372 CHAPTER 9. COMPUTER GRAPHICS

Exercises
*9,1.2 Generalize the algorithm in this section so that it can handle intersecting
polygons. Prove the bound in Theorem 9.1.4 for this algorithm, with appropriate
new interpretation.
*%*9.1.3 (Dynamic hidden surface removal)

{a) Make the on-line hidden surface removal algorithm in Exercise 9.1.1 fully dy-
namic by allowing deletions of polygons. (Hint: Use dynamic shuffling.)

{b) Show that the expected structural change in the visibility map over a random
{ N, 6)-sequence is O(B(N,0}logn), if the signature § is weakly monotonic.

(c) Similarly, show that the expected conflict change over a random (N, é)-sequence
is O(8{N, 1)logn), if the signature § is weakly monatonic.

{d) Show that the expected running time of the dynamic hidden surface removal al-
gorithm over a random (N, §)-sequence is O(O(N, 1)polylogn), if the signature
§ is weakly monotonic.

9.2 Bihary Space Partitions

In this section, we consider the problem of priority generation that arises
in connection with the image space rendering of the visible view. Recall
that the problem is the following. We are given a set NV of n polygons in
R3. The goal is to break the polygons in N into pieces so that the resulting
pieces do not admit overlapping cycles with respect to any viewpoint. Let
I'(N) denote the resulting set of pieces. We want the size of T'(N) to be as
small as possible. We also wish to have a data structure so that, given any
viewpoint, a priority order over ['{N)} with respect to this viewpoint can be
generated quickly—say, in O{|T(N)|) time. In this section, we shall present
one method for decomposing the polygons in N and generating a priority
order with respect to a given viewpoint. It is based on the so-called Binary
Space Partitions (BSP).

9.2.1 Dimension two

We shall first illustrate the basic ideas underlying Binary Space Partitions in
the simplest setting by considering the analogous problem in two dimensions.
In two dimensions, the set N consists of segments in the plane rather than
polygons in R®, and the view from any viewpoint is one-dimensional rather
than two-dimensional. Observe that in two dimensions, the problem of over-
lapping cycles cannot arise for any viewpoint. Then why is there any need
to break the segments in N7 Well, the problem is that, in general, it is diffi-
cult to generate the priority order on N with respect to the given viewpoint
quickly. For this reason, we shall break the segments in N into a set ['(N) of
fragments, so that the priority order over I'{/V) can be generated quickly. Our

9.2. BINARY SPACE PARTITIONS 373

Figure 9.8: Divide and conquer.

method of decomposition will be randomized. The expected size of ['(NV) will
turn out to be O(nlogn). Concurrently, we shall also build a data structure,
called a randomized BSP tree, which will be used for generating a priority
order over ['(N) with respect to the given viewpoint. The nodes of the BSP
tree will be in one-to-one correspondence with the fragments in [{N).

So let N be the given set of n segments. The basic idea underlying a BSP
tree is based on the following divide-and-conquer paradigm (Figure 9.8). Fix
any line ! in the plane. Let !4 and I_ denote the two half-spaces bounded
by I. As a convention, we shall let I, denote the upper half-space bounded
by [and let I_ denote the lower half-space bounded by {; if [is vertical, we
label the half-spaces arbitrarily. We allow [to contain segments in N. If the
segments in N are in general position—as we shall assume in what follows—
then ! can contain at most one segment in N. Cut the segments in NV along
I. Let N denote the set of resulting fragments (pieces). Partition N into
three sets: N, the set of pieces contained in ! (possibly empty); N4, the set
of pieces contained in I;; and N_, the set of pieces contained in {_. Observe
that, for any viewpoint v € 4, a priority order for N can be obtained by
concatenating the priority orders for N, Ny, and N_, in that order. This
follows because no segment in N_ can overlap a segment in No U Ny as
seen from v, and similarly, a segment in N cannot overlap a segment in Ny
(Figure 9. 8) 1f the viewpoint is contained in I, a priority order for N can
be obtained by concatenating the priority orders for N_, Ng, and N4, in
that order.

