

DUALITY AND APPLICATIONS OF ARRANGEMENTS

PETR FELKEL

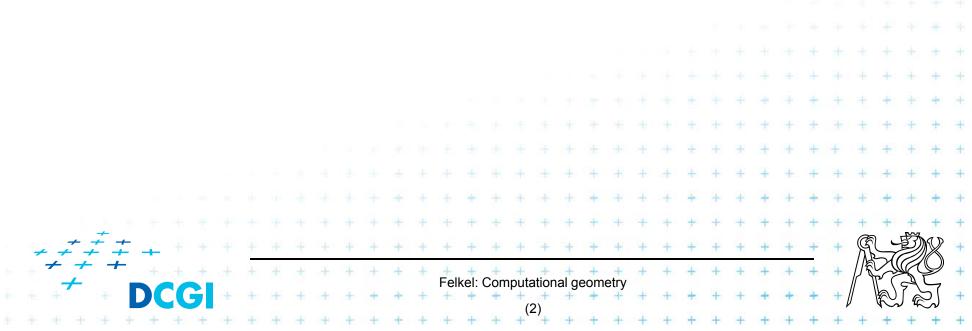
FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Mount], and [Goswami]

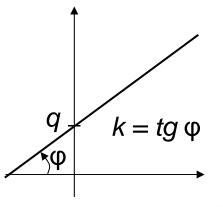
Version from 7.1.2016

Talk overview

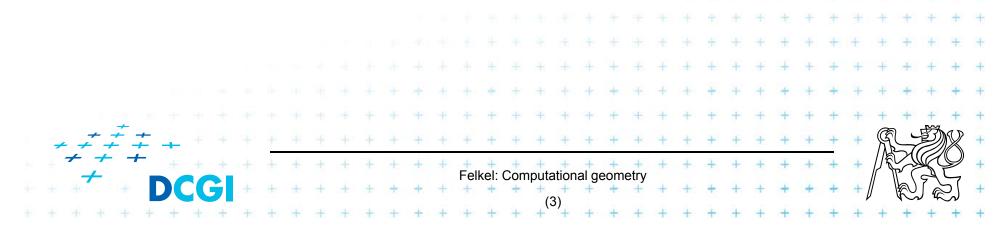
- Duality
 - 1. Points and lines
 - 2. Line segments
 - 3. Polar duality (different points and lines)
 - 4. Convex hull using duality
- Applications of duality and arrangements



- Points and lines both have 2 parameters:
 - Points coords x and y
 - Lines slope k and y-intercept qy = kx + q



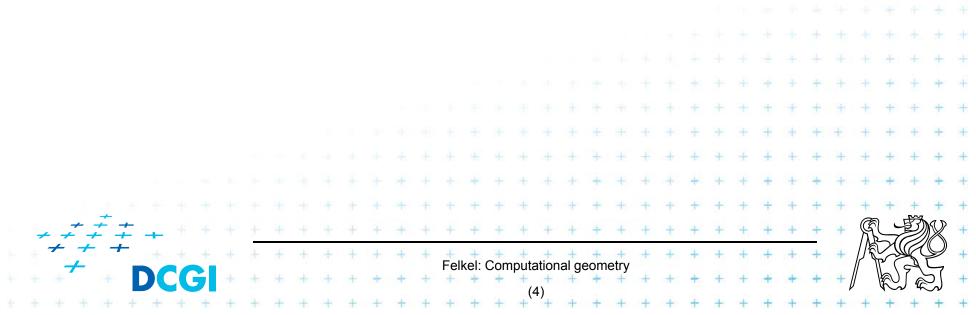
- We can simply map points and lines 1:1
- Many mappings exist it depends on the context



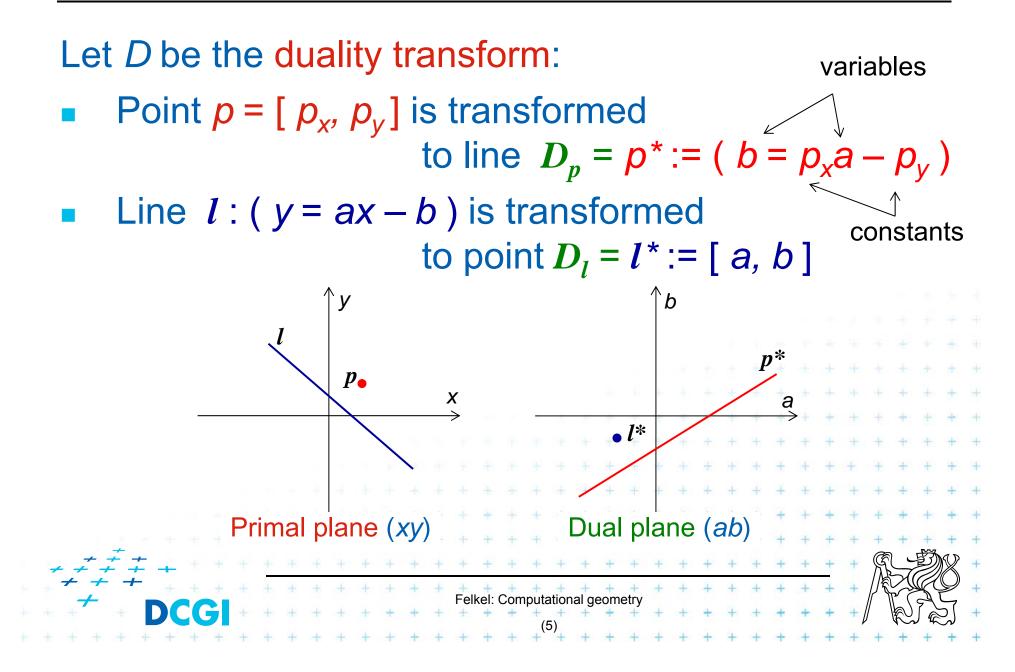
Why to use duality?

Some reasons why to use duality:

- Transforming a problem to dual plane may give a new view on the problem
- Looking from a different angle may give the insight needed to solve it
- Solution in dual space may be even simpler



Definition of duality transformation *D*



Example and more about duality *D*

Example:

line y = 5x - 3

can be represented as point *y**=[5, 3]

Duality D

- is its own inverse $DD_p = p$, $DD_l = l$

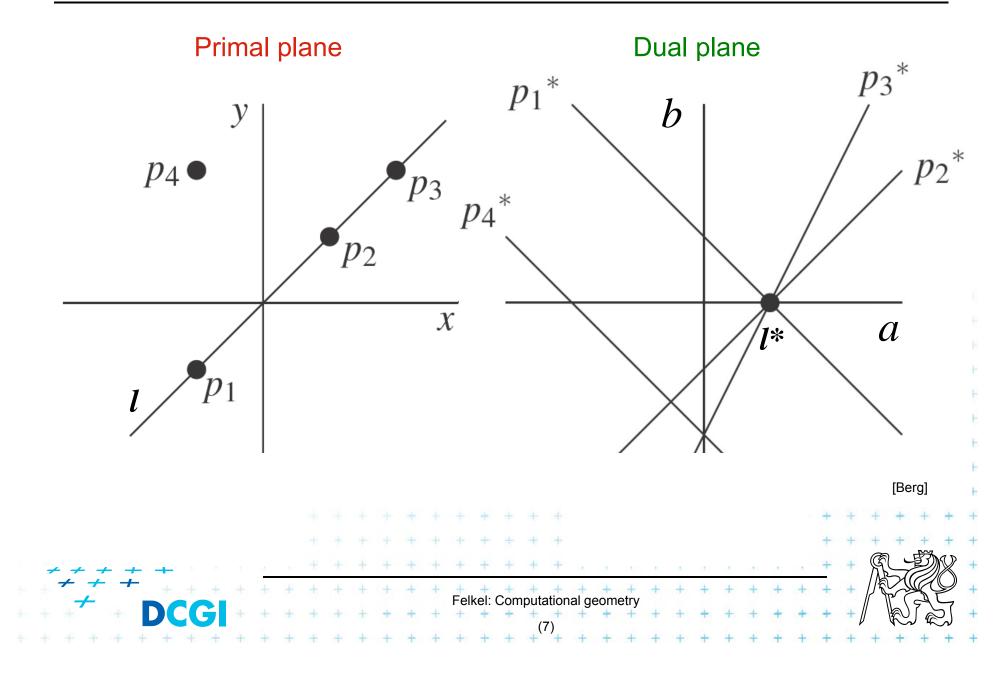
 cannot represent vertical lines
 =>Take vertical lines as special cases, use lexicographic order, or rotate the problem space slightly.

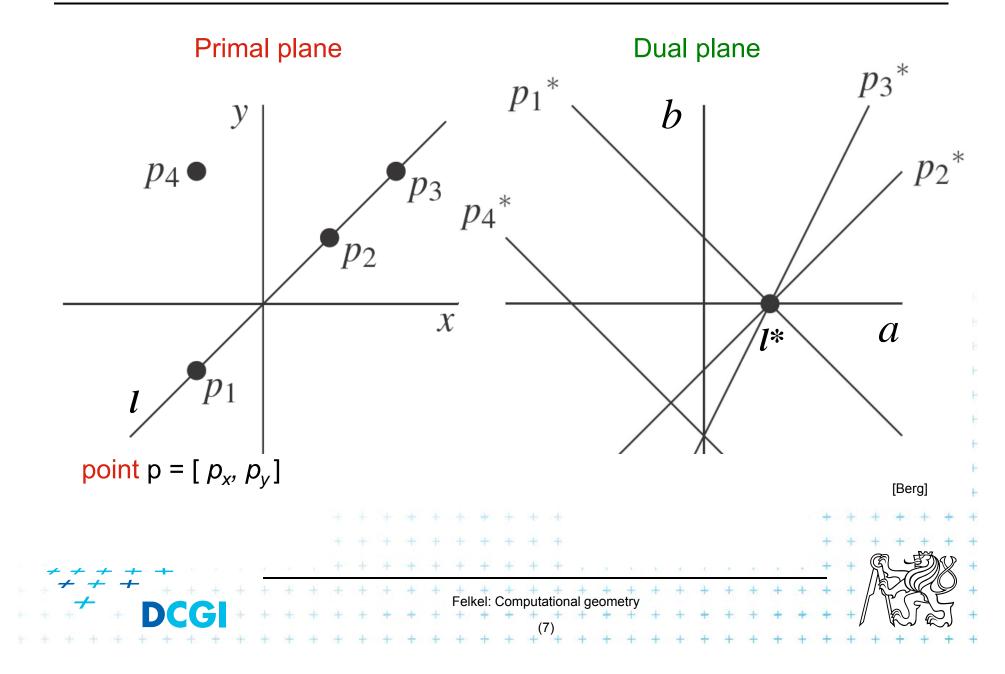
Felkel: Computational geometry

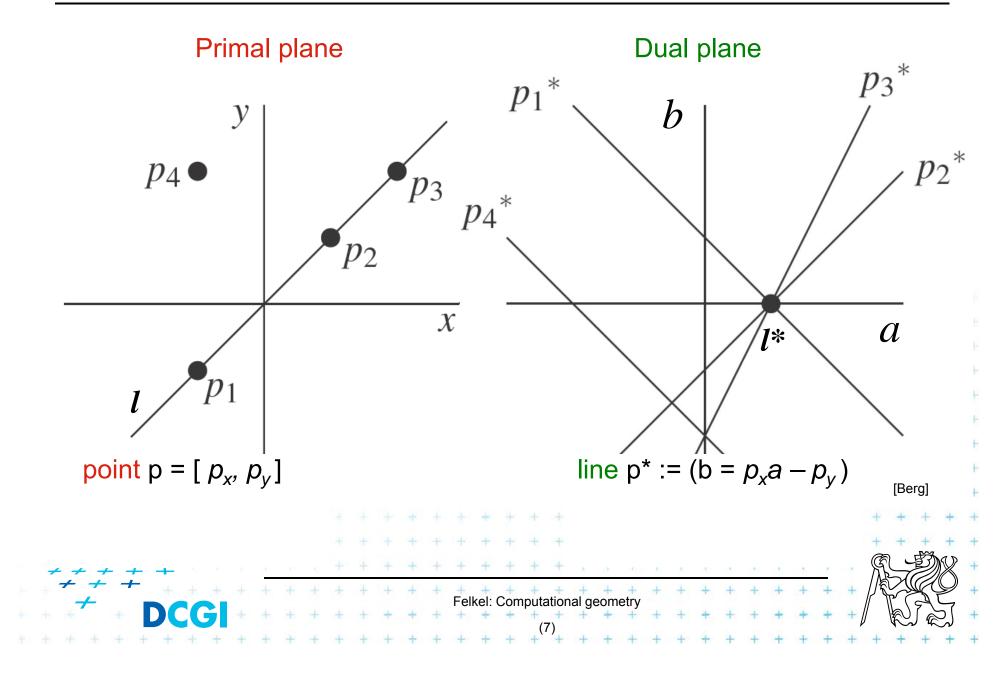
See the [applet]

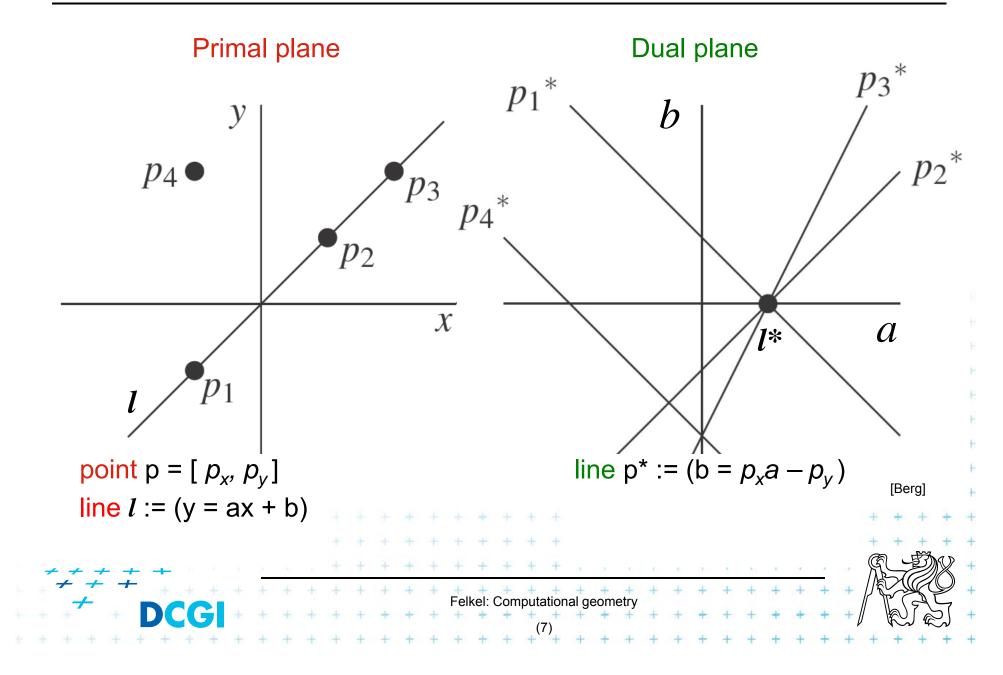
Primal plane — plane with coordinates x, y

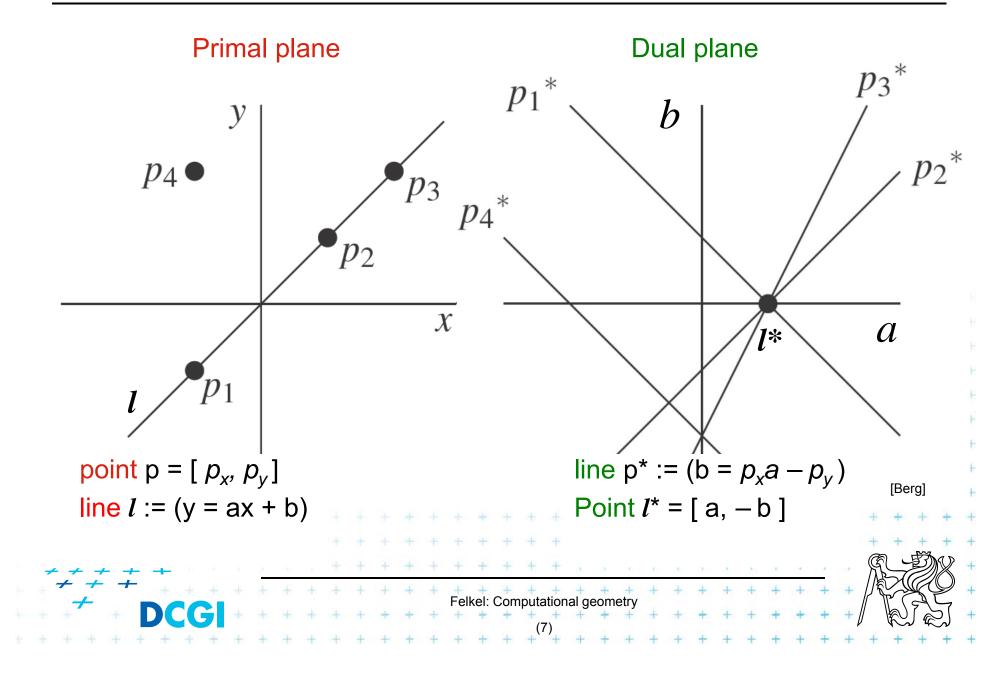
Dual plane* – plane with coordinates a, b

