PRA|HA
O P P PRA|GUE
PRA|GA

A PRA|G

OI-OPPA. European Social Fund
Prague & EU: We invest in your future.

EVROPSKA UNIE

” DCGI

DEPARTMENT OF COMPUTER GRAPHICS AND INTERACTION

Overlay of planar
subdivisions

Radek Smetana

F o+ + + + +

+ 4+ 4+ +]
+ + + + +
 + * + 4

L e o 4 e B o3 2 B sk

& = & 4 # @

+ + + + + + +

+ + + + + +

+ + + 4+ + 4

+ + + + + + +

+ + + + + +

+ + + + + +

+ + + 4+ + + + o+

+ + + + 4+ + o+ 4+

+ + 4+ + + + o+ A

4=

$i 4= 2 =poal

+ + + + 4+ + + +

iE & W I = 83 i =

Overlay of planar subdivisions

K 4+ +
-~ =~ = e P ke
o A o~ == — + I -
- o+ =4 % i 2 3 & d
" DCGI
+ + + o+ + 4+ 4+ o+ + + o+ o+ o+
2 .
; i 4 s der e nE osdh sl 3

Overlay of planar subdivisions

Overlay of planar subdivisions

Requirements and Goals

= Representation of planar subdivision

= Computing intersections of line segments

= Merging subdivisions

= Boolean operations

o o o~ ==

“ DCGI o

The Doubly-Connected Edge List

= Data structure with basic operations

= Edges are the straight lines, not crossing each
other (only In verteces)

= Three collections: verteces, edges and faces

- + —+
* DCGE 7S

The Doubly-Connected Edge List

= Edge
— Open - endpoints (= verteces) not included
— Divided to half-edges - Two vectors in both directions

- + —+
* DCGI i -

The Doubly-Connected Edge List

= Half-edge
— Walk around a face in counterclockwise order
— Holes have oposite direction
— Half-edge e and Twin (e)

o o o~ ==

* DCGI

The Doubly-Connected Edge List

= Half-edge
—e — IncidentFace(e)
— — Next(e)
— Origin(e) — Prev(e)

o o o~ ==

“ DCGH o

The Doubly-Connected Edge List

= Vertex
— Coordinates(v)
— IncidentEdge(v) — (ndhodna) arbitary half-edge

o o o~ ==

* DCGI

The Doubly-Connected Edge List

s Face
— Do not contain a point on an edge or a vertex
— On the left side of the half-edge

o o o~ ==

* DCGI

The Doubly-Connected Edge List

s Face
— OuterComponent (f) - Unbounded has nil
— InnerComponents (f) — Each hole — one pointer

o o o~ ==

* DCGI v

The Doubly-Connected Edge List

Vertex Coordinates IncidentEdge

Vi (0,4) é1.1
V2 (2,4) €42
V3 {2, 2} EQ__]
Vi (1,1) €12

Face OuterComponent InnerComponents

fl nil E] A
f2 €41 nil

Half-edge Origin Twin IncidentFace Next Prev

€1.1 Vi €12 fi €12 €31
€12 1) 1.1 f 32 €1
€1 1 V3 €12 fi €12 €173
%) vy €1 f €31 €31
€3.1 V3 €32 fi é1.1 €22
€32 Vi €31 fr €4, €12
€11 V3 €12 f ey ey
€42 V2 €41 fi €1 €11

[Berg]

(13)

Computing intersections of line segments

= Have to handle intercestion of edges
= For now - Line segments

- -+ : o~ f i o+ A {
> = == —+
+ + + " : .;\ -+ . 1 v _l_ +
7 DCGI
- + + + 4+ 4+ + 4+ + + + + 4+ + o+ + + +
(14)
L 4 4 b & e e e e R o e e e o e e i +

Computing intersections of line segments

= Have to handle intercestion of edges
= For now - Line segments

- + —+
* DCGE 7S

Computing intersections of line segments

= Intersection of two lines — just take equation of the
line and make it equal to the second line

= Segments are not infinite

= Indicate if segments has intersection

= Brute force O(n?)

