INTERSECTIONS OF LINE SEGMENTS AND POLYGONS

PETR FELKEL
FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Mount], [Kukral], and [Drtina]

Version from 1.12.2016
Talk overview

- Intersections of line segments (Bentley-Ottmann)
 - Motivation
 - Sweep line algorithm recapitulation
 - Sweep line intersections of line segments

- Intersection of polygons or planar subdivisions
 - See assignment [21] or [Berg, Section 2.3]

- Intersection of axis parallel rectangles
 - See assignment [26]
Geometric intersections – what are they for?

One of the most basic problems in computational geometry

- **Solid modeling**
 - Intersection of object boundaries in CSG

- **Overlay of subdivisions, e.g. layers in GIS**
 - Bridges on intersections of roads and rivers
 - Maintenance responsibilities (road network X county boundaries)

- **Robotics**
 - Collision detection and collision avoidance

- **Computer graphics**
 - Rendering via ray shooting (intersection of the ray with objects)

- ...
Line segment intersection

- Intersection of complex shapes is often reduced to simpler and simpler intersection problems
- **Line segment intersection** is the most basic intersection algorithm
- **Problem statement:**

 Given \(n \) line segments in the plane, report all points where a pair of line segments intersect.

- **Problem complexity**
 - Worst case – \(I = O(n^2) \) intersections
 - Practical case – only some intersections
 - Use an output sensitive algorithm
 - \(O(n \log n + I) \) optimal randomized algorithm
 - \(O(n \log n + I \log n) \) sweep line algorithm

[Image of line segments intersecting]
Plane sweep line algorithm recapitulation

- Horizontal line (sweep line, scan line) \(\ell \) moves top-down (or vertical line: left to right) over the set of objects
- The move is not continuous, but \(\ell \) jumps from one event point to another
 - Event points are in priority queue or sorted list (\(~y\))
 - The (left) top-most event point is removed first
 - New event points may be created (usually as interaction of neighbors on the sweep line) and inserted into the queue
- Scan-line status
 - Stores information about the objects intersected by \(\ell \)
 - It is updated while stopping on event point
Line segment intersection - Sweep line alg.

- Avoid testing of pairs of segments far apart
- Compute intersections of neighbors on the sweep line only
- $O(n \log n + I \log n)$ time in $O(n)$ memory
 - $2n$ steps for end points,
 - I steps for intersections,
 - $\log n$ search the status tree

- Ignore “nasty cases” (most of them will be solved later on)
 - No segment is parallel to the sweep line
 - Segments intersect in one point and do not overlap
 - No three segments meet in a common point
Line segment intersections

- **Status** = ordered sequence of segments intersecting the sweep line ℓ

- **Events** (waiting in the priority queue)
 - points, where the algorithm actually does something
 - Segment *end-points*
 - known at algorithm start
 - Segment *intersections* between neighboring segments along SL
 - Discovered as the sweep executes
Detecting intersections

- Intersection events must be detected and inserted to the event queue before they occur.
- Given two segments a, b intersecting in a point p, there must be a placement of sweep line ℓ prior to p, such that segments a, b are adjacent along ℓ (only adjacent will be tested for intersection).
 - segments a, b are not adjacent when the alg. starts
 - segments a, b are adjacent just before p
 => there must be an event point when a, b become adjacent and therefore are tested for intersection
Data structures

Sweep line ℓ status = order of segments along ℓ

- Balanced binary search tree of segments
- Coords of intersections with ℓ vary as ℓ moves
 => store pointers to line segments in tree nodes
 - Position of ℓ is plugged in the $y=mx+b$ to get the x-key
Data structures

Event queue (postupový plán, časový plán)

- **Define:** Order $< $ (top-down, lexicographic)

 $p < q \iff p_y > q_y \text{ or } p_y = q_y \text{ and } p_x < q_x$

 top-down, left-right approach

 (points on l treated left to right)

- **Operations**

 - **Insertion** of computed intersection points

 - Fetching the **next event**

 (highest y below l or the leftmost right of e)

 - **Test**, if the segment is already present in the queue

 (Locate and **delete** intersection event in the queue)
Problem with duplicities of intersections
Data structures

Event queue data structure

- **Heap**
 - Problem: can not check *duplicated intersection events* (reinvented more than once)
 - Intersections processed twice or even more
 - Memory complexity up to $O(n^2)$