374 CHAPTER 9. COMPUTER GRAPHICS

This leads us to the following preprocessing algorithm. Given a set N
of segments, the algorithm cuts these segments into pieces (fragments), and
concurrently builds a so-called BSP (Binary Space Partition) tree. We shall
denote this tree by BSP(N). The nodes of BSP(N) will be in one-to-one cor-
respondence with the generated fragments. The reader should compare the
resulting randomized BSP tree with a randomized binary tree (Section 1.3):
a randomized binary tree can be thought of as a randomized BSP tree in one
dimension. In the beginning, we shall sort the segments in N in a random
order. Once this order on N is fixed, BSP(N) is completely determined as
follows.

Algorithm 9.2.1 (Randomized BSP tree)

1. If N is empty, the BSP tree is NIL (empty).

2. Otherwise, randomly choose a segment S € N. This is equivalent
to choosing the first segment in N according to the initial {randomly
chosen) order. Label the root of BSP(N) with §.

3. Let ! denote the line through S. Cut the segments in N, other than S,
along I. Let N, and N_ be the resulting sets of fragments contained in
the half-spaces {4 and [_, respectively. The orderings on N, and N_
are derived from the ordering on /V in a natural way.

4. Let the left (negative) and the right (positive) subtrees of BSP(N) be
the recursively computed trees BSP(N_) and BSP(V,).

Each node ¢ in BSP(N) can be naturally identified with a string of + and
— symbols that corresponds to the path from the root to ¢. This string
will be called the signature of o. Figure 9.9 gives an example of a BSP
tree. The nodes of the BSP tree in Figure 9.9(b) are labeled with their
signatures. The fragments in Figure 9.9(a) are labeled with the signatures
of the corresponding nodes in the BSP tree. We shall denote the fragment
labeling a node ¢ in BSP(N) by S(o). The set of fragments labeling the
nodes of the subtree rooted at ¢ will be denoted by N(a).

Observe that each node o of BSP(N) corresponds in a natural way to a
convex region R(c) C R%:

1. The root of BSP(N) corresponds to the whole of R”.

2. Inductively, if I = I(c) is the line passing through the segment S(o)
labeling o, then the negative child of o can be identified with the region
R(o)Ni_ and the positive child can be identified with the region R(c)N
l+.

The regions in the partition shown in Figure 9.9(a) correspond to the leaves

of the BSP tree shown in Figure 9.9(b). The two half-spaces in Figure 9.8
correspond to the nodes labeled + and —.

9.2. BINARY SPACE PARTITIONS 375

(b) | /\+

/N — T
A\, AN TN
aN ANAY

-+ ++--

/N AN

Figure 9.9: (a) A Binary Space Partition. (b) Corresponding BSP tree.

The association of the region R(c) with a node o in BSP(N) is purely
conceptual. We do not actually associate with o the description of R(c). This
would be costly as well as unnecessary. The convex regions associated with
the leaves of BSP(N) constitute a partition of the plane (Figure 9.9(a)). The
key property of this partition is that no segment in N intersects the interior
of any of its regions.

Let T(N) denote the set of fragments labeling the nodes of BSP(V).
Given a view point v, a priority order on I'(N) can be generated by the
in-order traversal of the BSP tree. The following algorithm outputs the
fragments in T{N) in the increasing priority order. It is initally called with
o pointing to the root of BSP(V).

376 CHAPTER 9. COMPUTER GRAPHICS

Algorithm 9.2.2 (BSP tree traversal)

1 Ifv e l{o)s:
(a) Recur on the positive subtree of o (if it is nonempty).
(b) Output S{o).
(¢) Recur on the negative subtree of ¢ (if it is nonempty).