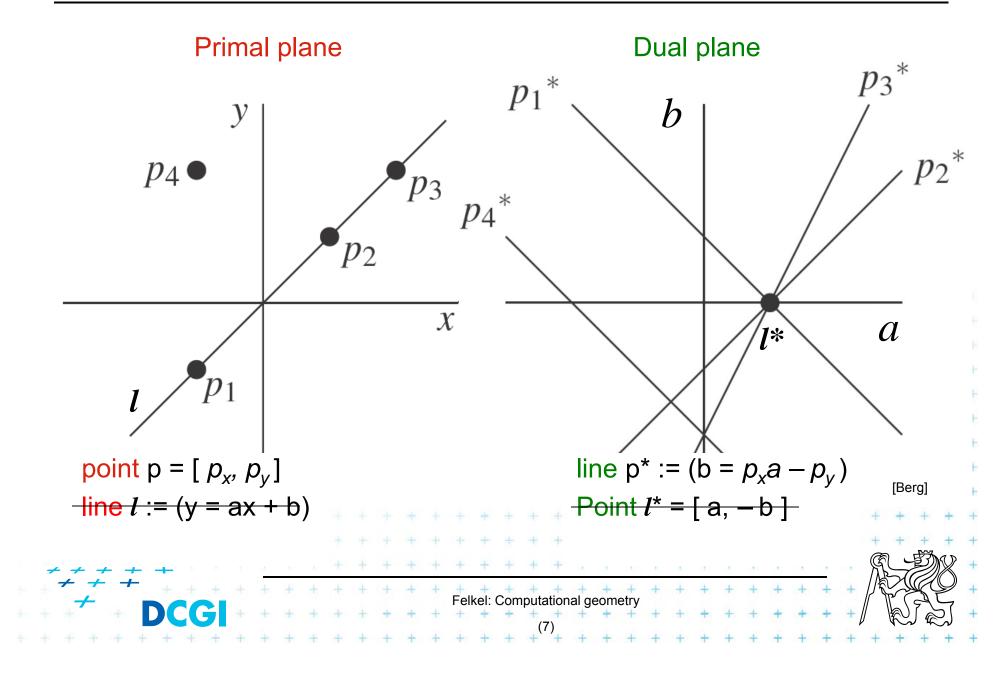


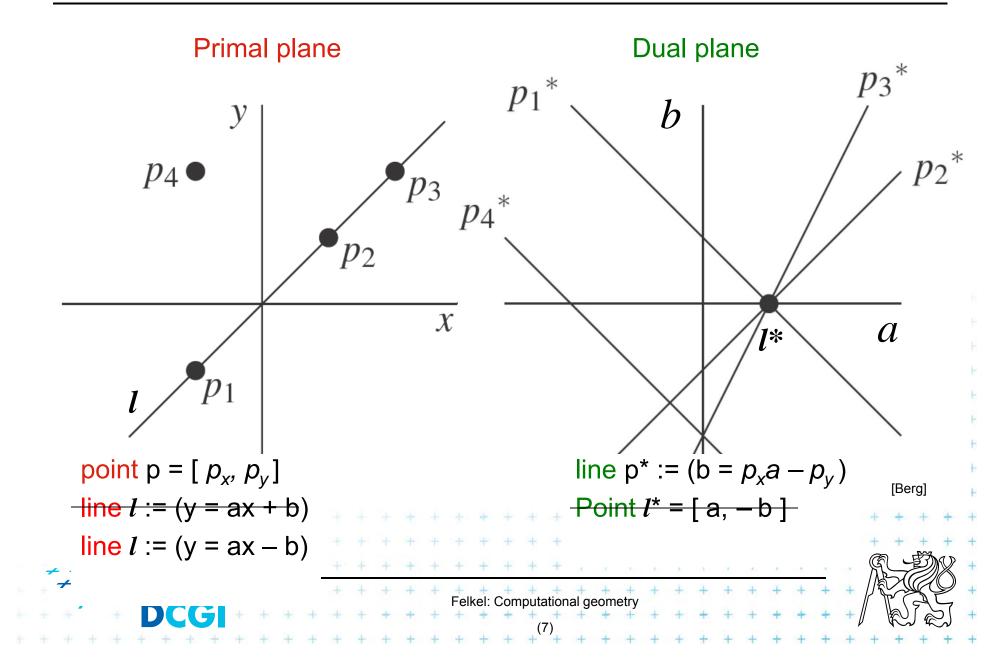


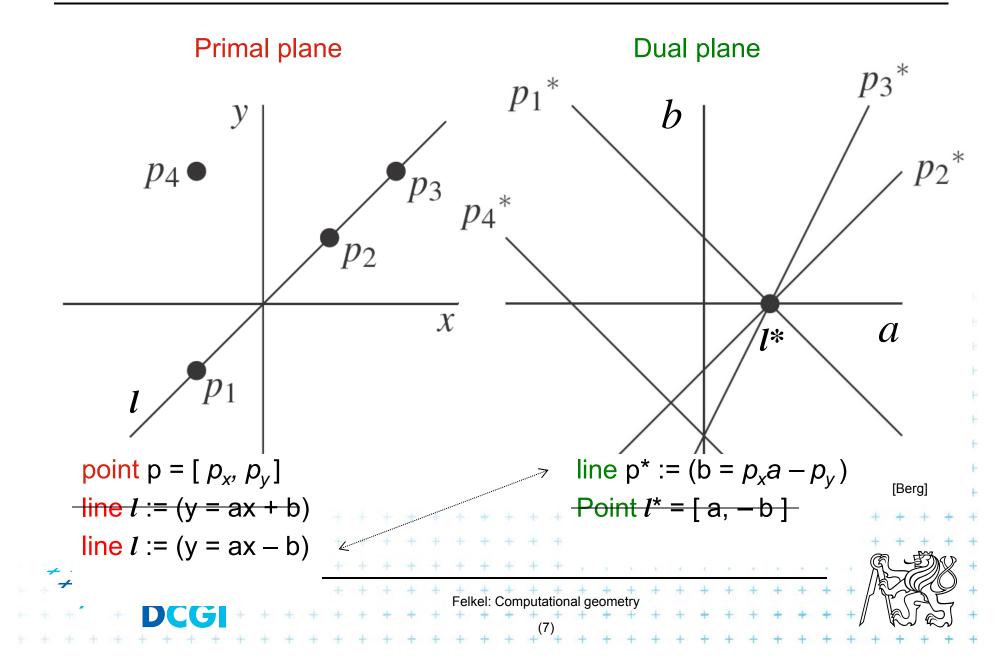


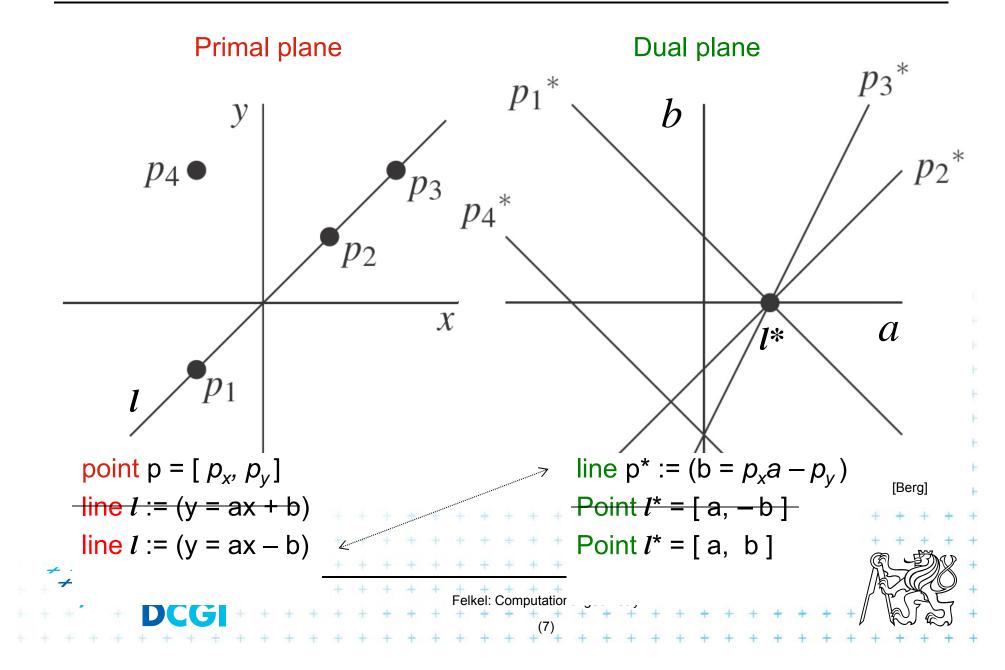


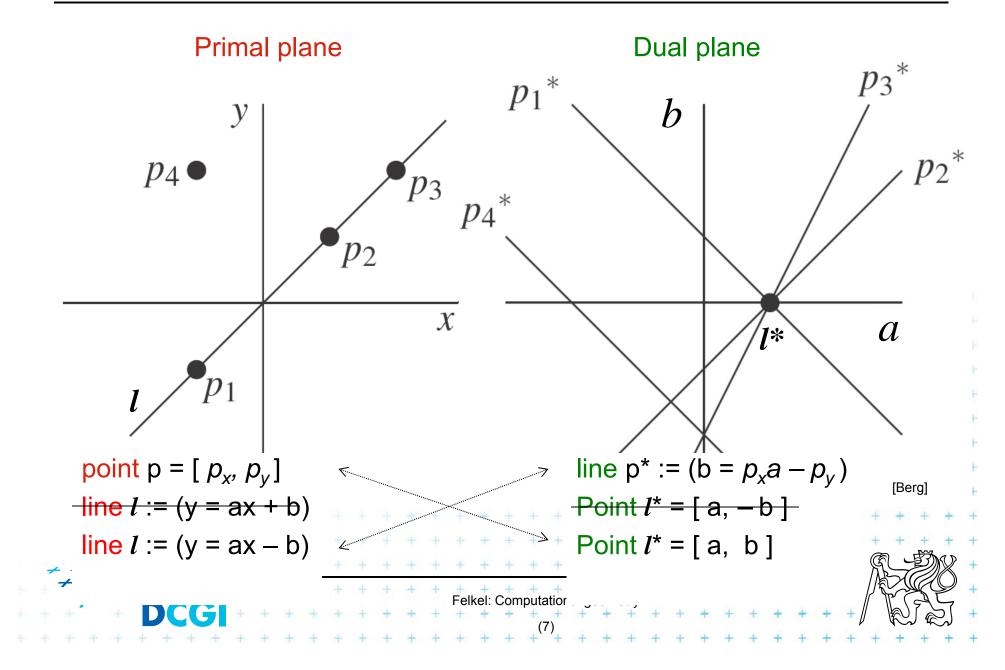


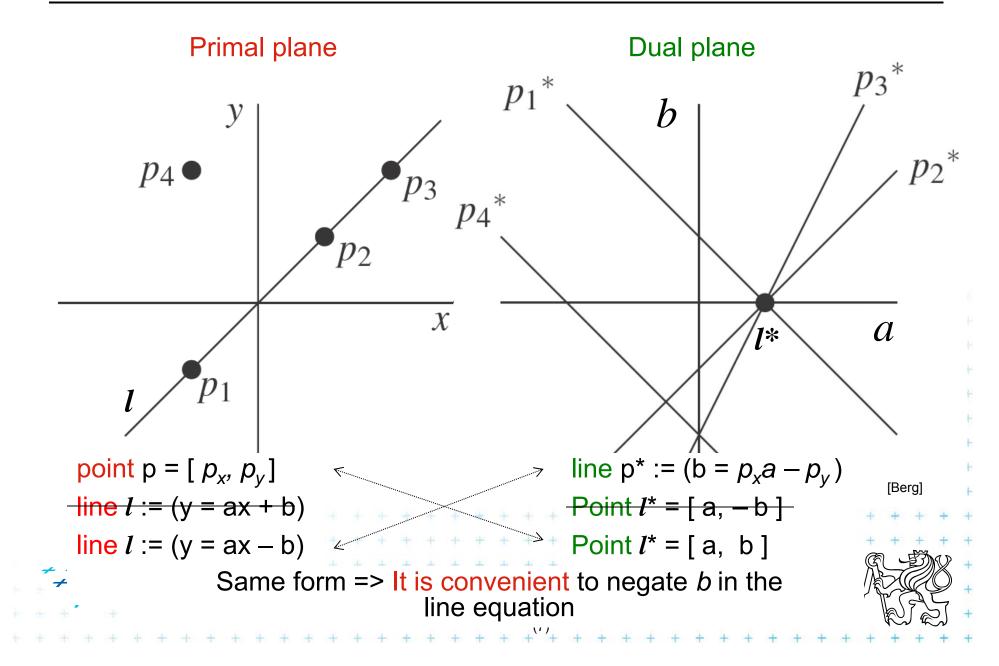






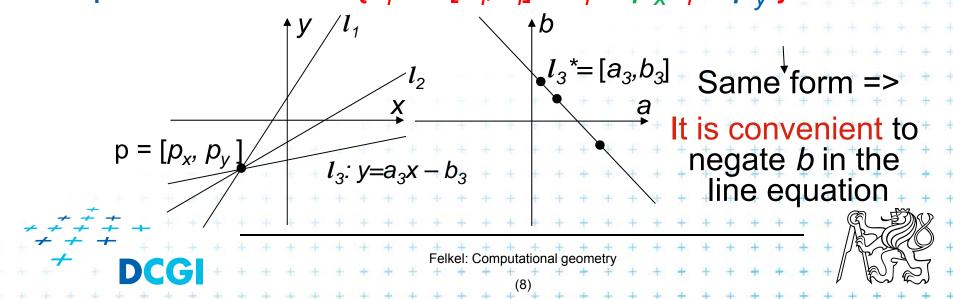






Why is *b* negated in the line equation?

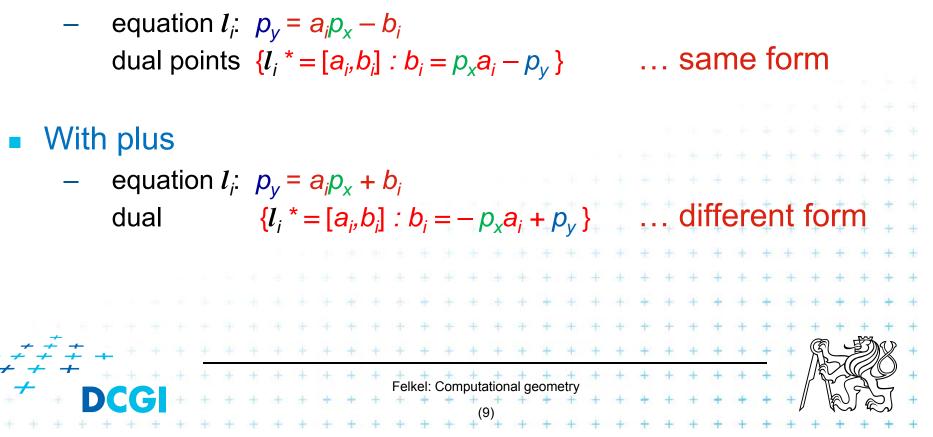
- In primal plane, consider
 - point $p = [p_x, p_y]$ and
 - set of non-vertical lines $l_i : y = a_i x b_i$ passing through *p* satisfy the equation $p_y = a_i p_x - b_i$ (each line with different constants a_i, b_i)
 - In dual plane, these lines transform to collinear points $\{I_i^* = [a_i, b_i] : b_i = p_x a_i - p_y^*\}$



If *b* not negated in the line equation...

Lines l_i have equartion $l_i : y = a_i x - b_i$ OR $y = a_i x + b_i$ Passing through point $p = [p_{x}, p_y]$:

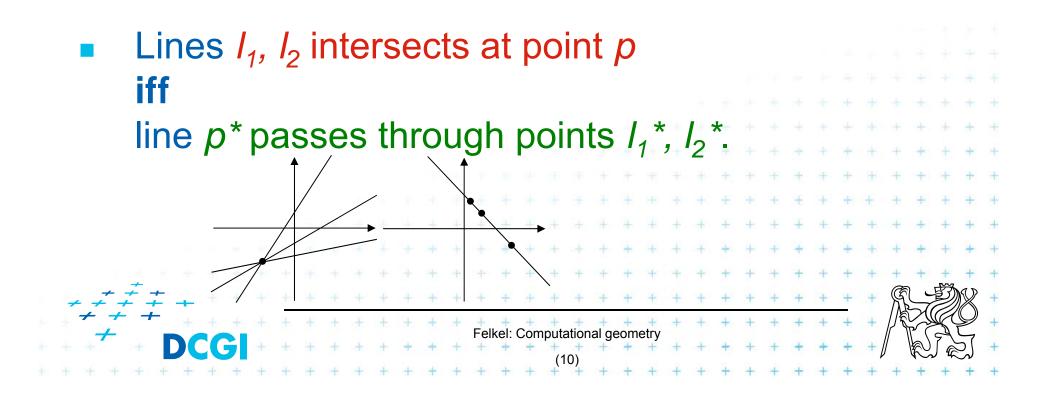
With minus



Properties of points and lines duality

Incidence is preserved

A point p is incident to the line / in primal plane iff point /* is incident to the line p* in the dual plane.

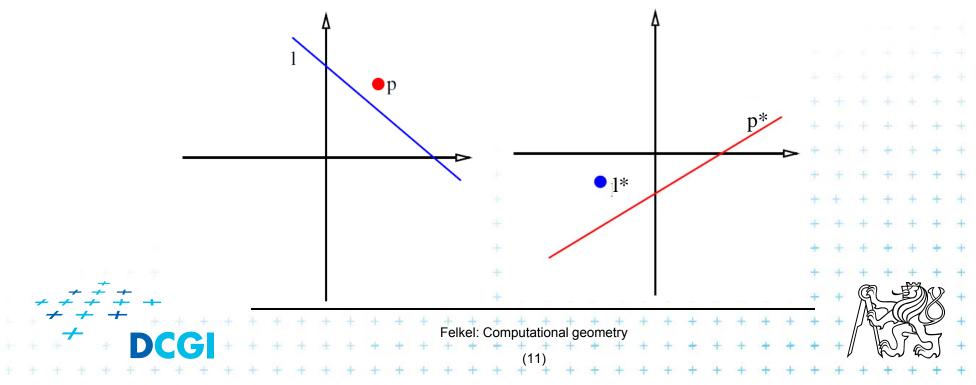


Properties of points and lines duality

But order is reversed

- Point p lies above (below) line / in the primal plane
 iff
 - line *p** passes below (above) point *I** in the dual

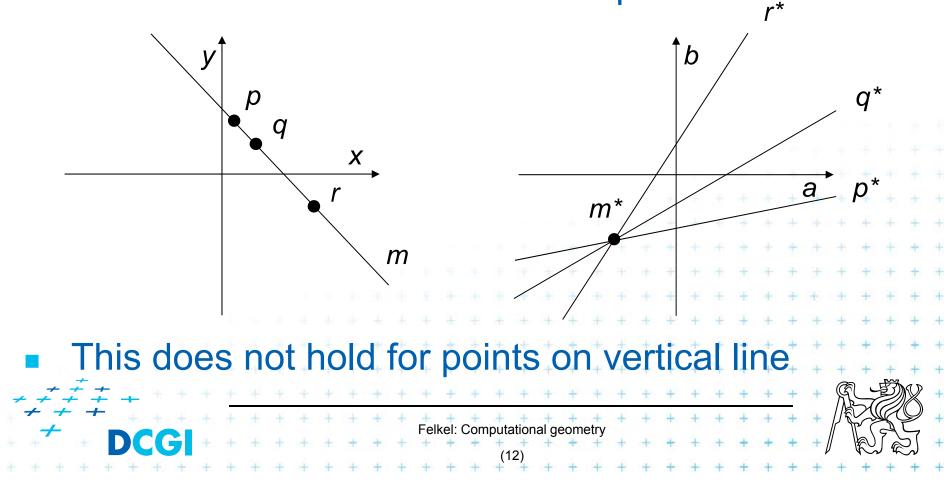
plane Or said order is preserved: ... **iff** Point /* lies above (below) line *p**



Properties of points and lines duality

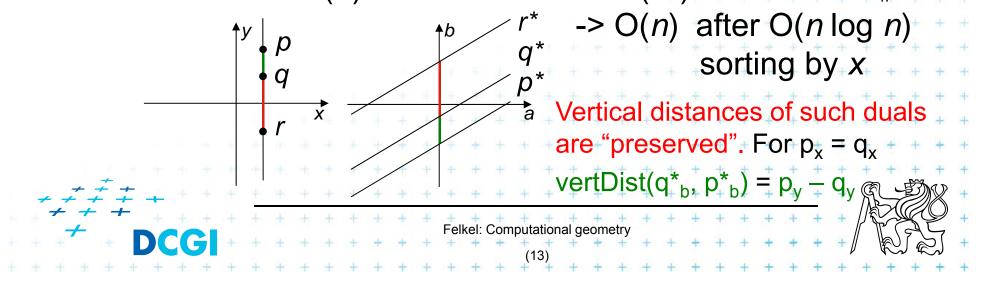
Collinearity

Points are collinear in the primal plane iff their dual lines intersect in a common point



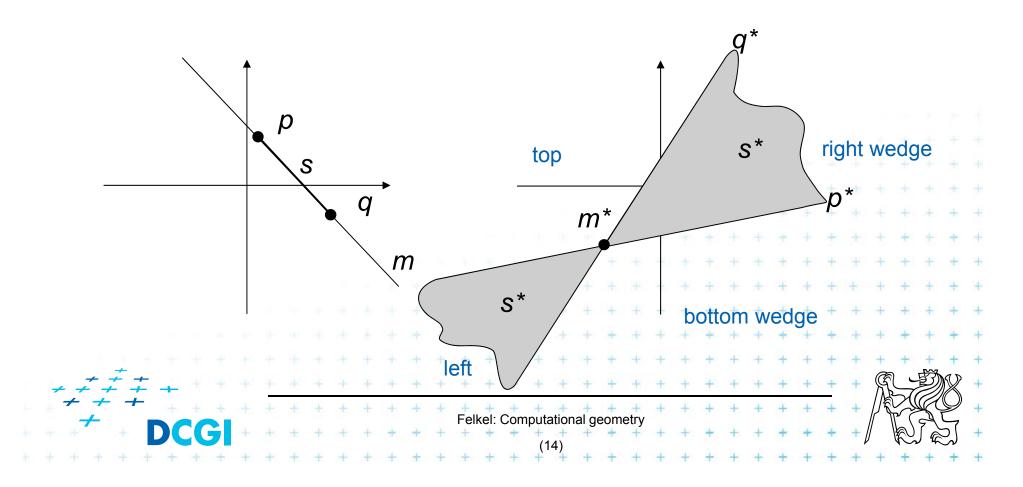
Handling of vertical lines

- Dual transform is undefined for vertical lines
 - Points with same x coordinate dualize to lines with the same slope (parallel lines) and therefore
 - These dual lines do not intersect (as should for collinear points)
 - Vertical line through these points does not dualize to an intersection point
 - For detection of vertically collinear points use other method - O(n) vertical lines -> $O(n^2)$ brute force 3|| lines s.