= When each segment has intersection - Q(n?)

- -+ —+ _
* DCGI RS 4 s

Plane sweep algorithm (to find intersections)

= Output sensitive algorithm
= Basic thoughts

— Projection on y-axis /

o o o~ ==

* DCGI

Plane sweep algorithm (to find intersections)

= Output sensitive algorithm
= Basic thoughts

— Projection on y-axis

— Divide by sweep line
by x-axis

— Test only horizontal \

neighbors
y / =

| x

o o o~ ==

* DCGH

Plane sweep algorithm (to find intersections)

= Event queue Q

— Event — endpoints of segments (two for each) or
possible intersections

— Balanced binary search tree implemetation

« dynamic structure with removing and adding events
on the fly

— Ordering: pis firstif p.y > g.y holds or
py = gy and p.x < g.x

— If event is the endpoint, where its segment starts,
this segment is stored as well

> o o~ ==

* DCGI

Plane sweep algorithm (to find intersections)

= Ordered sequence of segments T

— To create order of segments defined by intersecting
sweep line = dynamic structure of neighbors

— Balanced binary search tree
— Left-to-right order
— Leaves store segments itself

— Internal node store the segment from the rightmost
leaf in its left subtree to guide search

- + —+
* DCGI

Plane sweep algorithm (to find intersections)

= Ordered sequence of segments T

— Testing in each internal node position of the searched
point
— Result is the leaf or immediately to the left of it

- + —+
* DCGI

Plane sweep algorithm (to find intersections)

o o o~ ==

* DCGH

Plane sweep algorithm (to find intersections)

o o o~ ==

* DCGH

Plane sweep algorithm (to find intersections)

o o o~ ==

* DCGH

Plane sweep algorithm (to find intersections)

o o o~ ==

* DCGH

Plane sweep algorithm (to find intersections)

o o o~ ==

* DCGH

Plane sweep algorithm (to find intersections)

o o o~ ==

* DCGI

Plane sweep algorithm (to find intersections)

o o o~ ==

* DCGH

Plane sweep algorithm (to find intersections)

o o o~ ==

* DCGH

Plane sweep algorithm (to find intersections)

o o o~ ==

* DCGH

Plane sweep algorithm (to find intersections)

Create event queue Q with endpoints of all segments

(when an upper endpoint is inserted, the corresponding segment should be stored with it)
Initialize an empty status structure T.
while Q is not empty

Determine the next event point p in Q and delete it.

Let U(p) be the set of segments whose upper endpointis p

Find all segments stored in T that contain p; they are adjacentin T

Let L(p) denote the subset of segments found whose lower endpoint is p

Let C(p) denote the subset of segments found that contain p in their interior

if L(p) U U(p) U C(p) contains more than one segment

then Report p as an intersection, together with L(p), U(p), and C(p)

Delete the segments in L(p) U C(p) from T

Insert the segments in U(p) U C(p) into T (below sweep, =reversing order of C(p))

if U(p) u C(p) = empty

then Let sl and sr be the left and right neighborsof pin T
FindEvent(sl, sr, p) - (see below)
else Let s be the leftmost segment of U(p)UC(p) in T

Let sl be the left neighborof sin T

FindEvent (sl , s, p) — (see below)

Let s be the rightmost segment of U(p)uC(p) in T

Let sr be the right neighborof sin T

FindEvent (s, sr, p) — if intersect is below the sweep line and was not added yet- add event pointto T

DCG!