2. If v € l{o)—, do the above three steps in reverse order.

The previous definition of a BSP tree was based on the divide and con-
quer paradigm. We can also give an equivalent definition that is based on
the paradigm of randomized incrementation. We have already seen how a
randomized binary tree can be thought of as the history of a randomized in-
cremental algorithm (Section 1.3). One can do exactly the same for BSP(N)
as well. For this. we imagine adding the segments in N, one at a time, in
random order. Let N* denote the set of the first k added segments. The ini-
tial BSP(N) consists of just one node that corresponds to the whole plane.
In general, a leaf o of BSP(N ¥} corresponds to a convex region R(o) in the
plane. Then, N{o) can be defined as the set of intersections of the segments
in N\ N* with R{¢). The convex regions that correspond to the leaves of
BSP({N*) constitute a partition of the plane. The addition of the (k + 1)th
segment S¥+1 to BSP(N*) (Figure 9.10) is done by splitting the regions in-
tersecting S¥71. The splitting is done along the line {{S**!) passing through
Sk+1 Accordingly, the node for each region R{e) intersecting S+ gets two
children. The fragments in N{c) are also cut along I(S*+1).

Figure 9.10: Addition of a segment to a BSP tree: (a) BSP(N3).
(b) BSP(N1%).

9.2. BINARY SPACE PARTITIONS 377

is) s

i(S,8)=3
Figure 9.11: Index of a pair of segments.

Theorem 9.2.3 Assume that the segments in N are non-intersecting. Then
the expected size of BSP(N) generated by our algorithm is O{nlogn}. The
expected cost of building BSP(N) is O(n? logn).

Proof. It suffices to bound the expected size of BSP(N), because the time
spent by the algorithm at each node of BSP(N) is clearly O(n}.

The size of BSP(N) is equa! to the size of T'{N), the set of generated
fragments labeling the nodes of BSP(N). This is n plus the number of
“cuts” that take place during the algorithm. Hence, it suffices to estimate
the expected number of cuts.

Fix any two segments S, 5" € N. Let [{S) denote the line passing through
5. Let the index i(S, S’} denote the number of segments in N intersecting
I(S) between S and S (Figure 9.11). By convention, (5, 5§ = oo, It 1(S)
does not intersect 5.

We interpret BSP(V) as the history of a random N-sequence of additions.
Let us say that 8 cuts S* during this sequence if S’, or more precisely its
fragment, gets cut along the line I(S) during the addition of S. This can
happen only if S is added before S’ and the (S, S") segments between S
and S'. (The converse is not true.) The probability of the latter event is
1/[2+ (S, 5")). Hence, the expected number of cuts is less than or equal to

SY wes

s g

where S and S’ range over all segments in N. The inner sum can be broken in
two parts, by letting 5’ range over the segments intersecting [(5) to the right
or to the left of S. Each part is clearly bounded by Y7 1/i = O(logn).
It follows that the expected number of cuts, and hence the expected size of
BSP(N), is O(nlogn). 0

We shall end this section with one heuristic that should improve the pre-
ceding randomized construction of BSP trees. In the present scheme, the
segment S{c) labeling a node & € BSP(N) is chosen from the set N(o)

378 CHAPTER 9. COMPUTER GRAPHICS

free cut

Figure 9.12: Effect of a free cut.

randomly. One can do better if N(o) contains a fragment 5 that spans
R(c). By this, we mean that S cuts R(¢) in two pieces; e.g., see Sy in Fig-
ure 9.10(a). Choosing this fragment as S{o) provides a free cut in the sense
that the remaining segments in N(o) are not cut by this choice. We only
need to partition N (o) \ {5} into two subsets of fragments—one for each
half-space bounded by the line through 5. For example, in Figure 9.10{(a)
the region R(o) can be cut for free by the fragment of S7 within it. Hence,
the partition in Figure 9.10(a) can be refined further by a free cut, as shown
in Figure 9.12(a). The new partition that results after the addition of four
segments is shown in Figure 9.12(b). Compare it with the partition in Fig-
ure 9.10(b). Notice how the middle fragment of S; is not cut further in
Figure 9.12(b). Note that this heuristic does not change the order of addi-
tion of segments (in the randomized incremental version of the algorithm).
The only change is that we exploit free cuts, whenever possible. When a
segment is added, we ignore its fragments that have been used in the earlier
free cuts.