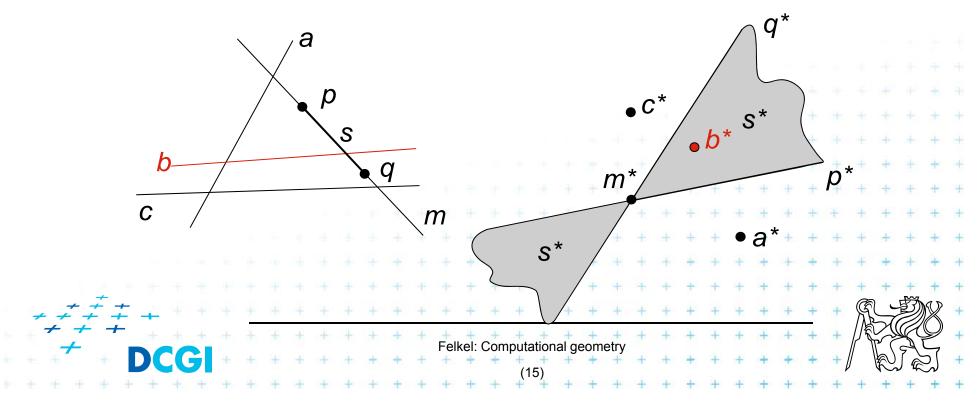
2. Duality of line segments

- Line segment s
 - set of collinear points —> set of lines passing one point
 - union of these lines is a (left-right) double wedge s*



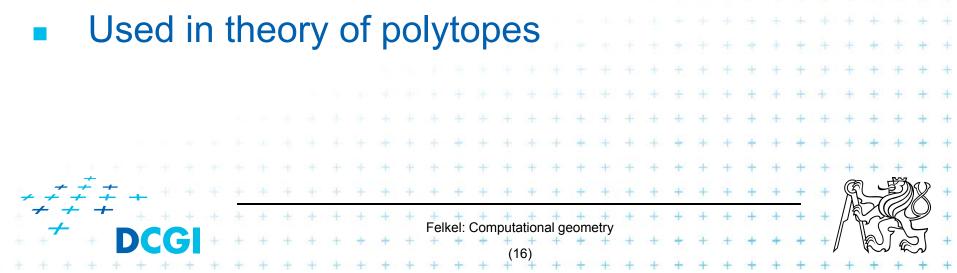
Intersection of line and line segment

- Line b intersects line segment s
 - if point b* lays in the double wedge s*,
 i.e., between the duals p*,q* of segment endpoints p,q
 - point p lies above line b and q lies below line b
 - point b* lies above line p^* and b^* lies below line q^*



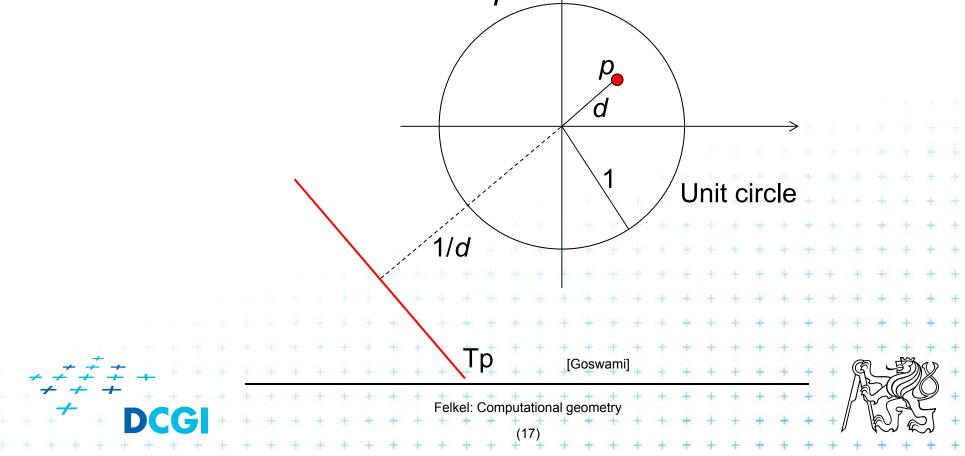
3. Polar duality (Polarity)

- Another example of point-line duality
- In 2D: Point p = (p_x , p_y) in the primal plane corresponds to a line T_p with equation ax + by = 1in the dual plane and vice versa
- In dD: Point p is taken as a radius-vector (starts in origin O). The dot product (p . x) = 1 defines a polar hyperplane p* = { x ∈ R^d: (p . x) = 1 }



Polar duality (Polarity)

- Geometrically in 2D, this means that
 - if **d** is the distance from the origin(O) to the point p, the dual T_p of p is the line perpendicular to Op at distance 1/d from O and placed on the other side of O.



4. Convex hull using duality – definitions

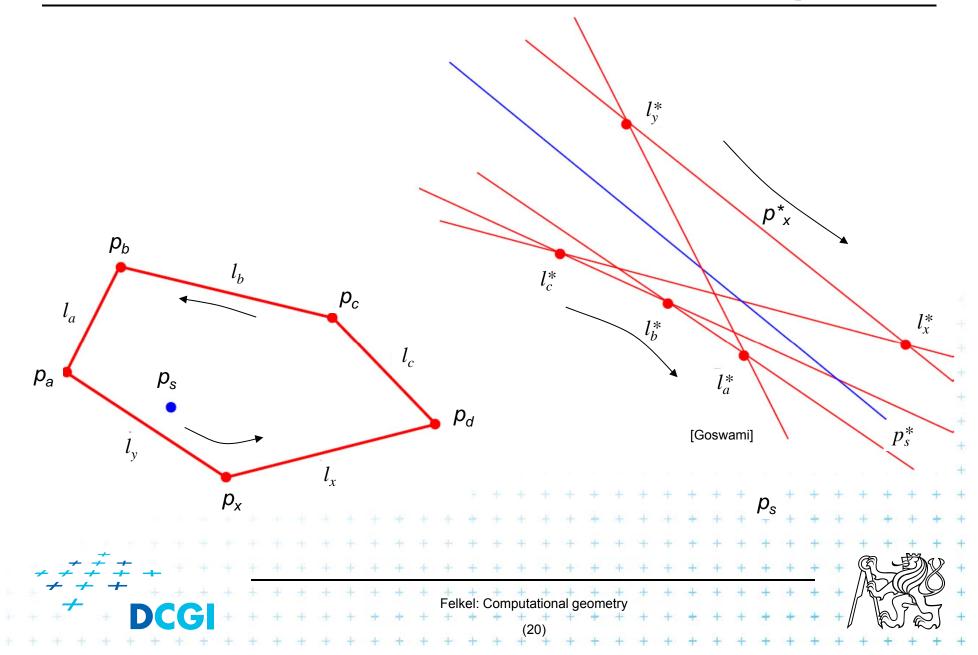
- An optimal algorithm
- Let *P* be the given set of *n* points in the plane.
- Let $p_a \in P$ be the point with smallest x-coordinate
- Let $p_d \in P$ be the point with largest x-coordinate Both p_a and $p_d \in CH(P)$ upper hull Upper hull = CW polygonal chain p_d p_a, \ldots, p_d along the hull p_a Lower hull = CCW polygonal chain p_a, \ldots, p_d along the hull Felkel: Computational geometry

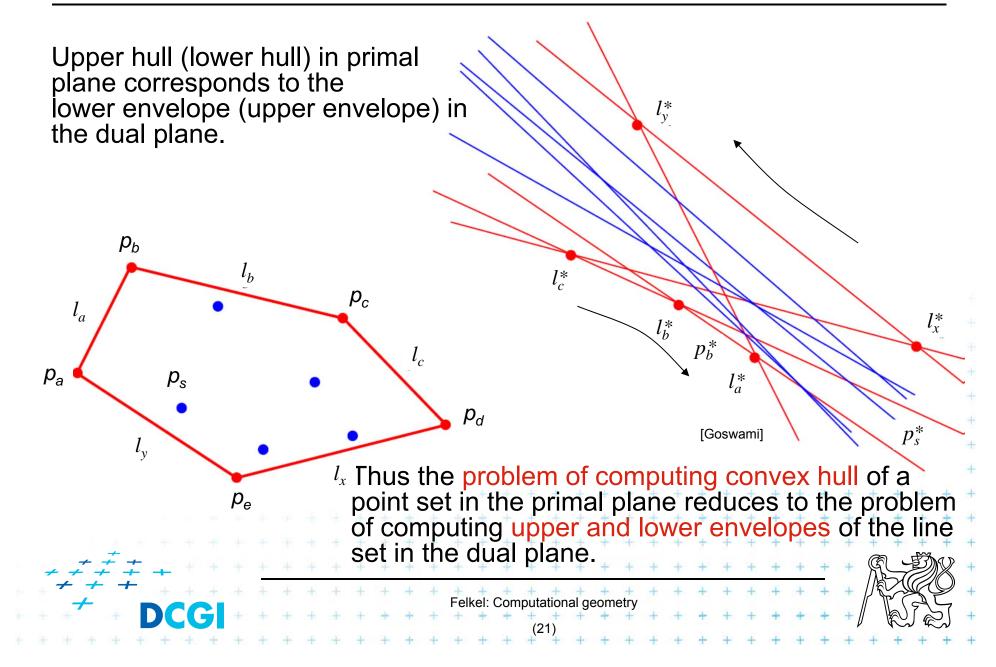
Definitions

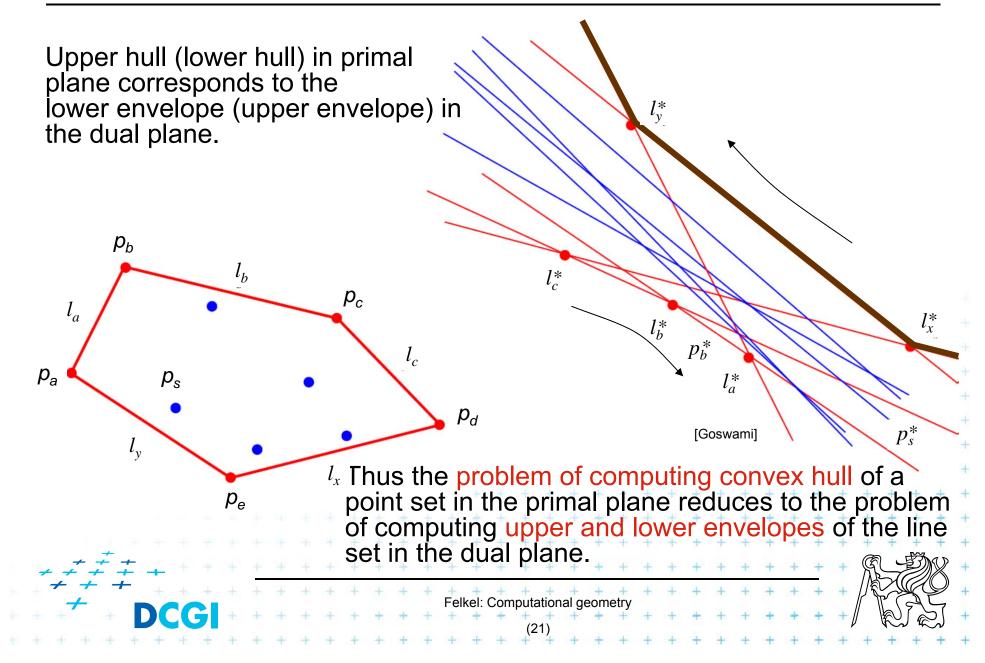
- Let L be a se of lines in the plane
- The upper envelope is a polygonal chain E_u such that no line $l \in L$ is above E_u .
- The lower envelope is a polygonal chain E_L such that no line $I \in L$ is below E_L .

