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 Slab method 
 O(n2) memory, O(log n) time 

 Monotone chain tree in planar subdivision 
 O(n2) memory, O(log2 n) time 

 Trapezoidal map 
 O(n) expected memory, O(log n) expected time 

 O(n log n) expected preprocessing time 
 Kirkpatrick's Planar point location 
 O(n) memory, O(log n) time 
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1. Data preprocessing 
2. Building structure 
3. Point query 
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Image source: Mount 
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Image source: Preparata 



 Assumption that planar subdivision is a 
triangulation. 

 If not, triangulate each face and label each 
triangular face with the same label as the 
original face. 

 Compute the convex hull and triangulate the 
holes between the subdivision and CH. 

 Put a large triangle around the subdivision 
and connect its vertices with CH. 
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Image source: Sandulescu 
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Image source: Mount 
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 Find an independent set of vertices with 
degree less than or equal to 8. 

 Remove them from the graph, obtaining 
independent holes. 

 Retriangulate the holes. 
 Repeat the above steps until you are left with 

3 vertices (the large triangle). 
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Image source: Mount 
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 Start in the root 
 Find children node containing the point 
 Continue from that node to leaf 
 Point location algorithm in pseudo code : 
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Image source: Preparata 



 Lemma: Every planar graph on n vertices 
contains an independent vertex set of size 
1/18n in which each vertex has degree at 
most 8.  The set can be found in O(n) time. 

 Layer T+1 has at most 17/18n vertices of layer 
T. 

 depth = log18/17 n ≈ 12 log n 
 Time complexity is O(log n) 
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 Space complexity = sum up the sizes of 
triangulations. 

 n(1+(17/18)+(17/18)2+(17/18)3+… ≤ 18n 
 (sum of geometric series : S = a1 / 1 – q)  
 Space complexity is O(n) 
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 Very good time and space O complexity 
 Big multiplicative constants – time 12*log(n), 

space 18*n 
 Trapezoidal map is more simple to implement 

and often is faster then Kirkpatrick planar 
location 
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 Mount, D.: Computational Geometry Lecture 
Notes for Spring 2007 

 Franco P. Preparata, Michael I. Shamos: 
Computational Geometry:  An Introduction, 
1985 

 Subhash Suri: Point Location, 
http://www.cs.ucsb.edu/~suri/cs235/Location.pd
f 

 Sandulescu, P.:Kirkpatrick's Point Location Data 
Structure, 
http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2
002/PaulSandulescu/index.html 
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Time for discussion 

28 Kirkpatrick's Planar point location 



OI-OPPA. European Social Fund
Prague & EU: We invest in your future.