There is one subtle issue here. How do we know which fragments in N{(¢)
span R(c)? This is a valid question because we do not carry the description
of R(c). Fortunately, the problem under construction is easy to handle. A
fragment § € N(o) spans R(c) iff none of its endpoints coincides with an
endpoint of the original segment in N containing 5. If several fragments in
N{o) span R(c), we just choose the one with the lowest order; recall that
the order on N(o) is inherited from the initial random order on N. If there
is no spanning segment in N (o), we proceed as before.

9.2. BINARY SPACE PARTITIONS 379

Let us now summarize our refined construction of a BSP tree. We shall
only give a randomized incremental version, leaving the divide-and-conquer
version to the reader.

Initially, we put a random order on the set N. We shall add the segments
in N in this fixed order. Let S; denote the ith segment in this order, and let
N denote the set of the first i segments in the order. The initial BSP(N?)
consists of one node 7 that corresponds to the whole plane. Welet N(7) = N.
The addition of S = §;;1 to BSP(N?) is achieved as follows.

Algorithm 9.2.4 (Addition that exploits free cuts)

1. For each leaf o of BSP(N*) such that N(o) contains a fragment of 5,
cut N{o) along this fragment. By this, we mean: Cut the fragments
in N(o)\ {S} so as to get two sets N(o)+ and N{o)-. Give o two
children o4 and o_. Let N(oy) = N(o)4 and N{o_) = N(o)-

9. While there is a leaf 3, such that N(3) contains a spanning fragment:

{a) Choose the spanning fragment in N (&) with the least order.
(b) Cut N(3) freely along this fragment.

We leave it to the reader to verify that free cuts can only decrease the
size of the BSP tree.

Exercises
9.2.1 Rigorously verify that the free-cut heuristic does not increase the size of
BSP(N).

19.2.2 Prove or disprove: For any set of n nonintersecting segments in the plane,
there exists a BSP tree of O(n) size. :

9.2.3 How do the algorithms in this section perform when the segments in IV are
allowed to intersect?

9.2.2 Dimension three

Let us now turn to the real three-dimensional world of computer graphics.
Here N is not a set of segments, but rather a set of polygons in R3. All two-
dimensional algorithms given before (Algorithms 9.2.1, 9.2.2, and 9.2.4) can
be translated to the three-dimensional setting verbatim: Segments become
polygons and dividing lines become dividing planes. We leave this straight-
forward translation to the reader. It only remains to see how the resulting
algorithms perform in three dimensions. It is easy to see that, for any set N
of n polygons, the BSP trees generated by these algorithms have O(ns) size.
Can one say something better about the expected size, if the polygons in N
are nonintersecting? For the algorithms given before, this seems rather dif-
ficult. But we shall see that a slight variation of the algorithm based on free

380 CHAPTER 9. COMPUTER GRAPHICS

cuts (Algorithm 9.2.4) generates a BSP tree of expected O(n?) size. This
bound is worst-case optimal: There exists a set N of polygons such that
every BSP tree over N must have Q(n?) size (Exercise 9.2.6}).

We shall now describe this three-dimensional variant of Algorithm 9.2.4.
Let N be a set of n non-intersecting polygons in R3. We assume that each
polygon has a constant number of edges. Initially, we put a random order
on the set N. We shall add the polygons in N in this order. Let 5; be
the ith polygon in this order and let N* be the set of the first ¢ polygons
in this order. We construct BSP(N?) by induction on i. Each leaf 5 of
BSP(N?) will correspond in a natural way to a convex region R(8) C R>.
This correspondence is only conceptual. We do not maintain the description
of R(3) with 3. The convex regions for all leaves of BSP(N*) will constitute a
convex partition of R®. We shall denote this partition by H (N*). Each node
of BSP(N?) will be labeled with a fragment of a polygon in Nt Initially,
H(N?)-consists of just one region, namely, the whole of R3. and BSP(NY)
consists of one node T that corresponds to this region. We let N(t) = N.