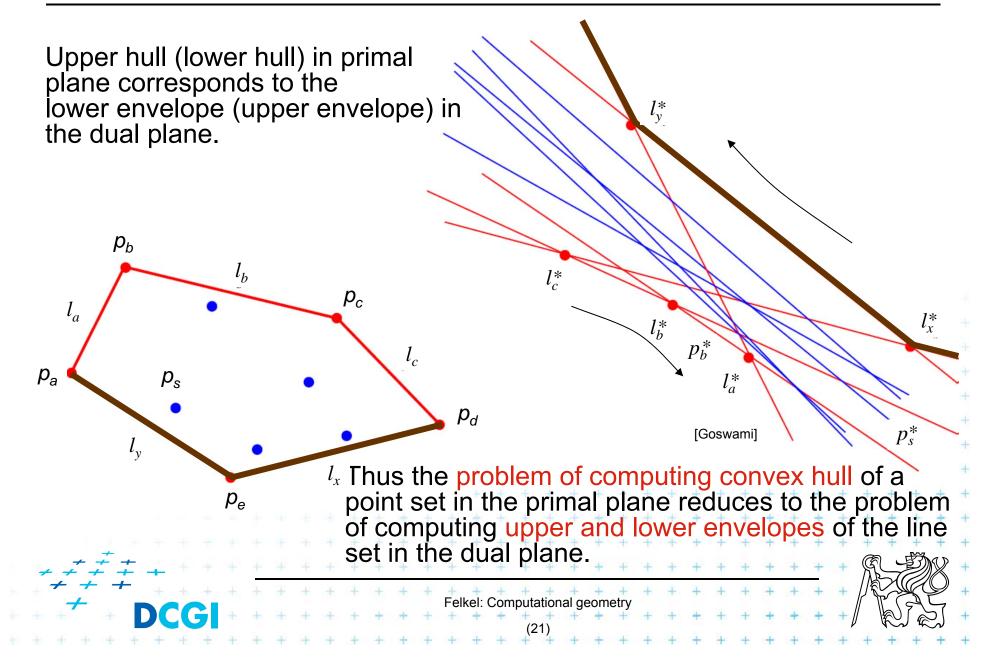
Felkel: Computational geometry

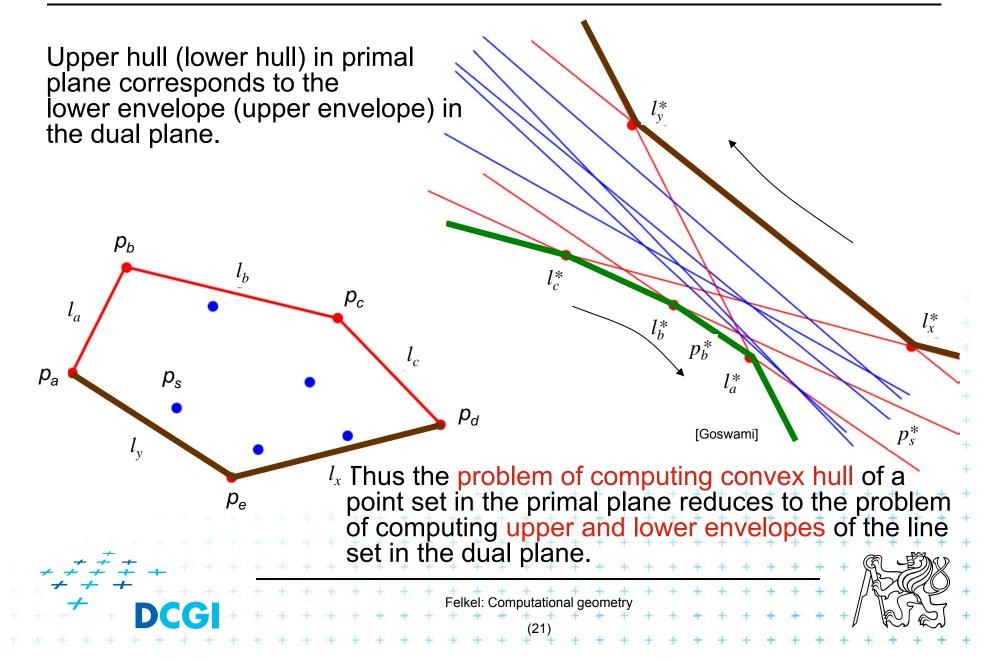
lower envelope

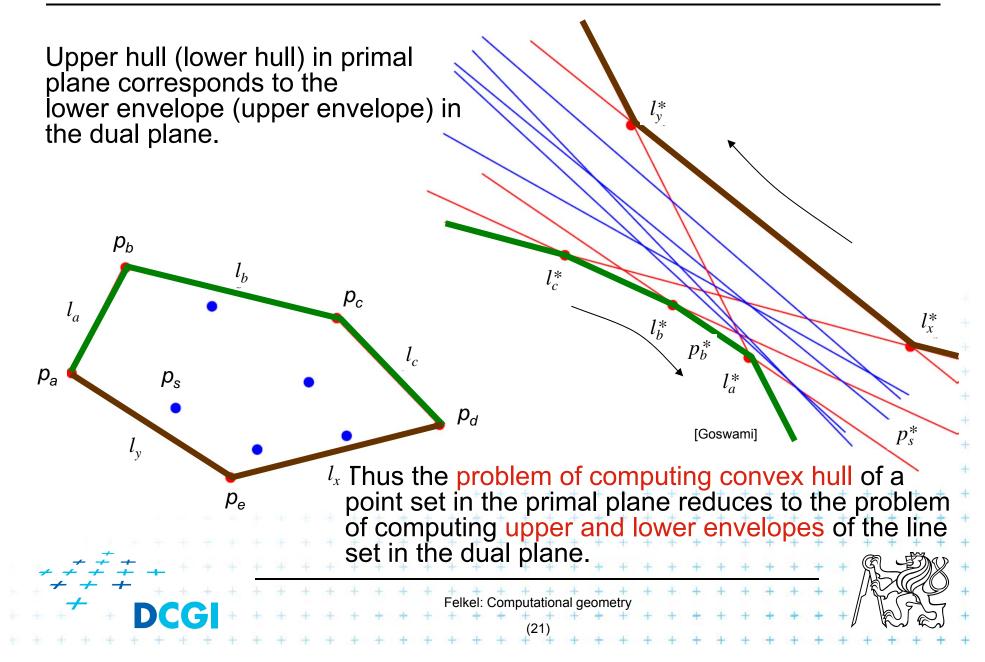




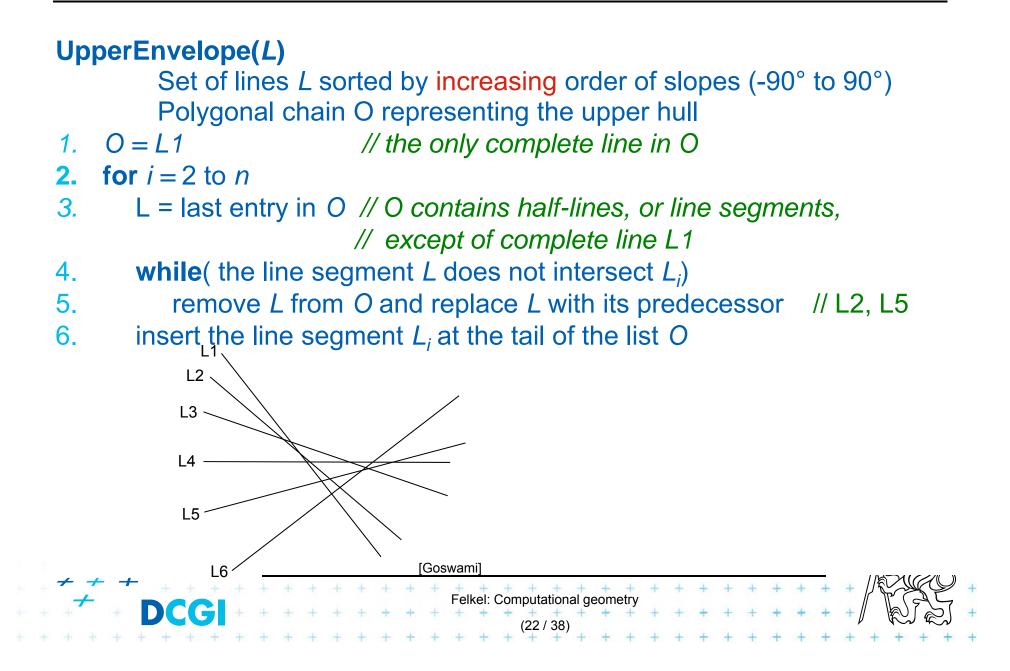


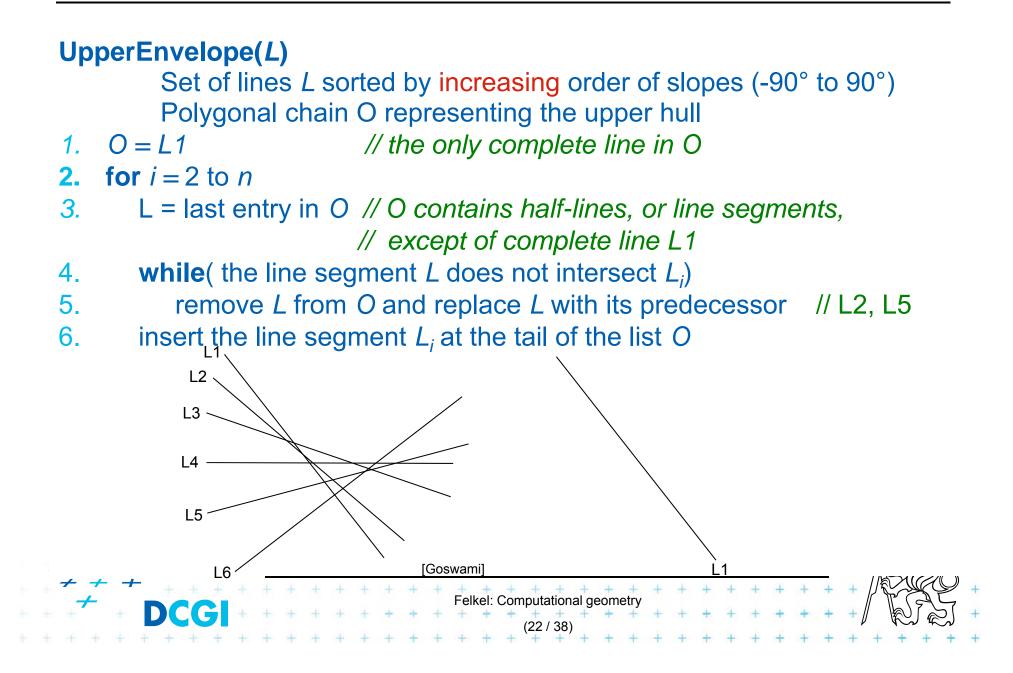


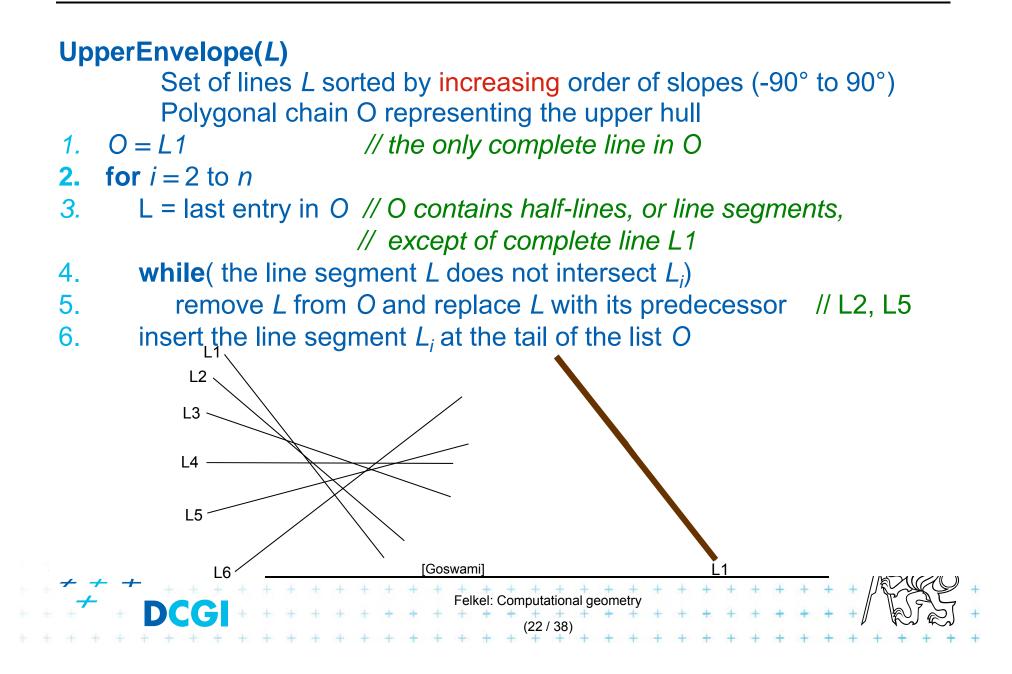


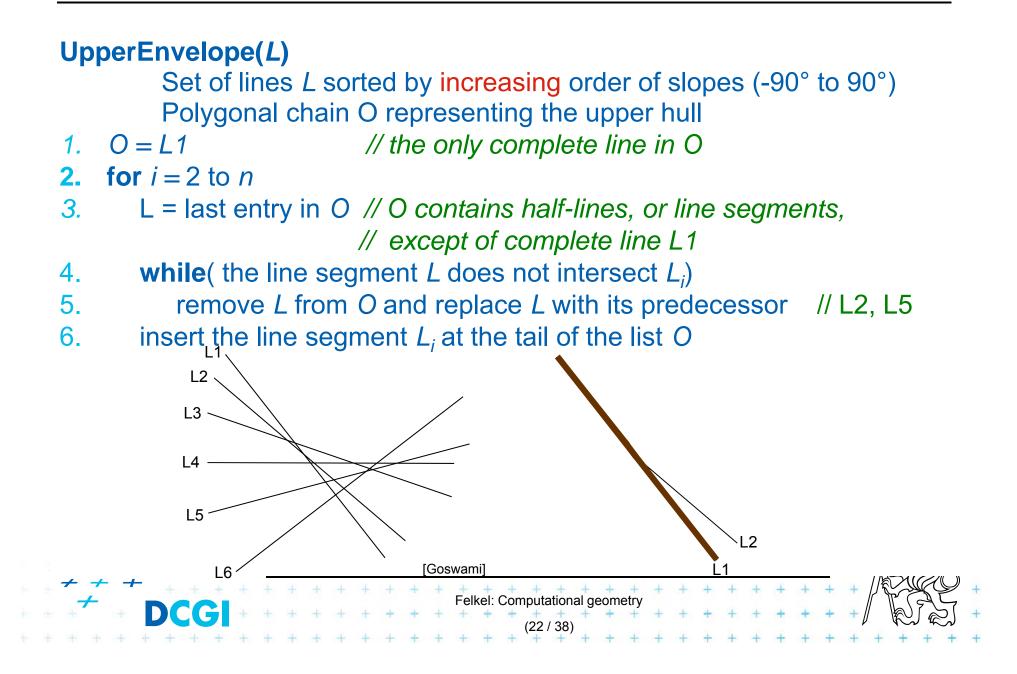


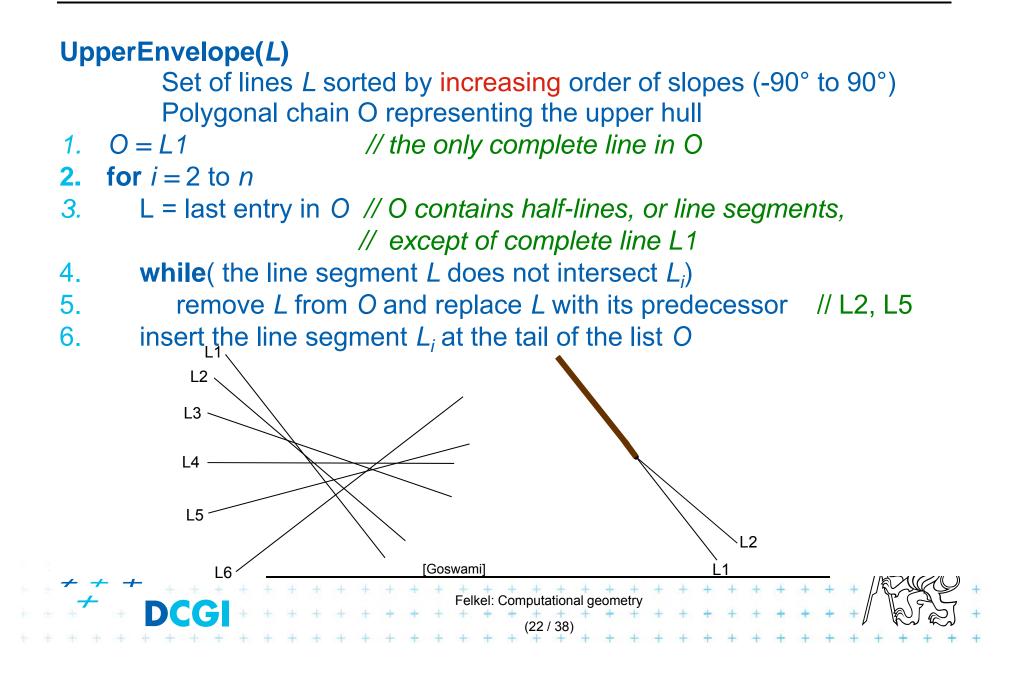
Upper envelope algorithm

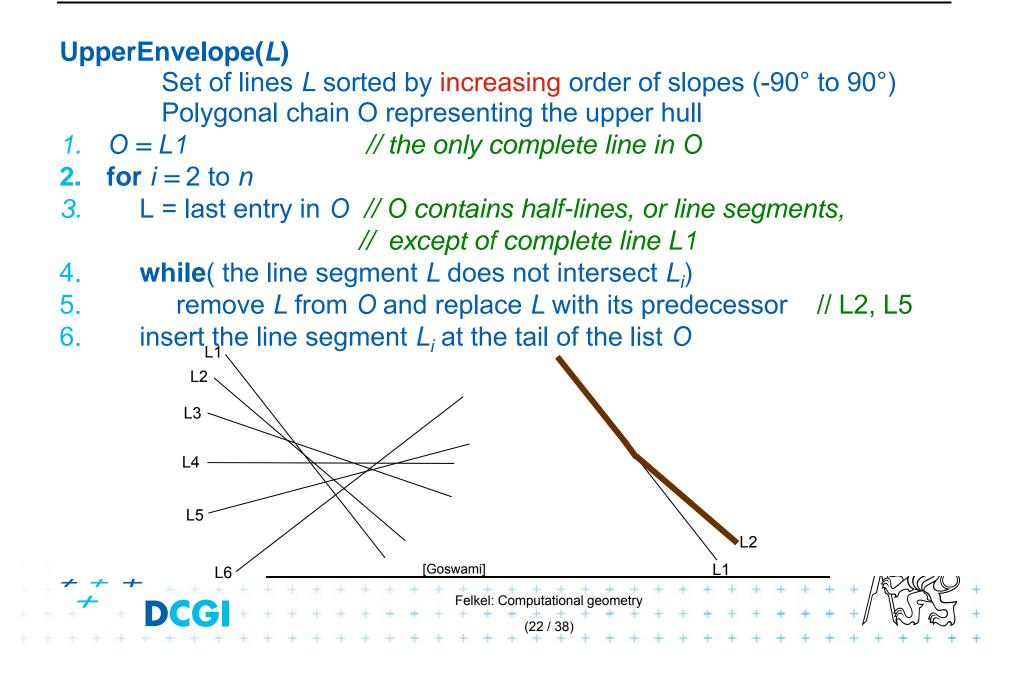


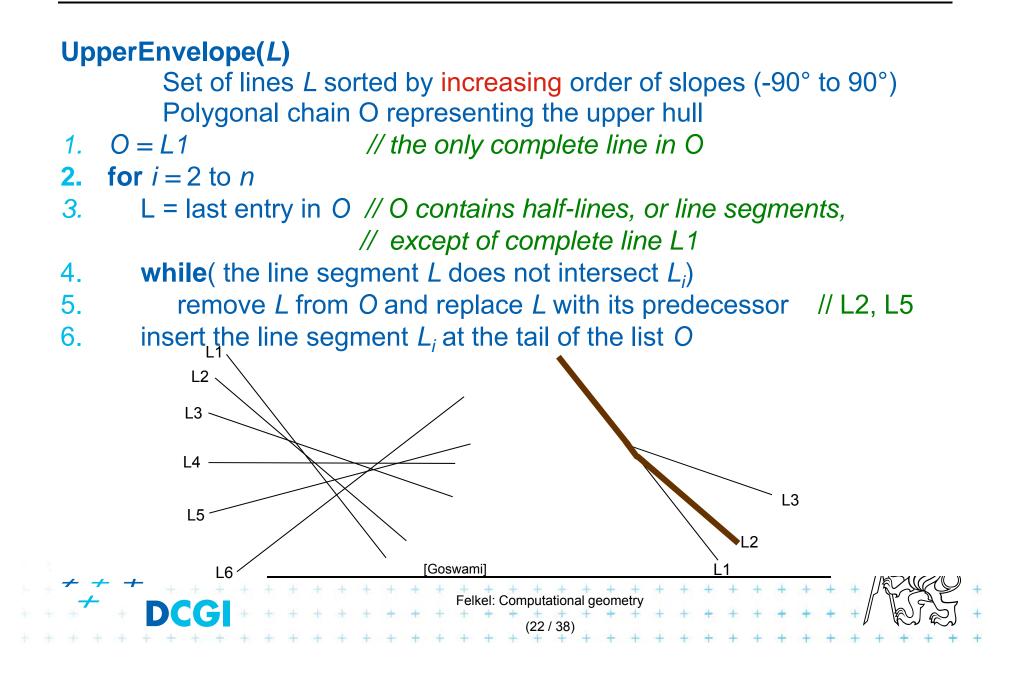


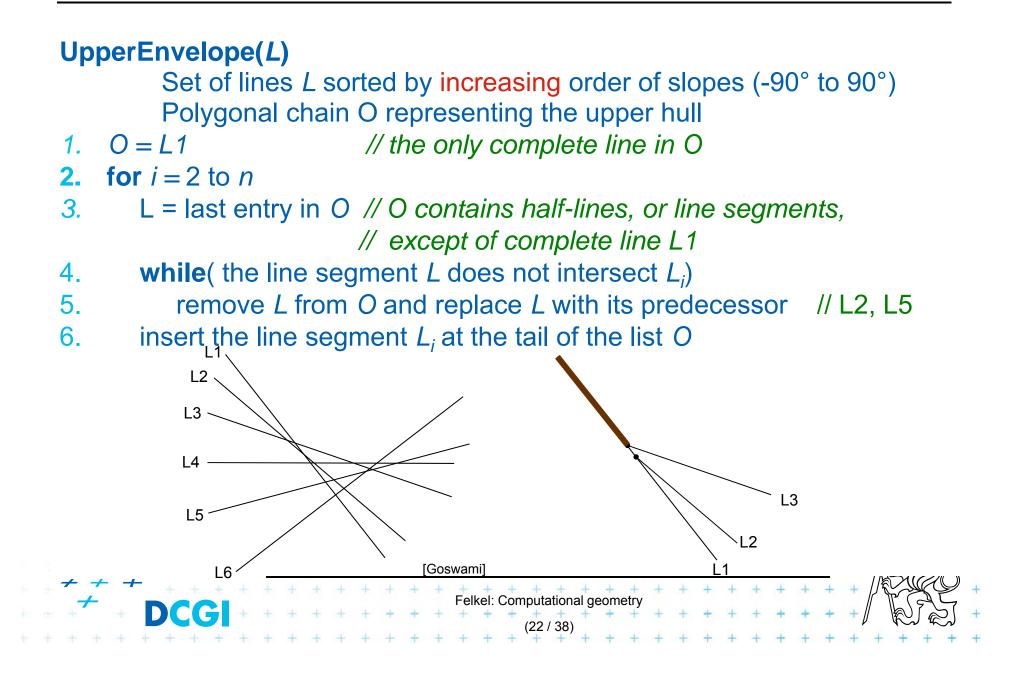


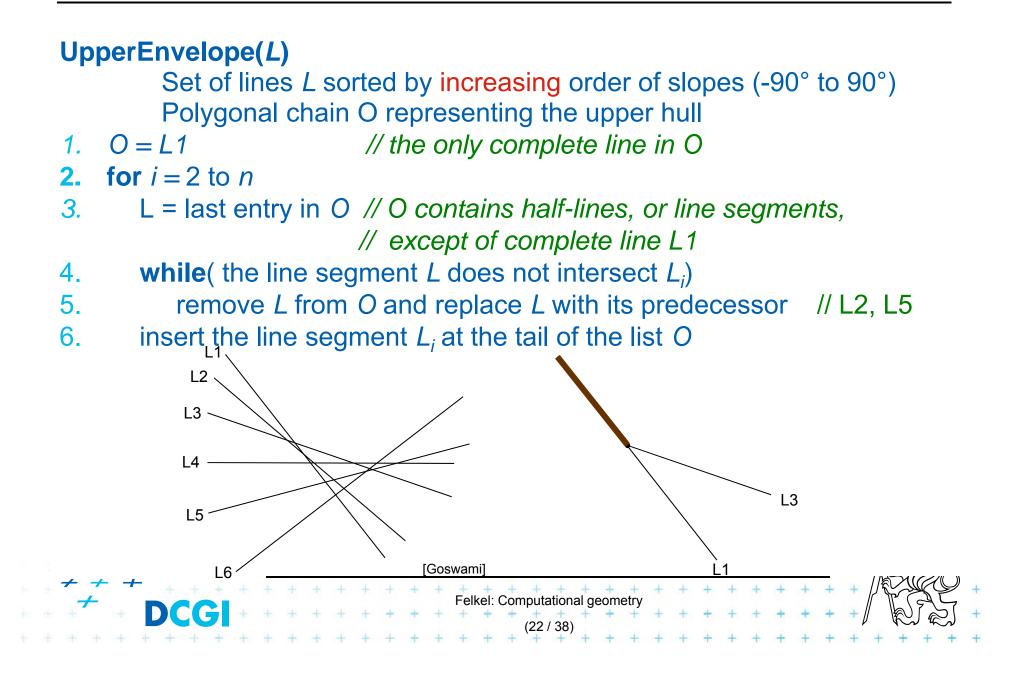


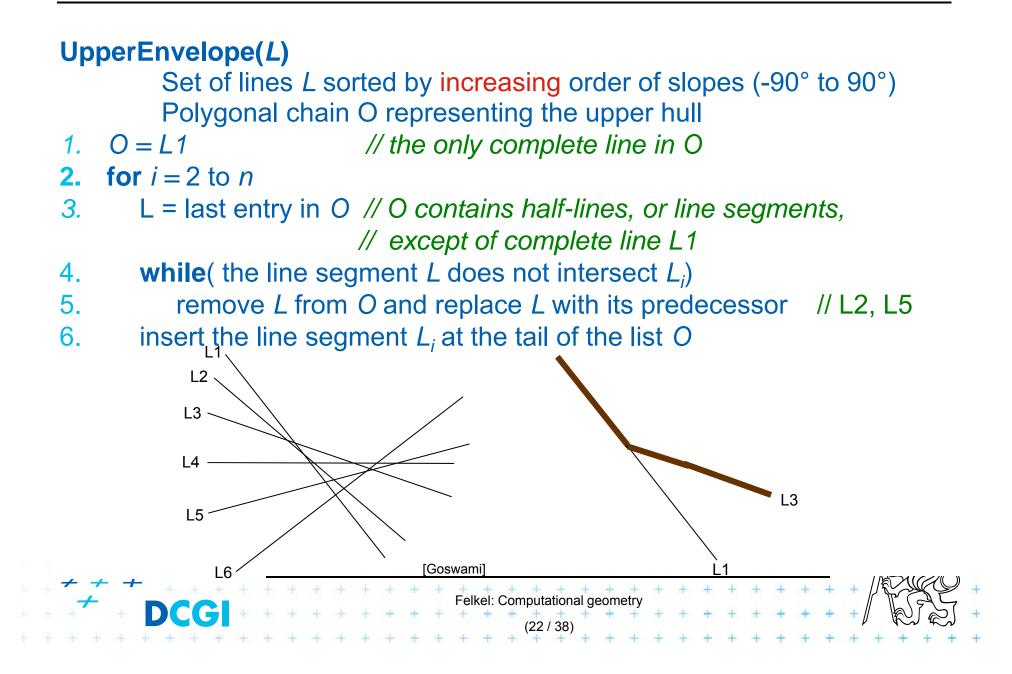


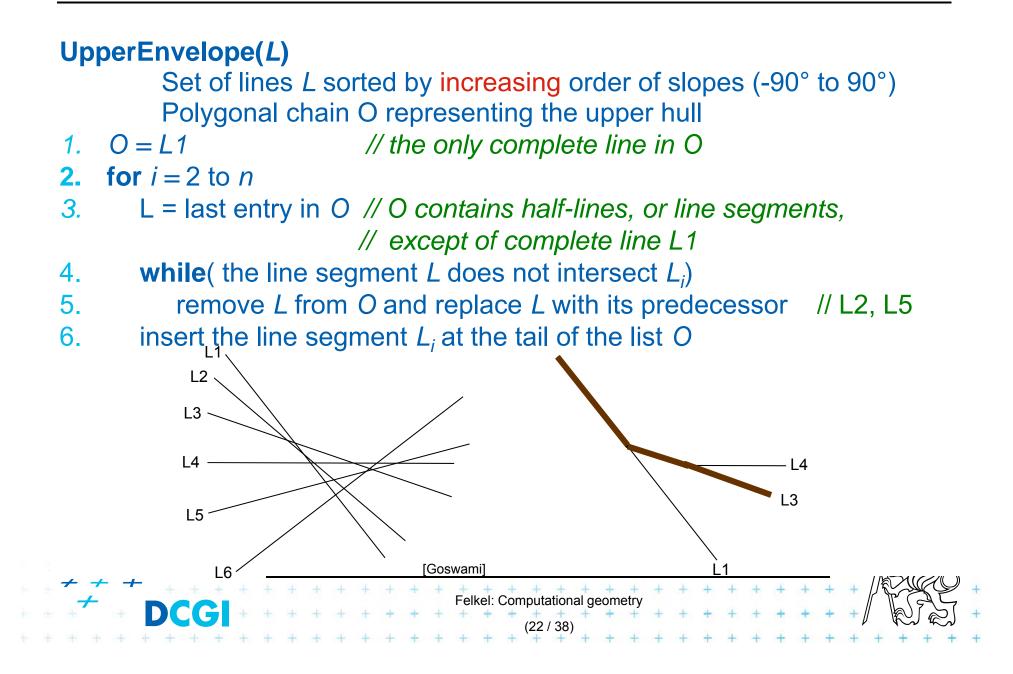


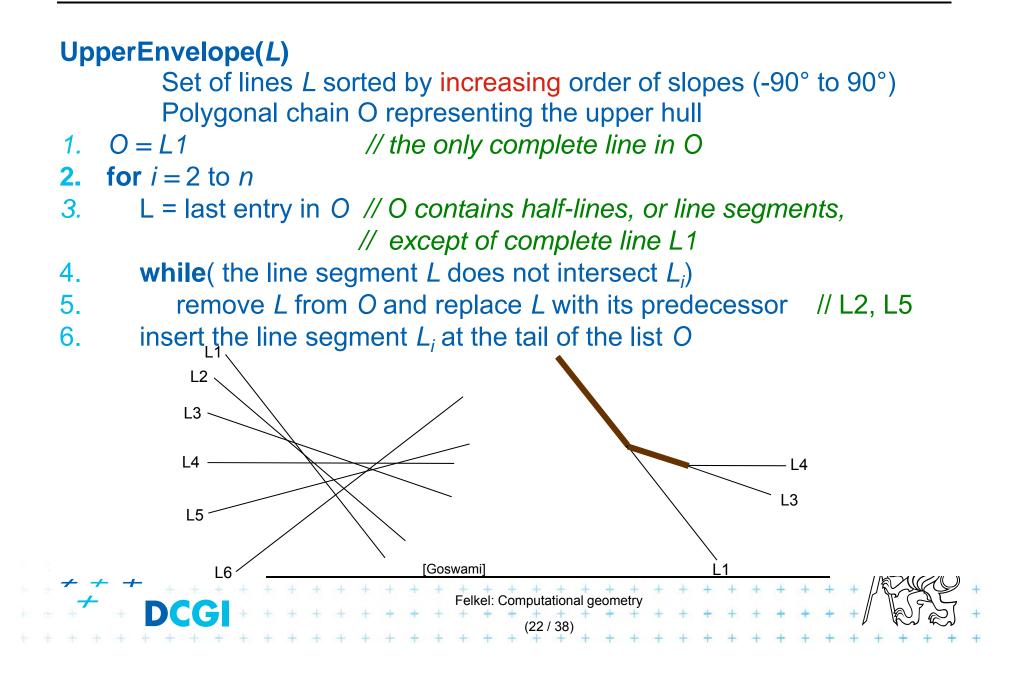


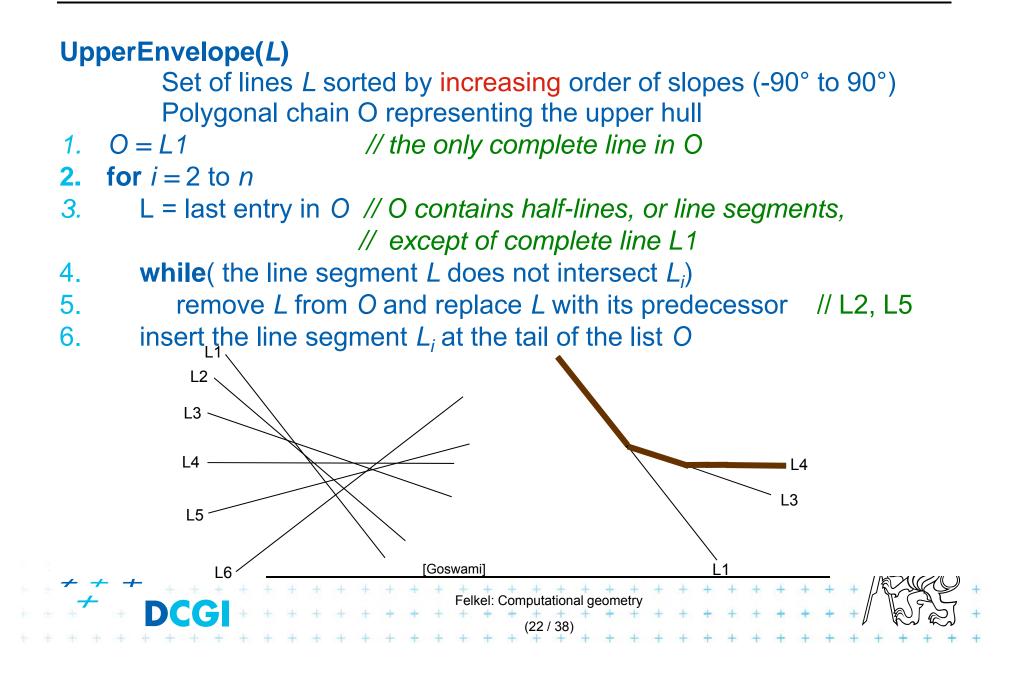


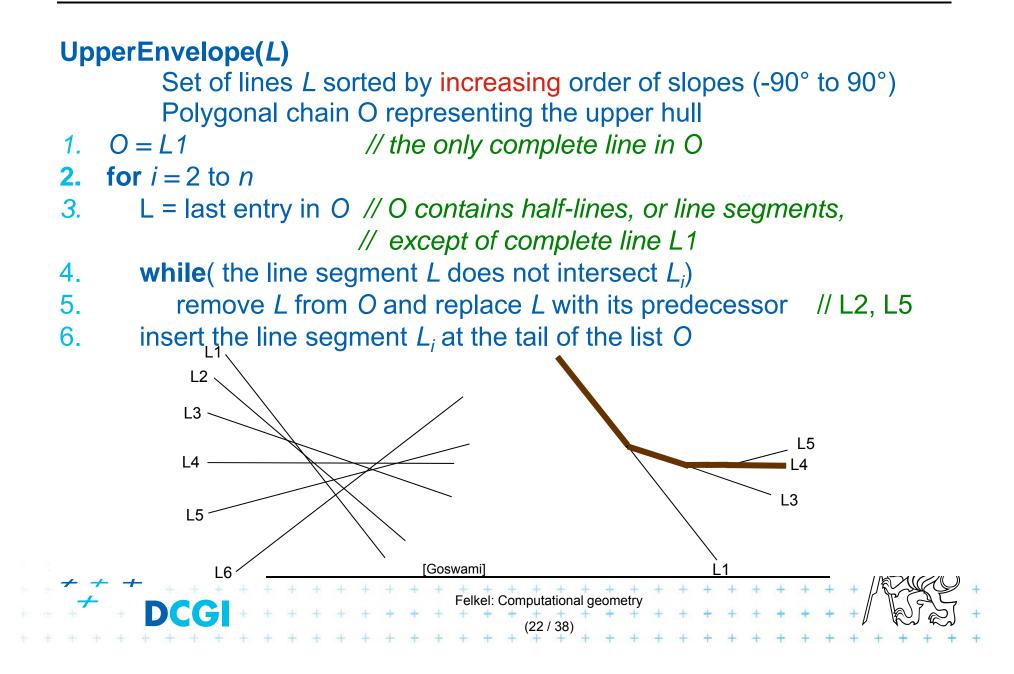


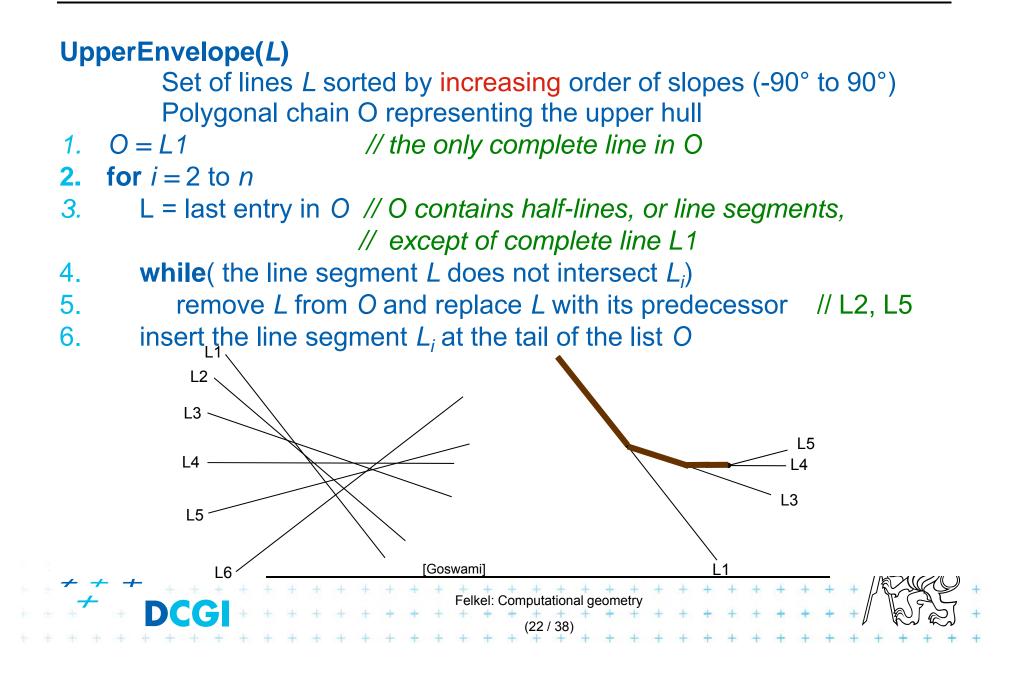


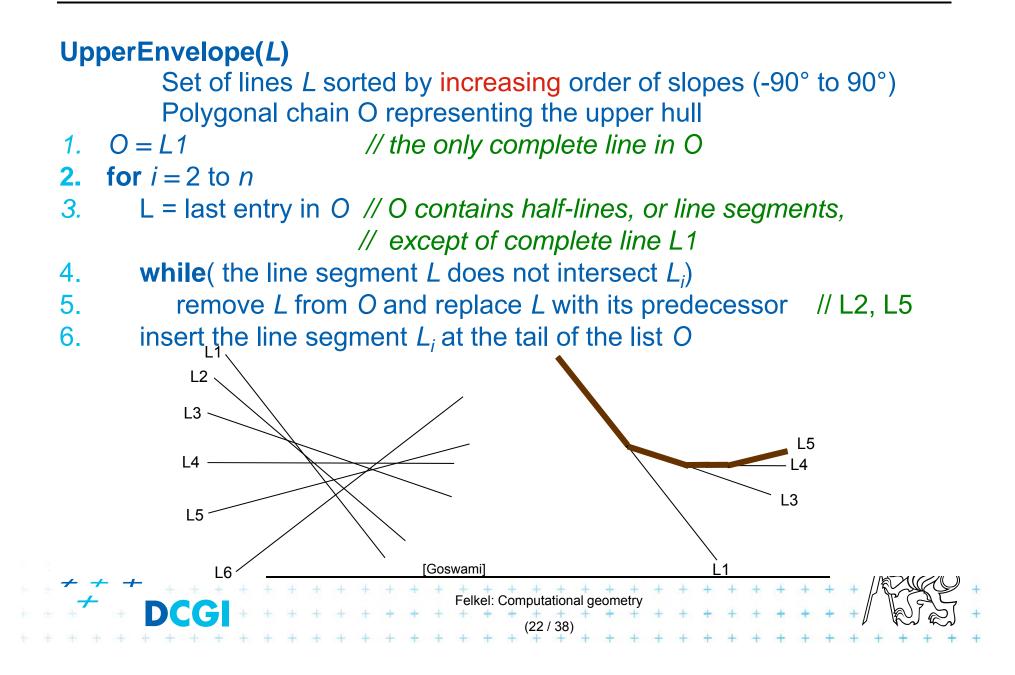


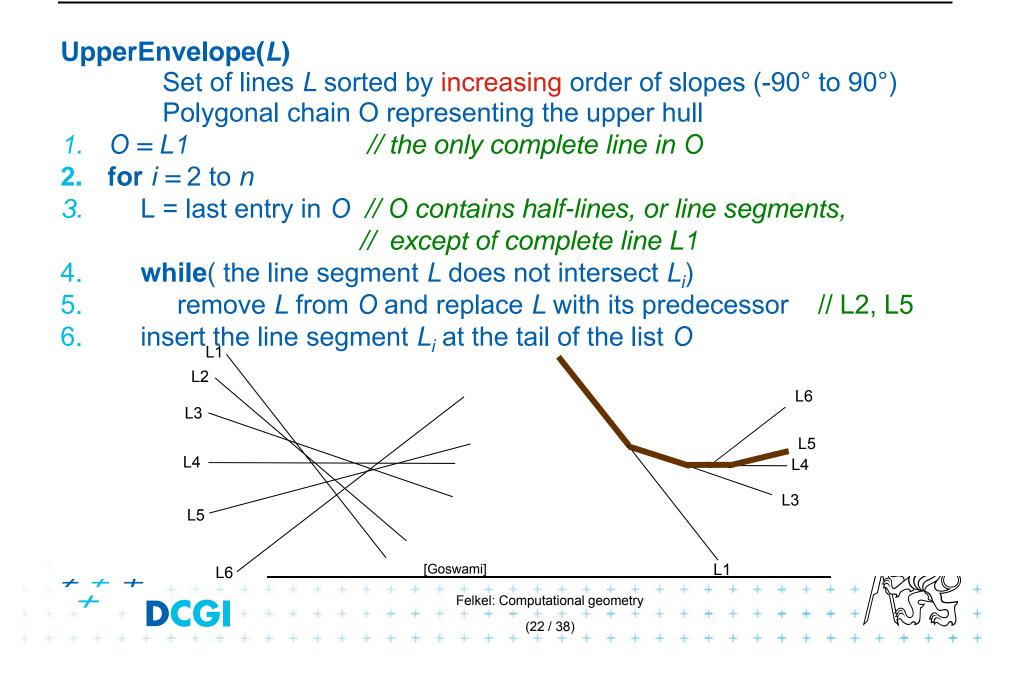


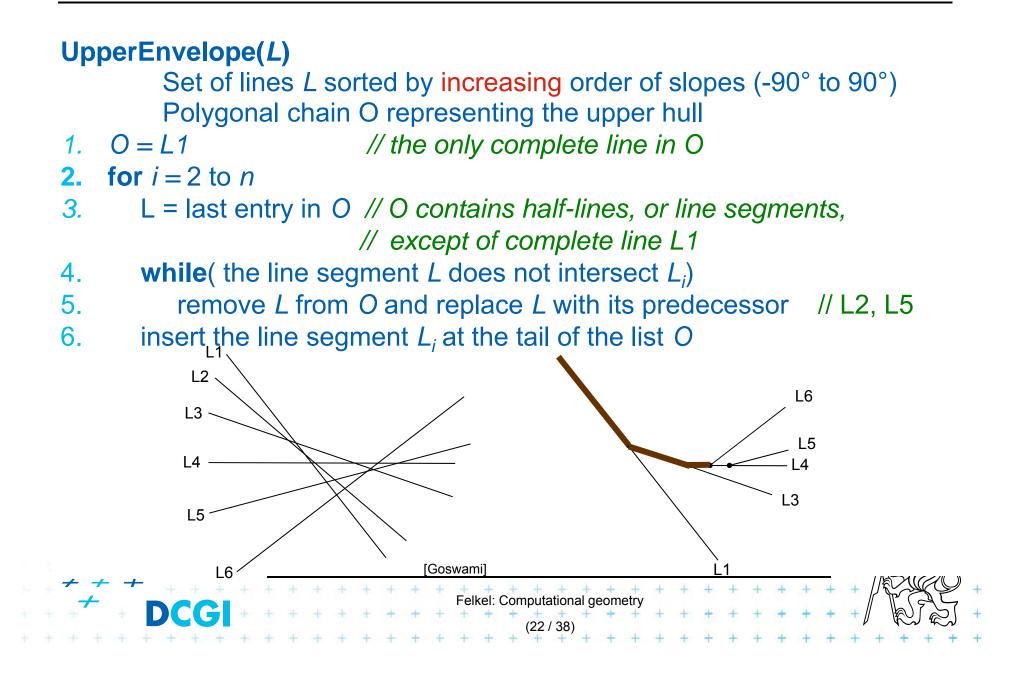




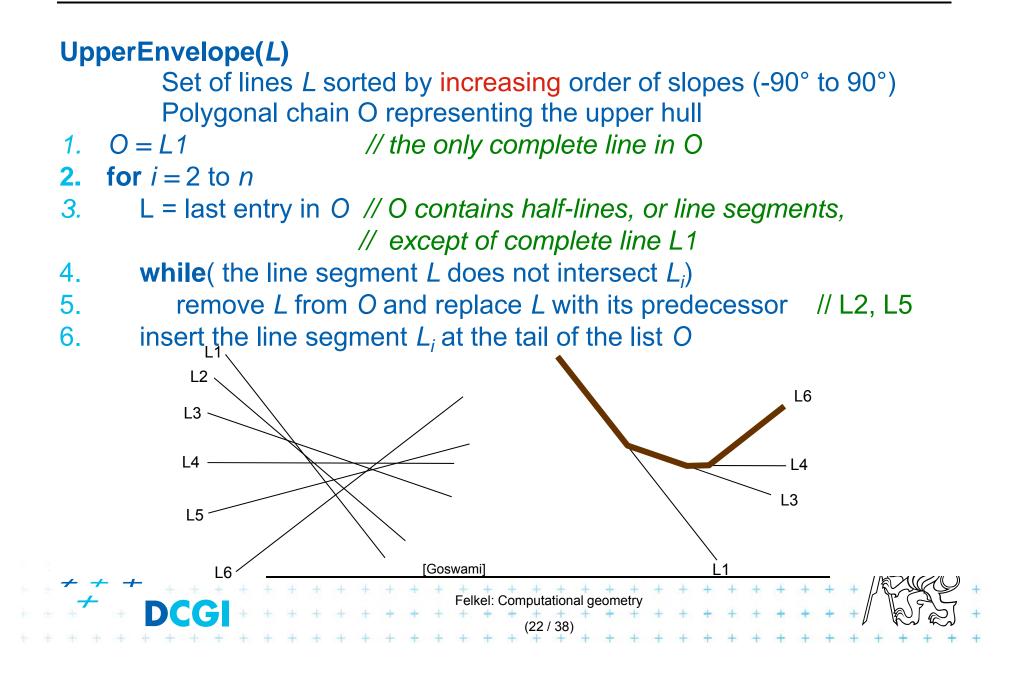


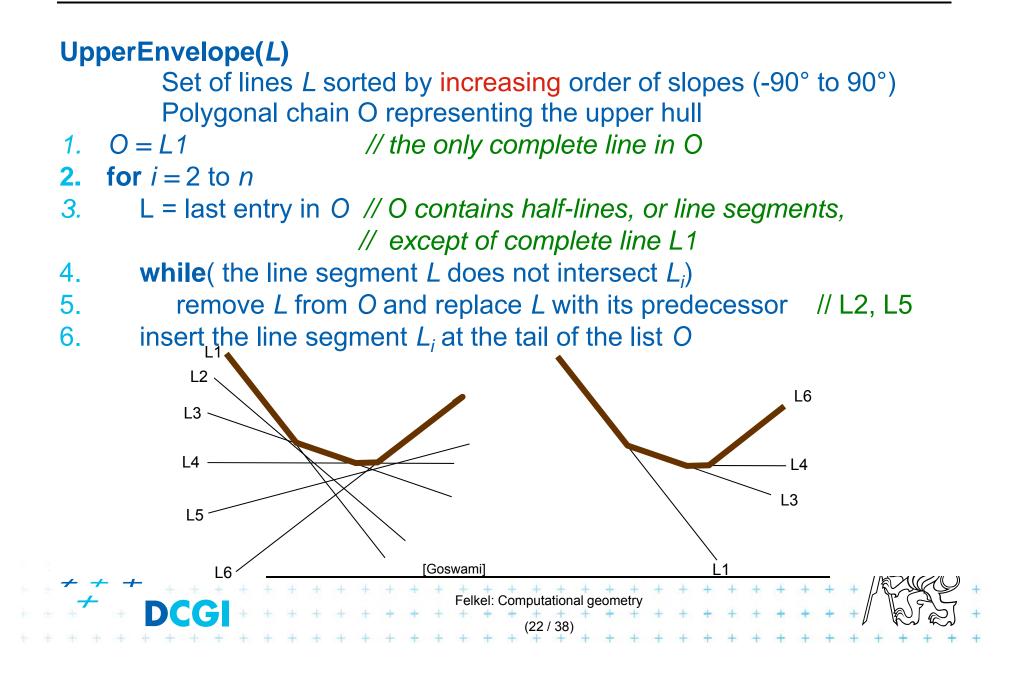








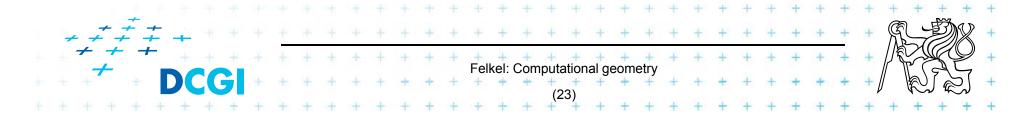




Convex hull via upper and lower envelope

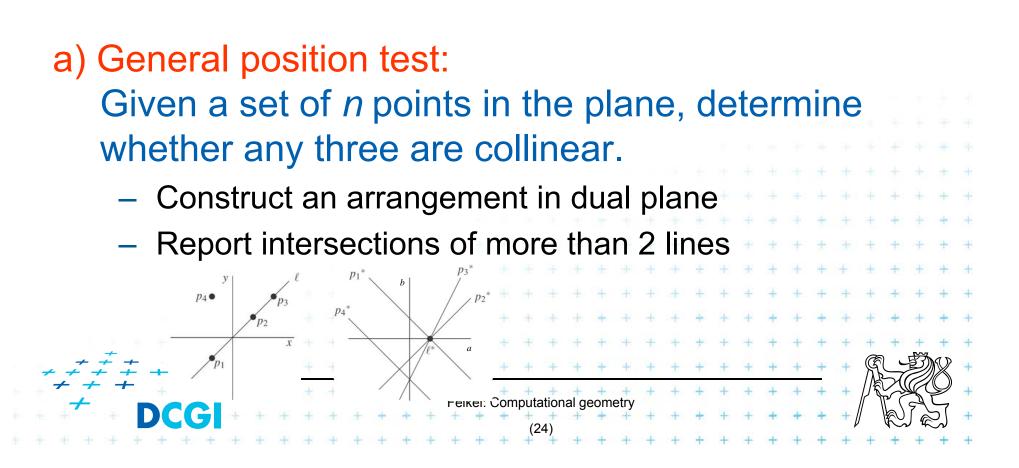
Upper envelope complexity

- After sorting *n* lines by their slopes in O(*n* log*n*) time,
 the upper envelope can be obtained in O(*n*) time
- Proof: It may check more than one line segment when inserting a new line, but those ones checked are all removed except the last one.
