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Requirements and Goals

 Representation of planar subdivision

 Computing intersections of line segments

 Merging subdivisions

 Boolean operations

(5)



The Doubly-Connected Edge List

 Data structure with basic operations
 Edges are the straight lines, not crossing each 

other (only in verteces)
 Three collections: verteces, edges and faces
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The Doubly-Connected Edge List

 Edge
– Open - endpoints (= verteces) not included
– Divided to half-edges - Two vectors in both directions
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The Doubly-Connected Edge List

 Half-edge
– Walk around a face in counterclockwise order
– Holes have oposite direction
– Half-edge e and Twin (e)
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The Doubly-Connected Edge List

 Half-edge
– e
– Twin(e)
– Origin(e)
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– IncidentFace(e)
– Next(e)
– Prev(e)



The Doubly-Connected Edge List

 Vertex
– Coordinates(v)
– IncidentEdge(v) – (náhodná) arbitary half-edge

(10)



The Doubly-Connected Edge List

 Face
– Do not contain a point on an edge or a vertex
– On the left side of the half-edge
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The Doubly-Connected Edge List

 Face
– OuterComponent (f) - Unbounded has nil
– InnerComponents (f) – Each hole – one pointer

(12)



The Doubly-Connected Edge List
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Computing intersections of line segments

 Have to handle intercestion of edges
 For now - Line segments
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Computing intersections of line segments

 Intersection of two lines – just take equation of the 
line and make it equal to the second line

 Segments are not infinite
 Indicate if segments has intersection
 Brute force O(n²)
 When each segment has intersection - Ω(n²)

(16)



Plane sweep algorithm (to find intersections)

 Output sensitive algorithm
 Basic thoughts

– Projection on y-axis
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Plane sweep algorithm (to find intersections)

 Output sensitive algorithm
 Basic thoughts

– Projection on y-axis
– Divide by sweep line

by x-axis
– Test only horizontal

neighbors

(18)
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Plane sweep algorithm (to find intersections)

 Event queue Q
– Event – endpoints of segments (two for each) or 

possible intersections
– Balanced binary search tree implemetation

• dynamic structure with removing and adding events 
on the fly

– Ordering: p is first if p.y > q.y holds or
py = qy and p.x < q.x

– If event is the endpoint, where its segment starts, 
this segment is stored as well
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Plane sweep algorithm (to find intersections)

 Ordered sequence of segments T
– To create order of segments defined by intersecting 

sweep line = dynamic structure of neighbors
– Balanced binary search tree
– Left-to-right order
– Leaves store segments itself
– Internal node store the segment from the rightmost

leaf in its left subtree to guide search

(20)



Plane sweep algorithm (to find intersections)

 Ordered sequence of segments T
– Testing in each internal node position of the searched 

point
– Result is the leaf or immediately to the left of it

(21)
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Plane sweep algorithm (to find intersections)
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Plane sweep algorithm (to find intersections)
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Plane sweep algorithm (to find intersections)

Create event queue Q with endpoints of all segments
(when an upper endpoint is inserted, the corresponding segment should be stored with it)

Initialize an empty status structure T.
while Q is not empty

Determine the next event point p in Q and delete it.
Let U(p) be the set of segments whose upper endpoint is p
Find all segments stored in T that contain p; they are adjacent in T
Let L(p) denote the subset of segments found whose lower endpoint is p
Let C(p) denote the subset of segments found that contain p in their interior
if L(p) ∪ U(p) ∪ C(p) contains more than one segment
then Report p as an intersection, together with L(p), U(p), and C(p)
Delete the segments in L(p) ∪ C(p) from T
Insert the segments in U(p) ∪ C(p) into T (below sweep, =reversing order of C(p) )
if U(p) ∪ C(p) = empty
then Let sl and sr be the left and right neighbors of p in T

FindEvent(sl , sr, p) - (see below)
else Let s be the leftmost segment of U(p)∪C(p) in T

Let sl be the left neighbor of s in T
FindEvent (sl , s, p) – (see below)
Let s be the rightmost segment of U(p)∪C(p) in T
Let sr be the right neighbor of s in T
FindEvent (s, sr, p) – if intersect is below the sweep line and was not added yet- add event point to T
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Plane sweep algorithm (to find intersections)

– Event queue O(n log n)
– Deletions, insertions and neighbor finding on Q take 

O(log n) time each
– The running time is O(n log n + l log n), where I is the

number of intersections
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Merging subdivisions

 Two subdivisions – S1 and S2
 Looking for O (S1, S2)
 Using plane sweep algorithm
 Closed edges – like segments
 Preserve names
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Merging subdivisions - edges

 Copy S1 and S2 into doubly-connected edge list D
– Not valid, transform into O (S1, S2)

 T has edges; D has half-edges
 Intercesion points are counted when event 

involves edges of both subdivisions
 By dividing – the directions are preserved
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Merging subdivisions - edges

 Two new edges; four new 
half-edges but
two new records

 Set Twin(e), Next(e), Last(e)
 Linear time depending on 

degree of spliting point
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Merging subdivisions - faces

 New face records
 OuterComponent( f ), set of InnerComponents( f ) 

for new faces
 IncidentFace() for half-edges in their boundaries
 Label with the names of the faces in the old 

subdivisions that contain it.
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Merging subdivisions - faces

 Need to know holes of faces
 Cycle is hole, when on its leftmost vertex lies angle 

bigger than 180° (or the lowest when there are more of them) 
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Merging subdivisions - faces

 Graph G
– Node is the boundary cycle
– Connection if one of the cycles is the boundary of a hole 

and the other cycle has a half-edge immediately to the 
left of the leftmost vertex of that hole cycle

(41)
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Merging subdivisions - faces

 Labeling faces
– Need to know in which face from both merged 

subdivisions new face lies
– Sweep line algorithm again
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Merging subdivisions

 Copying list O (n)
 The plane sweep takes O(n log n + k log n)
 Fill in the face records takes time linear in the 

complexity of O(S1,S2)
 Labeling takes O(n log n + k log n)
 Construction in O(n log n + k log n), where k is the 

complexity of the overlay
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Boolean operations

 Labels of faces
– Which face did belonge which subdivision of the 

operation

 Operations: union, difference, intersection
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Thank for your attention
Radek Smetana, 7. 11. 2012
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