Now consider the addition of § = S;+ to N*. In the three-dimensional
analogue of Algorithm 9.2.4, only the regions of H(N?) that intersect § =
S;+1 would be cut. In the following modified algorithm, a region of H (NY)
can be cut by the plane through S;11 even if it does not intersect S;;1. The
modified addition of § = S;1 to BSP{N?) works as follows.

Algorithm 9.2.5 (Addition)

1. For each leaf o of BSP(N?), do:

If some fragment in N{c) intersects the plane p(S) through S, then
label o with S, cut N(o) along the plane p(S), and give two children
to o.

5. While there is a newly created leaf 3 such that N{3) contains a spanning
fragment, do:
(a) Choose the spanning fragment in N(B) with the least order. Label
3 with it.
(b) Cut N(B) along this fragment freely and give two children to 3.

By a spanning fragment in N(3), we mean a fragment that cuts the convex
region R(3) into two pieces. This happens iff the fragment is completely
contained in the interior of the containing polygon in N. The cut via a
spanning fragment is free in the sense that no polygon in N() is actually
cut by this choice.

Analysis

What is the expected size of the BSP tree generated by the above algorithm?
First, we have to define the size of a BSP tree formally. We shall define it

9.2, BINARY SPACE PARTITIONS 381

as the total number of nodes in the tree. We could also have defined the
size as the total face-length of the fragments labeling the nodes of BSP(N).
Fortunately, the two definitions differ by at most a constant factor. To see
this, fix a polygon S € N. The fragments contained within S constitute
a partition of § (Figure 9.13). which gives rise to a planar graph whose
vertices have degree < 3. It immediately follows from the Euler’s relation for
this planar graph (Exercise 2.3.4) that the total face-length of the fragments
within S is proportional to their number. This implies that the preceding
two definitions of size differ only by a constant factor. In what follows, by
the size of BSP(N), we shall mean the total number of its nodes.

Let us now bound the expected size of the BSP tree produced by our
algorithm, assuming that the polygons in N are non-intersecting. For this,
it suffices to bound, for each i, the number of fragments that are cut by
p{Siy1) in the first step of Algorithm 9.2.5. In other words. for each polygon
Q€ N\ N**}, we count the increase in the number of its fragments. We do
not need to count the free cuts, because a generated fragment can be used
for a free cut only once.

So fix a polygon Q@ € N\ N*1, For any fixed N**!, we shall estimate the
expected number of newly created fragments within @ during the (i+ 1)th
addition, assuming that each polygon in NV *+1 is equally likely to be S;y.
Notice that the fragments of @ that occur in the lists N(3)’s associated
with the leaves of BSP(N?) must be exterior, ie., they must be adjacent to
the boundary of Q. This is because an interior fragment of ¢ would have
been immediately used up in a free cut. Figure 9.14(a) illustrates this. It
shows the arrangement formed within @ by the intersection of the planes
p(5;), 1 € j < i, with @. The exterior fragments of @Q are shown shaded.
We are interested in the number of exterior fragments of @ that are cut
by Si;1. This number is obviously bounded by the number of the newly
created exterior fragments within Q. Consider the set of exterior fragments
within @ existing after ¢ + 1 additions. These correspond to the exterior
regions in the arrangement that is formed within Q@ by the intersections of
the planes p(S;), 1 < j € i+ 1, with Q (Figure 9.14(b)}. The newly created
exterior regions are precisely the ones adjacent to p(S;+1), or, more precisely,

Figure 9.13: Partition of a polygon by its fragments.

382 CHAPTER 9. COMPUTER GRAPHICS

0 Q

SN Q
piS.)N@

.