 (O(*n*) insertions, max O(*n*) removals
 => O(*n*) all steps. Average step O(1) amortized time)
- Convex hull complexity
 - Given a set P of n points in the plane, CH(P) can be computed in O(n log n) time using O(n) space.



Applications of line arrangement

Examples of applications – solved in $O(n^2)$ and (n^2) space by constructing a line arrangement or O(n) space through topological plain sweep.



- Given a set of *n* points, and an integer k ∈ [1 : n], determine the narrowest pair of parallel lines that enclose at least k points of the set.
- The distance between the lines can be defined
 - either as the vertical distance between the lines
 - or as the perpendicular distance between the lines
- Simplifications
 - Assume k = 3 and no 3 points are collinear

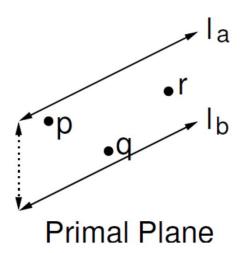
=> narrowest corridor - contains exactly 3 points

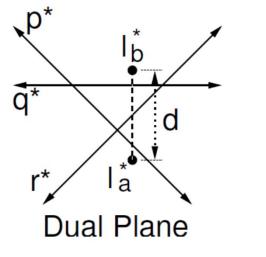
- has width > 0 - + + +

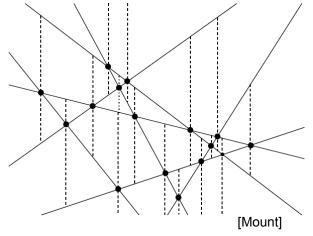
vertica

No 2 points have the same x coordinate (avoid I duals)

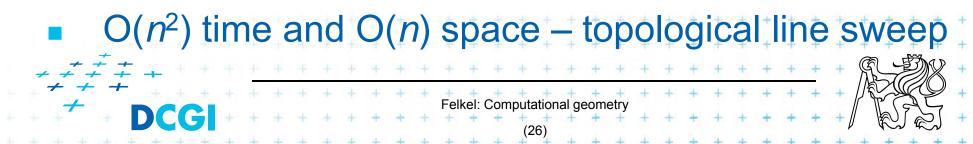
Felkel: Computational geometry

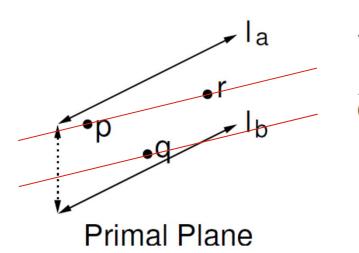


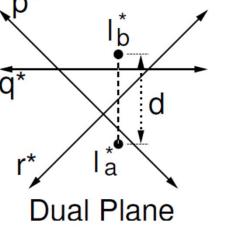


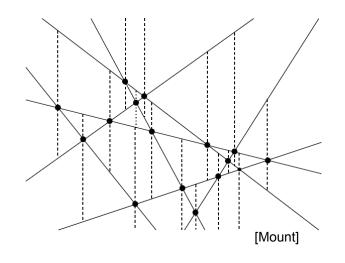


- Vertical distance of I_a, I_b = (-) distance of I_a*, I_b*
- Nearest lines one passes 2 vertices, e.g., p & r
- In dual plane are represented as intersection p*× r*
- Find nearest 3-stabber similarly as trapezoidal map

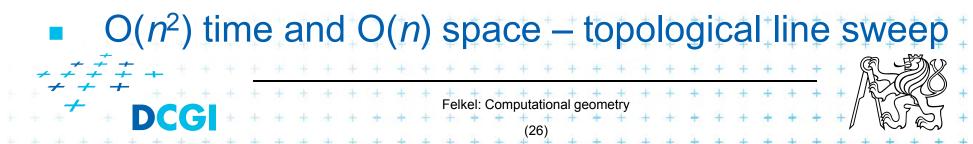


