(e)
- Linear time depending on degree of spliting point

Merging subdivisions - edges

- Two new edges; four new half-edges but two new records
- Set Twin(e), Next(e), Last(e)
- Linear time depending on degree of spliting point

Merging subdivisions - edges

- Two new edges; four new half-edges but two new records
- Set Twin(e), Next(e), Last(e)
- Linear time depending on degree of spliting point

Merging subdivisions - faces

- New face records
- OuterComponent(f), set of InnerComponents(f) for new faces
- IncidentFace() for half-edges in their boundaries
- Label with the names of the faces in the old subdivisions that contain it.

Merging subdivisions - faces

- Need to know holes of faces
- Cycle is hole, when on its leftmost vertex lies angle bigger than 180° (or the lowest when there are more of them)

Merging subdivisions - faces

- Graph G

- Node is the boundary cycle
- Connection if one of the cycles is the boundary of a hole and the other cycle has a half-edge immediately to the left of the leftmost vertex of that hole cycle

[Berg]

Merging subdivisions - faces

- Labeling faces
- Need to know in which face from both merged subdivisions new face lies
- Sweep line algorithm again

Merging subdivisions

- Copying list O (n)
- The plane sweep takes $O(n \log n+k \log n)$
- Fill in the face records takes time linear in the complexity of $O(S 1, S 2)$
- Labeling takes $O(n \log n+k \log n)$
- Construction in $O(n \log n+k \log n)$, where k is the complexity of the overlay

Boolean operations

- Labels of faces
- Which face did belonge which subdivision of the operation
- Operations: union, difference, intersection

Boolean operations

- Labels of faces
- Which face did belonge which subdivision of the operation
- Operations: union, difference, intersection

Boolean operations

- Labels of faces
- Which face did belonge which subdivision of the operation
- Operations: union, difference, intersection

Boolean operations

- Labels of faces
- Which face did belonge which subdivision of the operation
- Operations: union, difference, intersection

Thank for your attention Radek Smetana, 7. 11. 2012

Sources

- [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer- Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapter 2
- Jiří Žára, slide template

OI-OPPA. European Social Fund Prague \& EU: We invest in your future.