(2) (b)

Figure 9.14: Exterior regions within Q (shown shaded): (a) After ¢ additions.
(b) Afteri + 1 additions.

to p(Siz1) N Q. Let us denote their number by m(Q, S;+1). Now we shall
analyze the {i + 1)th addition backwards. For a fixed N**! (not N*), what
is the expected number of exterior fragments in Q that are newly created
during the (i + 1)th addition? Because of the random nature of additions,
each polygon in N i+1 5 equally likely to occur as S;+1. Hence, the expected
number of newly created exterior regions within @ is

1
— > p(@ Sis)- (9.6)
51+I€Ni+1

The latter sum is just the total face-length of all exterior regions in the
arrangement formed within @ by p(P) N Q, P € N*t!, Each such exterior
region belongs to the zone of some line bounding Q. Applying the Zone
Theorem for line arrangements to each of the O(1) lines bounding @, it
follows that this total face-length is O(i + 1). Thus, the expression in (9.6)
is O(1). In other words, for a fixed Q ¢ N**!, the expected number of newly
created fragments within Q during the (i + 1)th addition is O(1).

For the (i + 1)th addition, it thus follows that the expected number of
newly created fragments within all polygons in N\ N+l is O(n — i). Thus,
the expected size of the BSP tree is O(3;n~ 1) = O(n?).

What is the expected cost of generating the above BSP tree? First of all,
what is the cost of detecting every leaf 3 of BSP(N %), such that a fragment
in N{(3) intersects p(Si+1)? (Refer to the first step in Algorithm 9.2.5.) We
have already seen that, for a fixed Q € N \ N, the fragments of @ that occur
in the lists N{3)’s are the exterior fragments of Q and their number is O{i)
(Figure 9.14(a)). Hence, the total pumber of fragments that occur in the

6.3. MOVING VIEWPOINT 383

lists N(3)’s associated with the leaves of BSP(N?) is O(i(n —{)). For a fixed
fragment, testing whether it intersects p(S;11) can take time proportional
to the number of its vertices if the test is done by brute force. However,
we can always maintain a balanced tree with the circular list of vertices of
every fragment, so that this test takes only logarithmic time (Exercise 2.8.4).
Thus, the total cost of detecting all leaves 3’s of BSP(N*) such that p(S;+1)
intersects a fragment in N(3) is O(i(n — 7} logi). Over the whole algorithm,
this adds up to O{(n®logn).

As far as the cost of the rest of the algorithm is concerned, we only need
to bound, for each node ¢ of BSP(N), the cost of cutting N(s). This is
obviously bounded by the total number of edges of all fragments in N (o).
But an edge generated by a fixed cut in the first step of Algorithm 9.2.5
can bound a fragment in N{o) for at most n choices of o. This is because
the depth of BSP(N) is at most n. We have already seen that the expected
number of cuts is O(n?). Hence, the expected total cost incurred in this part
of the algorithm is O(n3).

It thus follows that the expected cost of generating the BSP tree is
O(n3logn). To summarize:

Theorem 9.2.6 The expected size of the BSP tree generated by the algo-
rithm is O{n?), if the polygons in N are non-intersecting. The expected cost
of its generation is O(n®logn).

Exercises
*9 2.4 Bring down the expected cost of BSP tree generation to On®).

9.2.5 Generalize the results in this section to arbitrary fixed dimension d. Let N
be a set of (d — 1)-dimensional polytopes in R?. Assume that each polytope has a
bounded size. Show that the d-dimensional variant of the algorithm in this section
generates a BSP tree of O(n"™") expected size.

9.2.6 Construct a set N of n polygons in R?, so that any BSP tree over N must
have Q(n®) size.

9.3 Moving viewpoint

In this section, we consider the problem of hidden surface removal with re-
spect to a moving viewpoint. One way of approaching this problem would
be to compute the view with respect to every viewpoint from scratch. For
example, one can traverse the BSP tree all over for every viewpoint. This will
create a priority order among the given polygons, or, more precisely, their
fragments, with respect to the given viewpoint. After this, the polygons can
be painted onto the device screen in the decreasing priority order. One dis-
advantage of this method is that all fragments of the polygons in N, even the