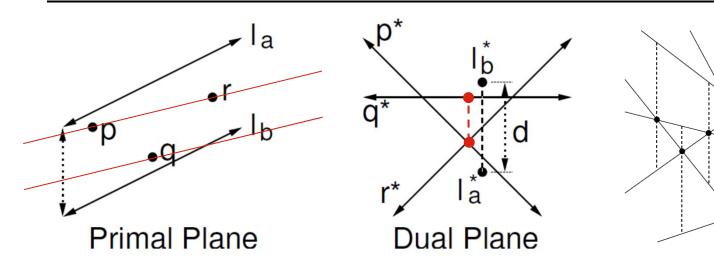


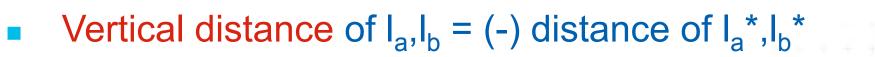




- Vertical distance of I_a, I_b = (-) distance of I_a*, I_b*
- Nearest lines one passes 2 vertices, e.g., p & r
- In dual plane are represented as intersection p*× r*
- Find nearest 3-stabber similarly as trapezoidal map



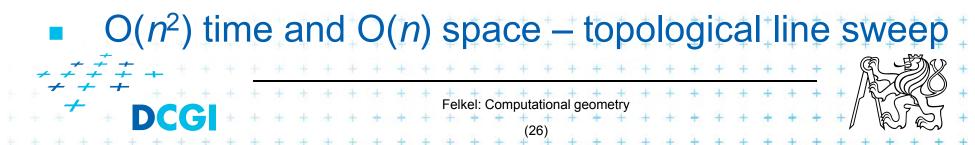




Nearest lines – one passes 2 vertices, e.g., p & r

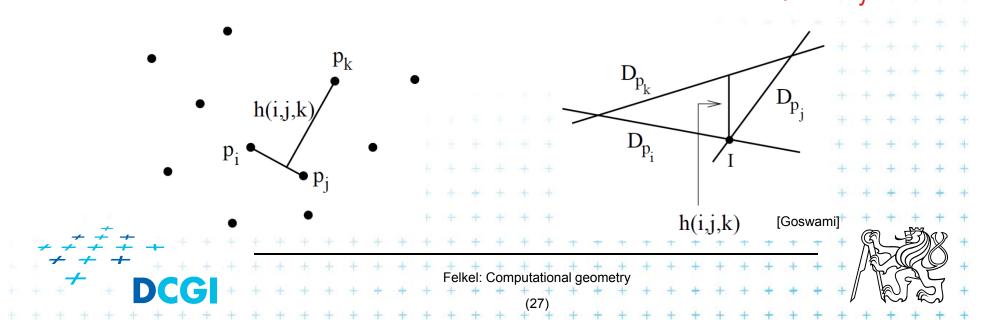
[Mount]

- In dual plane are represented as intersection p*× r*
- Find nearest 3-stabber similarly as trapezoidal map



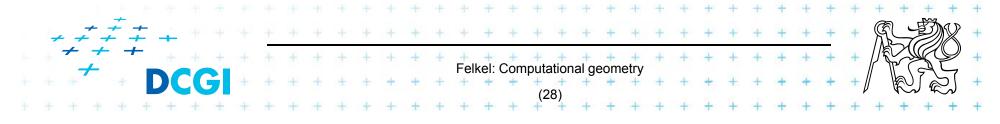
c) Minimum area triangle

- Given a set of *n* points in the plane, determine the minimum area triangle whose vertices are selected from these points
- Construct "trapezoids" as in the nearest corridor
- Minimize perpendicular distances (converted from vertical) multiplied by the distance from p_i to p_i



d) Sorting all angular sequences – naïve

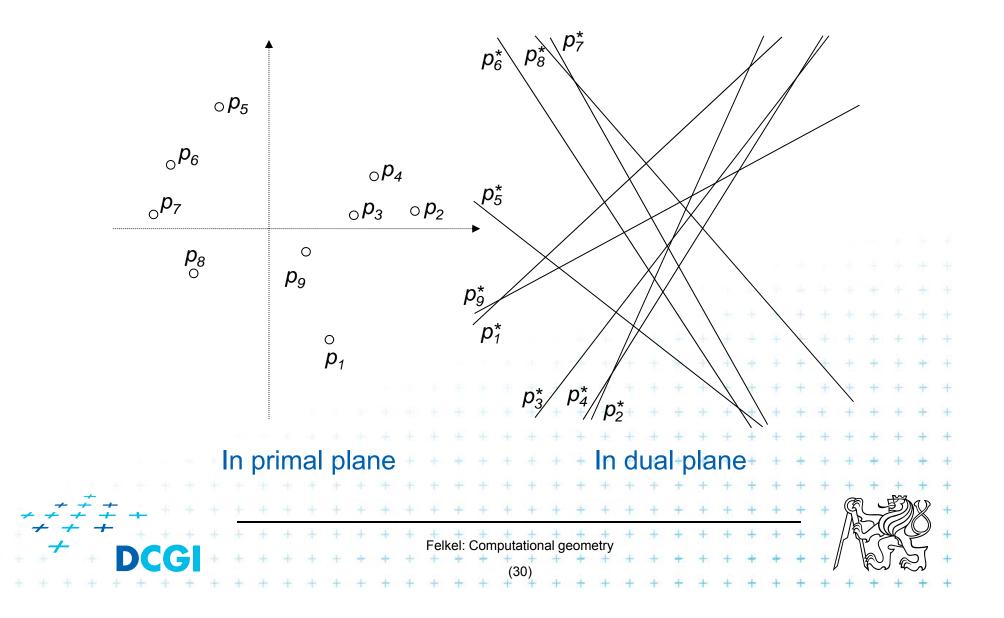
- Natural application of duality and arrangements
- Important for visibility graph computation
- Set of n points in the plane
- For each point perform an CCW angular sweep
- Naïve: for each point compute angles to remaining n – 1 points and sort them
- => O(n log n) time per point
- O(n² log n) time overall
- Arrangements can get rid of O(log *n*) factor

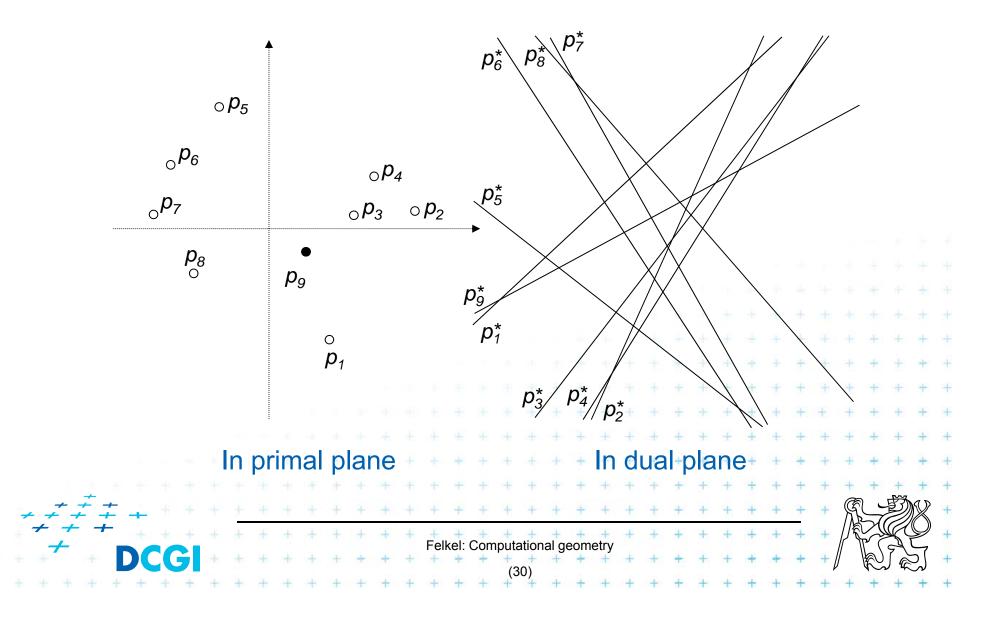


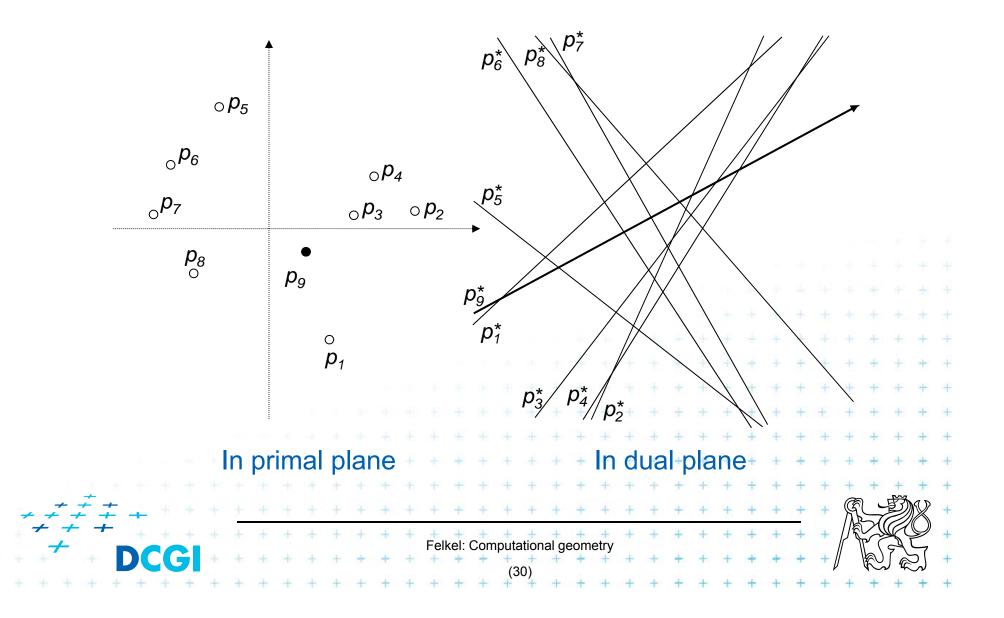
d) Sorting all angular sequences – optimal