Plane sweep algorithm (to find intersections)

— Event queue O(n log n)

— Deletions, insertions and neighbor finding on Q take
O(log n) time each

— The running time is O(n log n + | log n), where | is the
number of intersections

i %‘%
-~ + -+
+
DCGI x . |

Merging subdivisions

= Two subdivisions — S1 and S2
= Looking for O (S1, S2)

= Using plane sweep algorithm
= Closed edges — like segments
= Preserve names

o o o~ ==

* DCGI e

Merging subdivisions - edges

= Copy S1 and S2 into doubly-connected edge list D
— Not valid, transform into O (S1, S2)

= T has edges; D has half-edges

= Intercesion points are counted when event
Involves edges of both subdivisions

= By dividing — the directions are preserved

, S F s % '

- + —+ -
+

DCGI 0y - R

Merging subdivisions - edges

= Two new edges,; four new
half-edges but

two new records
= Set Twin(e), Next(e), Last(e)

= Linear time depending on
degree of spliting point

o o o~ ==

“ DCGH e

Merging subdivisions - edges

= Two new edges,; four new
half-edges but

two new records
= Set Twin(e), Next(e), Last(e)

= Linear time depending on
degree of spliting point

o o o~ ==

“ DCGH e

Merging subdivisions - edges

Two new edges; four new
- 9 —

half-edges but -\4
.

two new records

\/
= Set Twin(e), Next(e), Last(e) / \

= Linear time depending on 3 I
degree of spliting point - T
AN

\

- -+ —+ _
* DCGI - AR

Merging subdivisions - edges

= Two new edges,; four new

half-edges but .
Xl

two new records

= Set Twin(e), Next(e), Last(e) /

= Linear time depending on . ﬁ
degree of spliting point . T
N

o o o~ ==

(38)

Merging subdivisions - faces

= New face records

= OuterComponent(f), set of InnerComponents(f)
for new faces

= IncidentFace() for half-edges In their boundaries

= Label with the names of the faces in the old
subdivisions that contain It.

- -+ —+ _
7 DCGI x -) Il

Merging subdivisions - faces

= Need to know holes of faces

= Cycle is hole, when on its leftmost vertex lies angle
bigger than 180° (or the lowest when there are more of them)

—

>
-~
DCGI o o R o B

Merging subdivisions - faces

= Graph G

— Node is the boundary cycle

— Connection if one of the cycles is the boundary of a hole
and the other cycle has a half-edge immediately to the
left of the leftmost vertex of that hole cycle

ety - i

Merging subdivisions - faces

= Labeling faces

— Need to know in which face from both merged
subdivisions new face lies

— Sweep line algorithm again

f1

o o o~ ==

* DCGH

Merging subdivisions

= Copying list O (n)
= The plane sweep takes O(n log n + k log n)

s Fill in the face records takes time linear in the
complexity of O(S1,S2)

= Labeling takes O(n log n + k log n)

= Constructionin O(n log n + k log n), where k Is the
complexity of the overlay

. ST L % '

- + —+ -
+

DCGI s R =

Boolean operations

s Labels of faces

— Which face did belonge which subdivision of the
operation

= Operations: union, difference, intersection

o A - == =

DCGI el & 8 £ 08 lolldl 4§ 8§ B 6 by

Boolean operations

s Labels of faces

— Which face did belonge which subdivision of the
operation

= Operations: union, difference, intersection

o A - == =

DCGI | 6 B ol 4 N e

Boolean operations

s Labels of faces

— Which face did belonge which subdivision of the
operation

= Operations: union, difference, intersection

s A - ==

“ DCGI e

Boolean operations

s Labels of faces

— Which face did belonge which subdivision of the
operation

= Operations: union, difference, intersection

o o o~ ==

“ DCGH e

Thank for your attention
Radek Smetana, 7. 11. 2012

o o o~ ==

* DCGH

sSources

— [Berg] Mark de Berg, Otfried Cheong, Marc van
Kreveld, Mark Overmars: Computational Geometry:
Algorithms and Applications, Springer- Verlag, 3rd rev.
ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5,
Chapter 2

— Jifi Zara, slide template

(49)

PRA|HA
O P P PRA|GUE
PRA|GA

A PRA|G

OI-OPPA. European Social Fund
Prague & EU: We invest in your future.

EVROPSKA UNIE