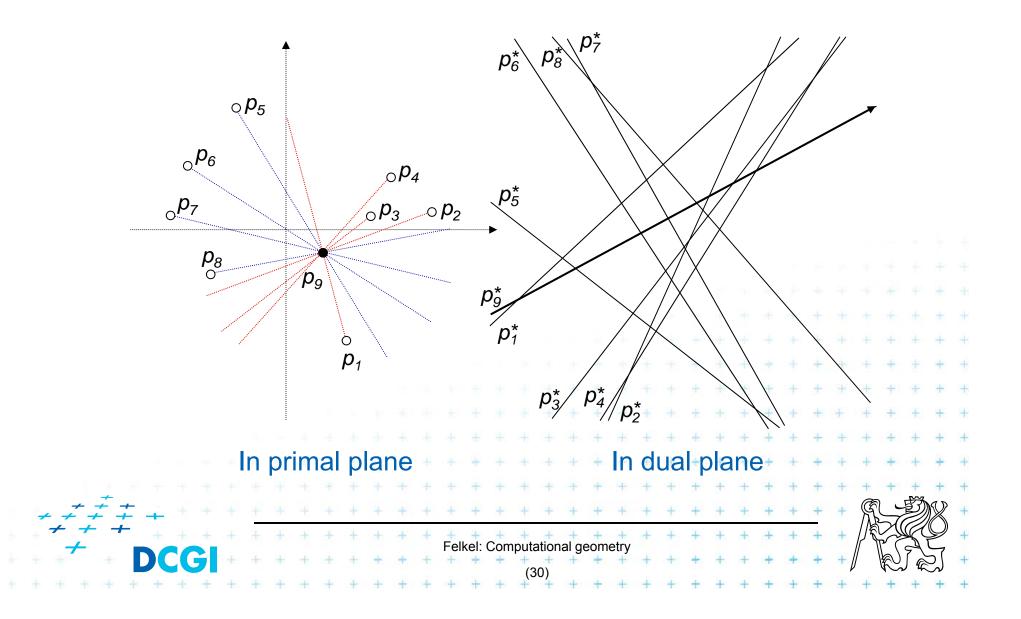
- For point p_i
 - Dual of point p_i is line p_i^*
 - Line p_i^* intersects other dual lines in order of slope (angles from -90° to 90°) (180°)
 - We need order of angles around p_i (angles from -90° to 270°) (360°)
 - Split points in primal plane by vertical line through p_i
 - First, report intersections of points right of p_i
 - Second, report the intersections of points left of p_i
 - Once arrangement is constructed:
 - O(n) time for point, $O(n^2)$ time for all *n* points

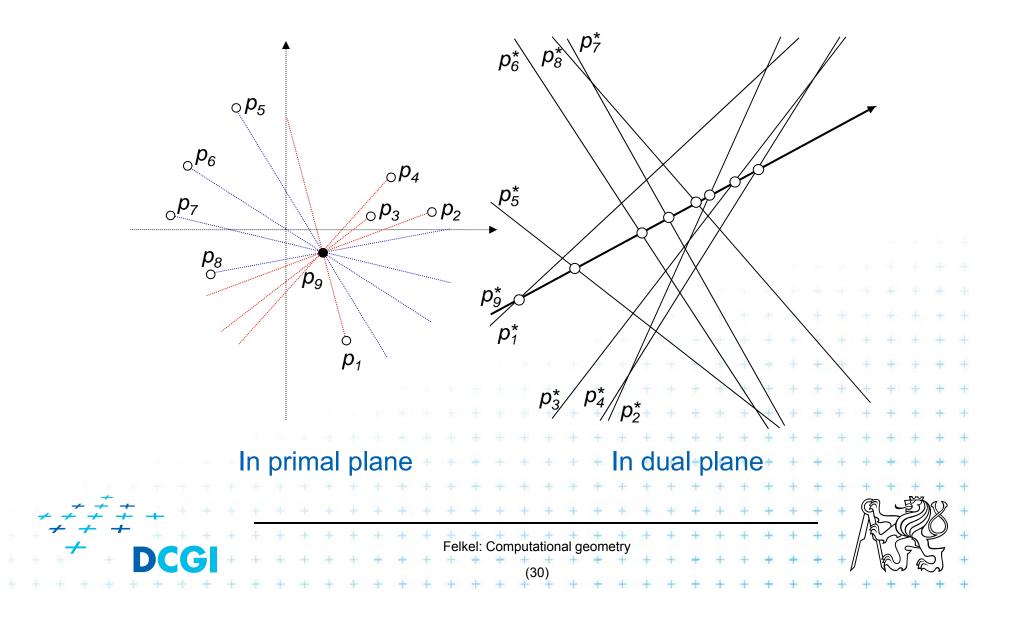
Felkel: Computational geometry

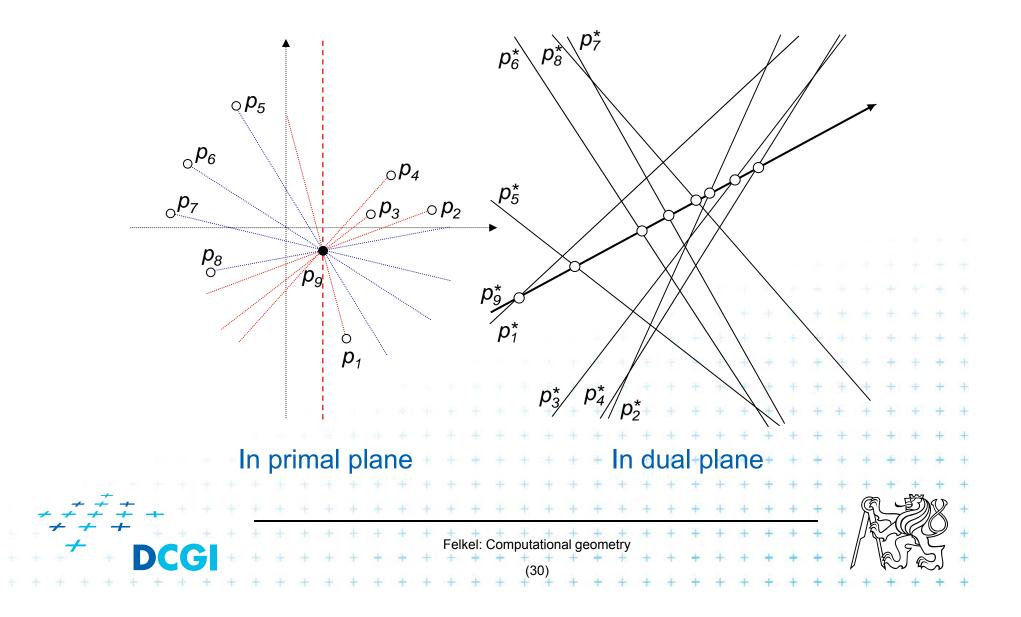


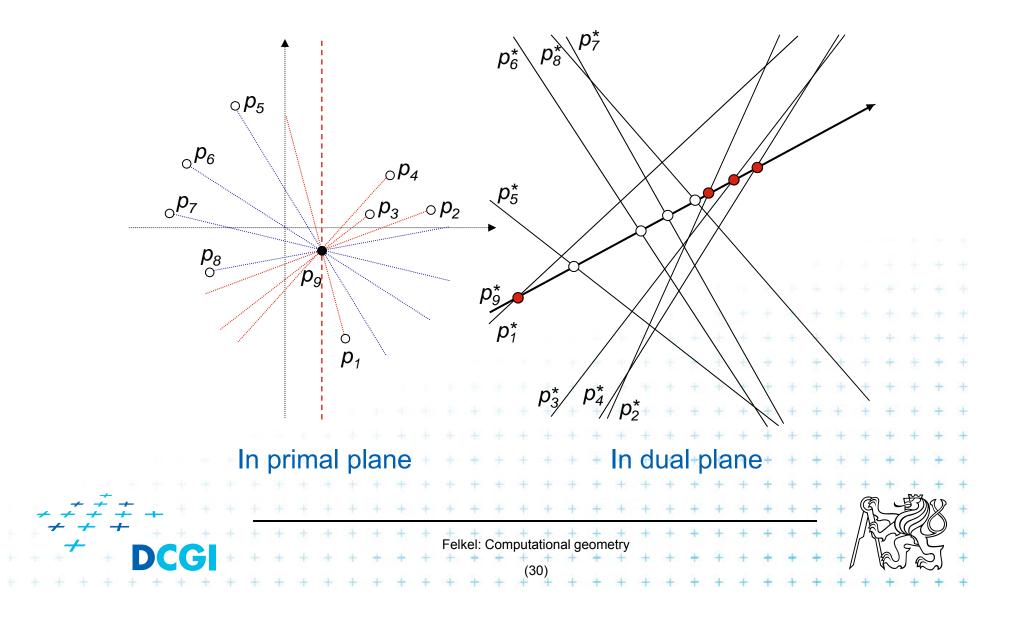


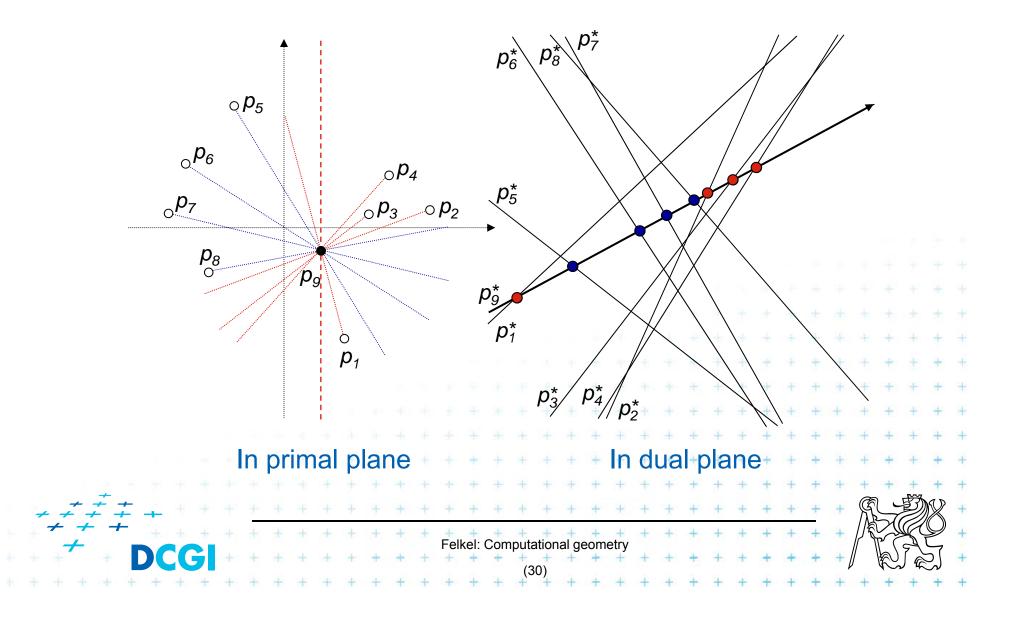


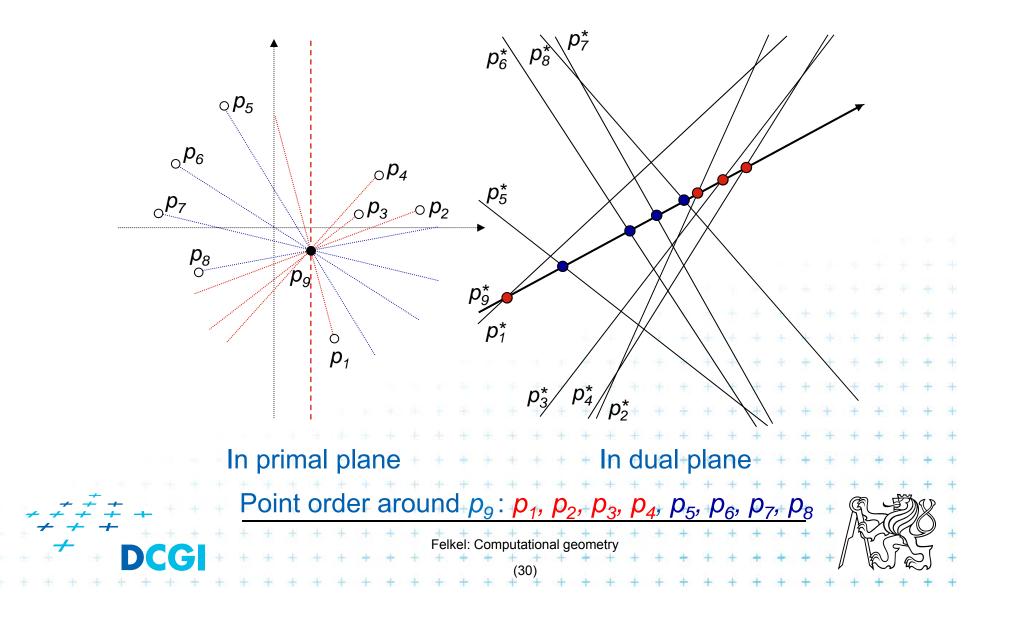


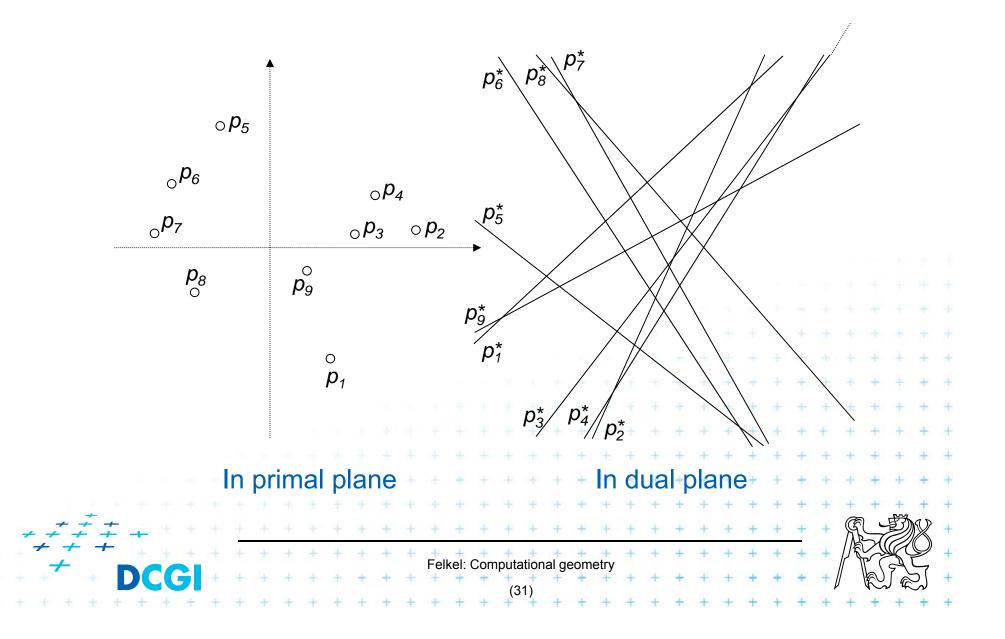


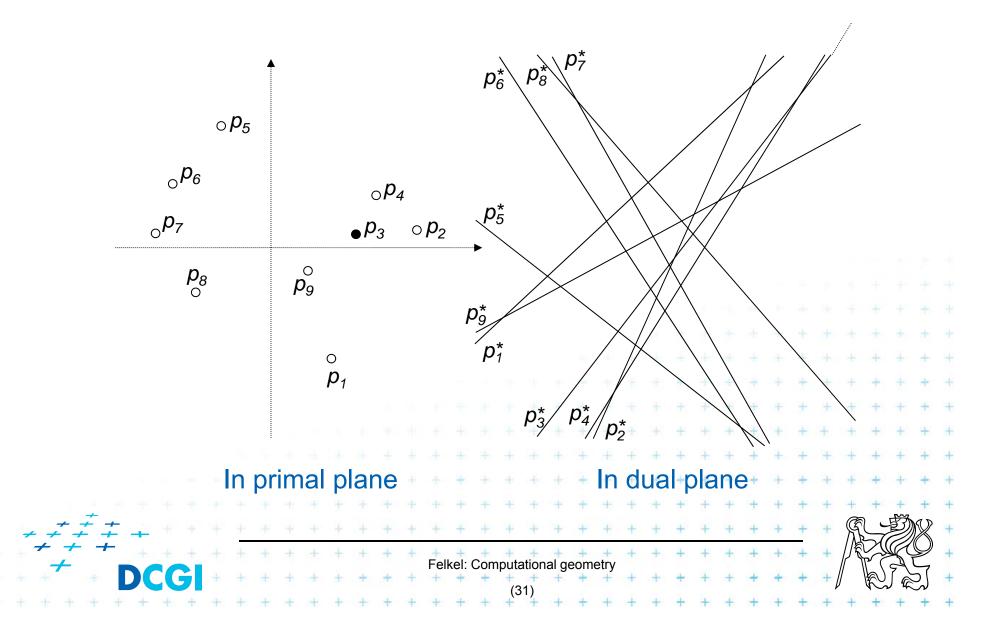


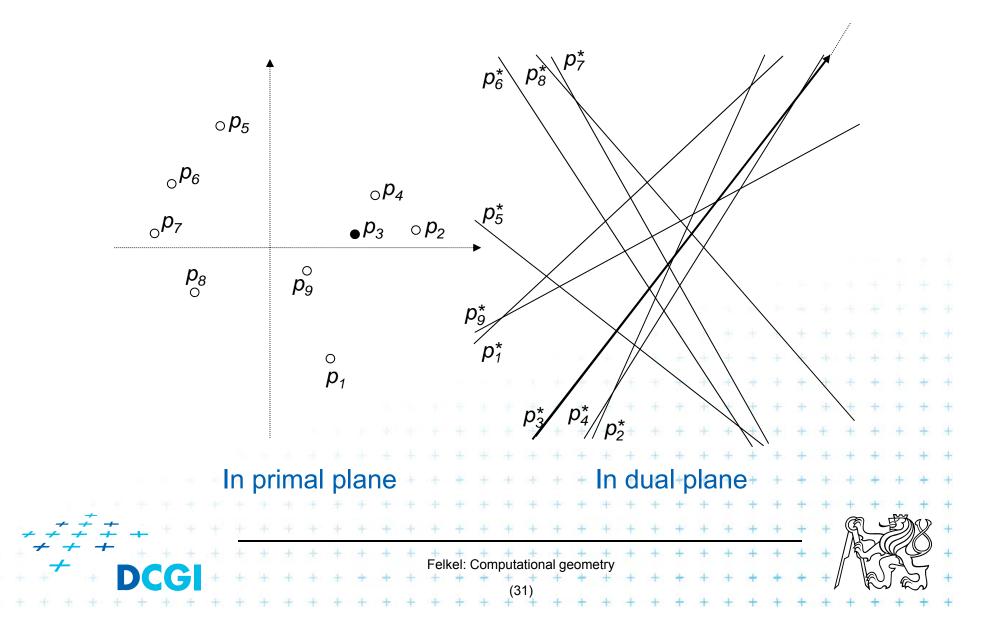


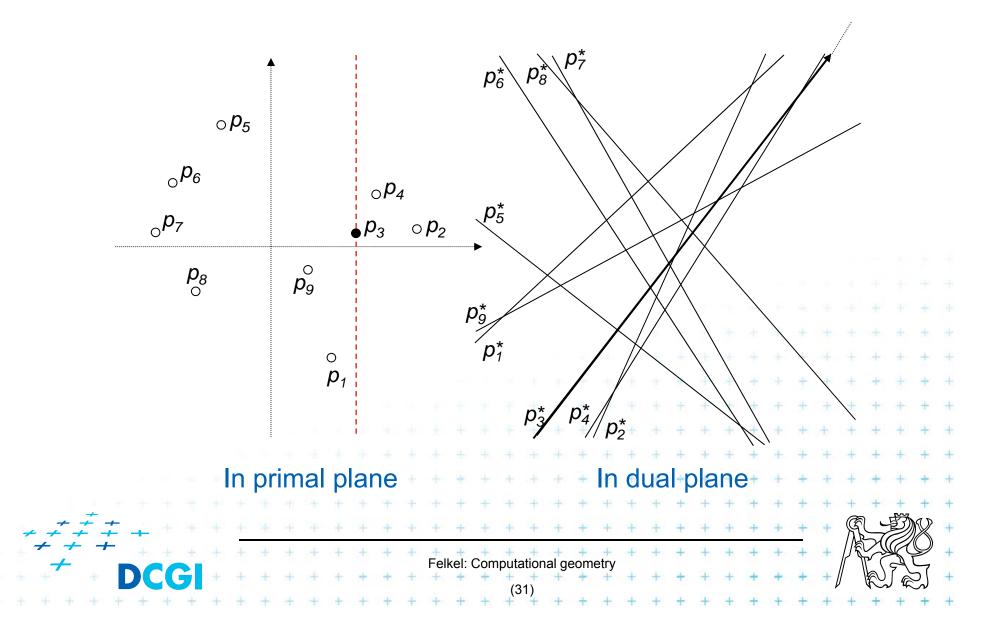


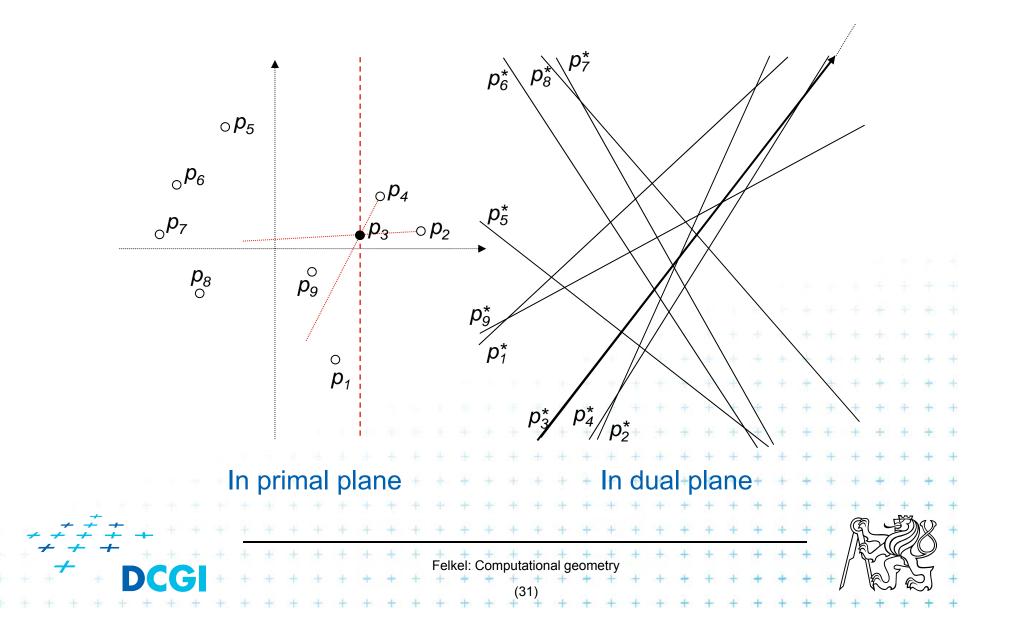


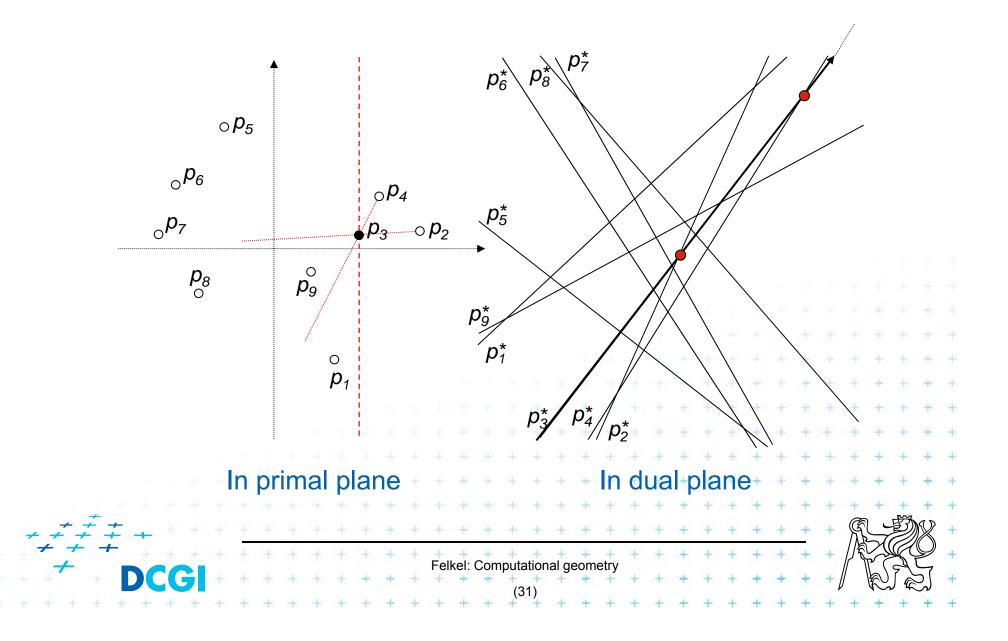


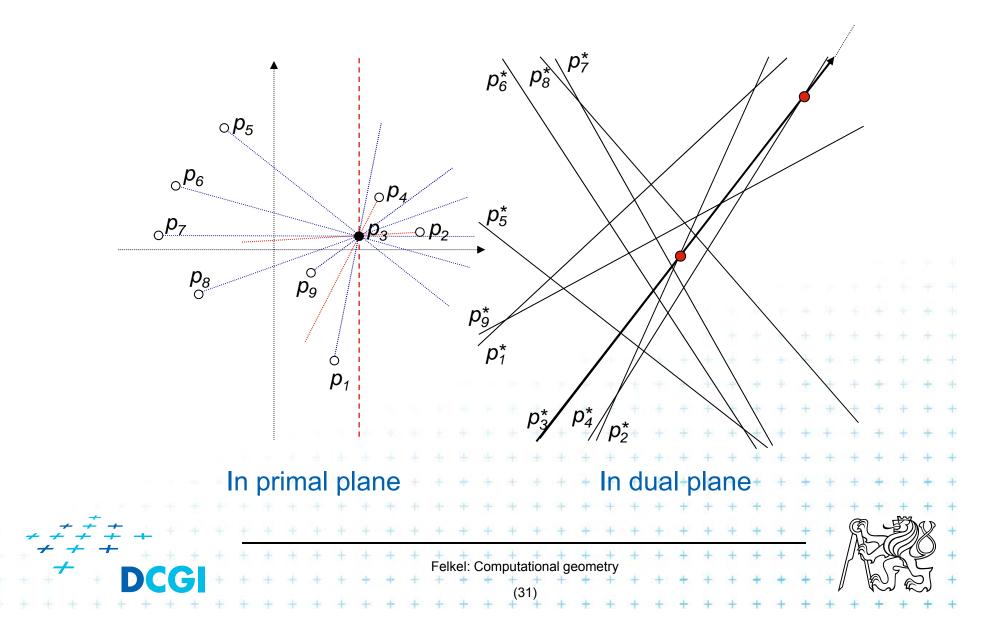


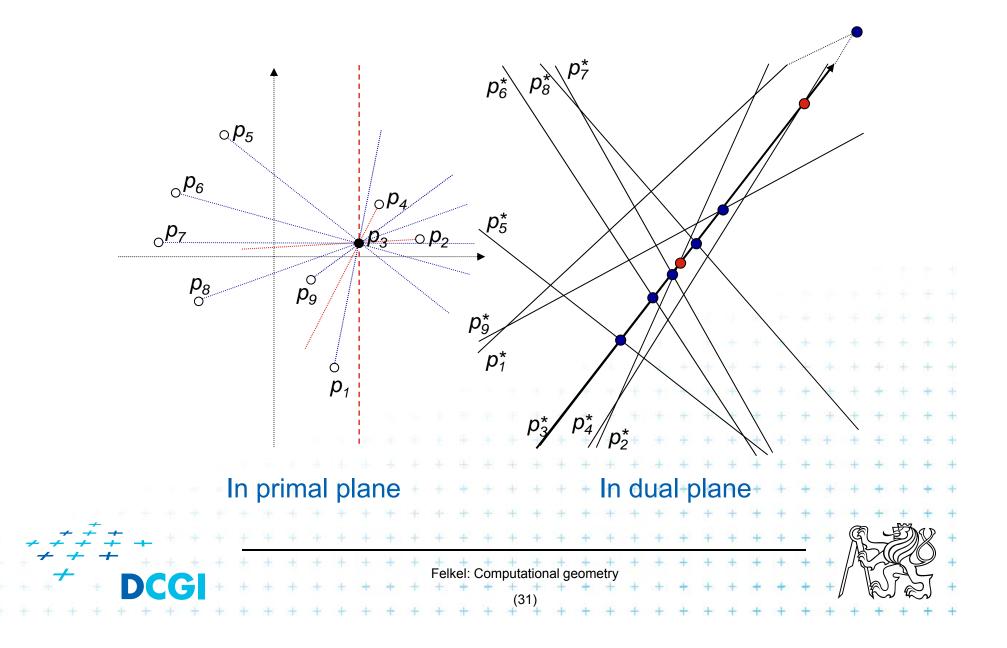


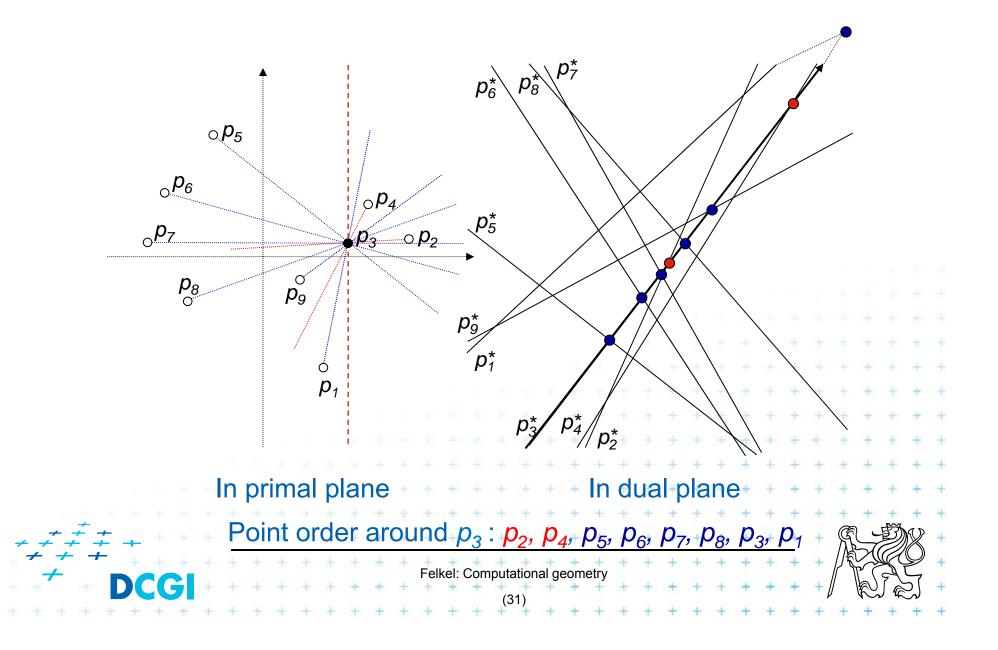


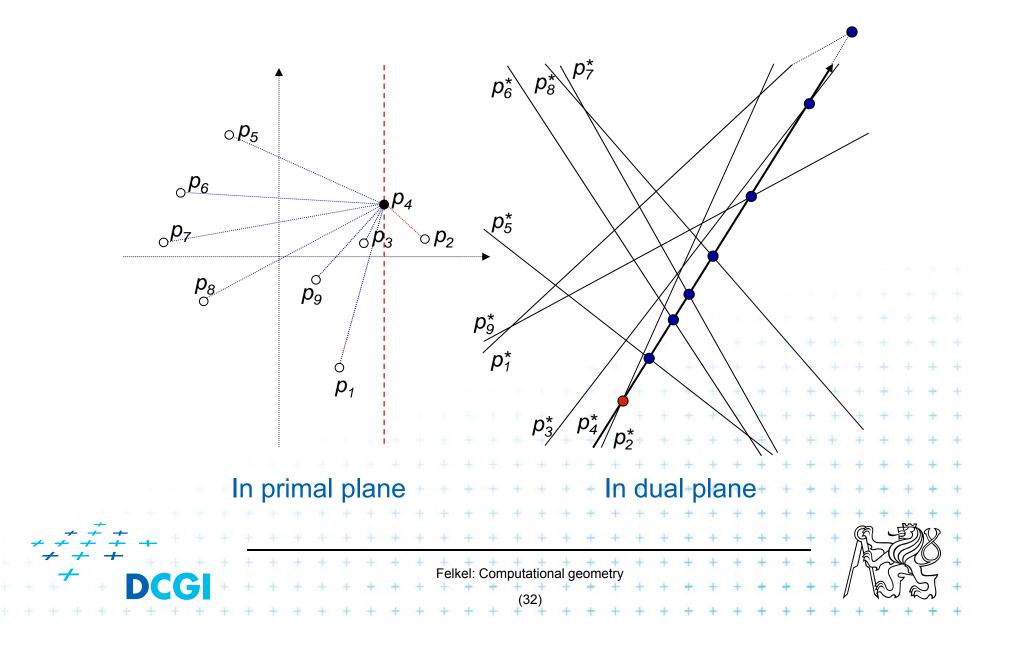


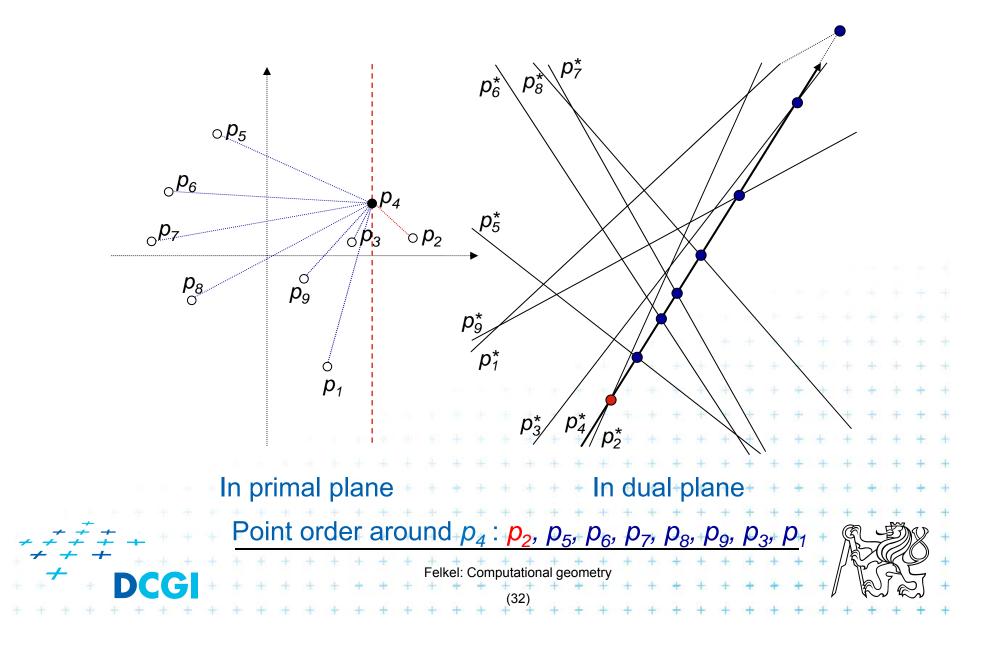












e) More applications of line arrangement

Visibility graph

Given a set of *n* non-intersecting line segments, compute the *visibility graph*, whose vertices are the endpoints of the segments, and whose edges are pairs of visible endpoints (use angular sequences).

Maximum stabbing line Given a set of *n* line segments in the plane, compute the line that stabs (intersects) the maximum number of these line segments.

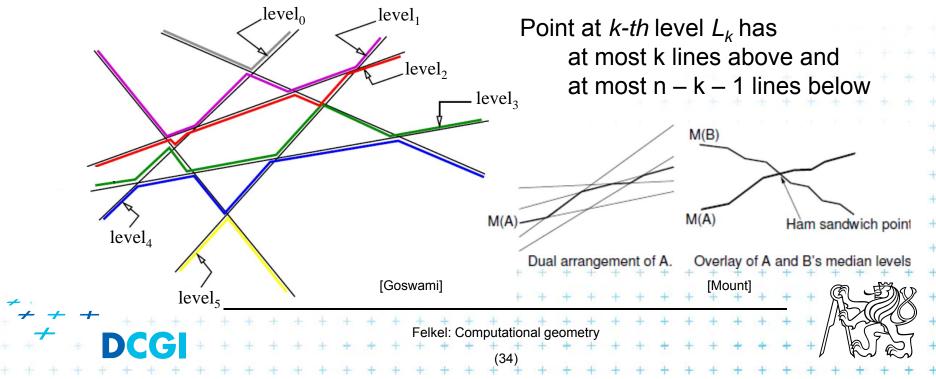


More applications of line arrangement

Ham-Sandwich cut

Given two sets of points, *n* red and *m* blue points compute a single line that simultaneously bisects both sets

Principle – intersect middle levels of arrangements



References

- [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapters 8., <u>http://www.cs.uu.nl/geobook/</u>
- [Mount] David Mount, CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lectures 8,15,16,31, and 32. <u>http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml</u>
- [applet] Allen K. L. Miu: Duality Demo http://nms.lcs.mit.edu/~aklmiu/6.838/dual/

[Goswami] Partha P. Goswami: Duality Transformation and its Application to Computational Geometry, University of Calcutta, India

http://www.tcs.tifr.res.in/~igga/lectureslides/partha-lec-iisc-jul09.pdf