- **Ordered dictionary (balanced binary tree)**
 - Can check duplicated events (adds just constant factor)
 - Nothing inserted twice
 - If non-neighbor intersections are deleted i.e., if only intersections of neighbors along l are stored then memory complexity just $O(n)$
Line segment intersection algorithm

FindIntersections(S)

Input: A set S of line segments in the plane
Output: The set of intersection points + pointers to segments in each

1. init an empty event queue Q and insert the segment endpoints
2. init an empty status structure T
3. while Q in not empty
4. remove next event p from Q
5. handleEventPoint(p)

Note: Upper-end-point events store info about the segment
handleEventPoint() principle

- **Upper endpoint** $U(p)$
 - insert p (on s_j) to status T
 - add intersections with left and right neighbors to Q

- **Intersection** $C(p)$
 - switch order of segments in T
 - add intersections with nearest left and nearest right neighbor to Q

- **Lower endpoint** $L(p)$
 - remove p (on s_l) from T
 - add intersections of left and right neighbors to Q
More than two segments incident

\[U(p) = \{s_2\} \]

\[C(p) = \{s_1, s_3\} \]

\[L(p) = \{s_4, s_5\} \]
Handle Events [Berg, page 25]

handleEventPoint(p)
1. Let $U(p) =$ set of segments whose Upper endpoint is p. These segments are stored with the event point p (will be added to T).
2. Search T for all segments $S(p)$ that contain p (are adjacent in T):
 - Let $L(p) \subseteq S(p) =$ segments whose Lower endpoint is p.
 - Let $C(p) \subseteq S(p) =$ segments that contain p in interior.
3. if $(L(p) \cup U(p) \cup C(p) \text{ contains more than one segment })$
4. report p as intersection together with $L(p), U(p), C(p)$
5. Delete the segments in $L(p) \cup C(p)$ from T
6. Insert the segments in $U(p) \cup C(p)$ into T (order as below l, horizontal segment as the last)
 Reverse order of $C(p)$ in T
7. if $(U(p) \cup C(p) = \emptyset)$ then findNewEvent(s_l, s_r, p) // left & right neighbors
8. else $s' =$ leftmost segment of $U(p) \cup C(p);$ findNewEvent(s_l, s', p)
 $s'' =$ rightmost segment of $U(p) \cup C(p);$ findNewEvent(s'', s_r, p)
Detection of new intersections

\[\text{findNewEvent}(s_l, s_r, p) \quad // \text{with handling of horizontal segments} \]

Input: two segments (left & right from \(p \) in \(T \)) and a current event point \(p \)

Output: updated event queue \(Q \) with new intersection

1. \(\text{if} \left(s_l \text{ and } s_r \text{ intersect below the sweep line } l \right) \quad // \text{line 7. above} \)

 or \((s_r \text{ intersect } s'' \text{ on } l \text{ and to the right of } p) \) // horizontal segm.

 and(the intersection \(* \) is not present in \(Q \))

2. \(\text{then} \)

 insert intersection \(* \) as a new event into \(Q \)

\[s_l \text{ and } s_r \text{ intersect below} \]

\[s_r \text{ and } s'' \text{ intersect on } l, \]

\[s'' \text{ is horizontal and to the right of } p \]
Line segment intersections

- Memory $O(I) = O(n^2)$ with duplicities in Q
 or $O(n)$ with duplicities in Q deleted

- Operational complexity
 - $n + I$ stops
 - $\log n$ each
 => $O(I + n) \log n$ total

- The algorithm is by Bentley-Ottmann

 See also http://wapedia.mobi/en/Bentley%E2%80%93Ottmann_algorithm
Intersection of axis parallel rectangles

- Given the collection of \(n \) isothetic rectangles, report all intersecting parts

Answer: \((r_1, r_2) \quad (r_1, r_3) \quad (r_1, r_8) \quad (r_3, r_4) \quad (r_3, r_5) \quad (r_3, r_9) \quad (r_4, r_5) \quad (r_7, r_8)\)
Brute force intersection

Brute force algorithm
Input: set S of axis parallel rectangles
Output: pairs of intersected rectangles

1. For every pair (r_i, r_j) of rectangles $\in S$, $i \neq j$
2. if $(r_i \cap r_j \neq \emptyset)$ then
3. report (r_i, r_j)

Analysis
Preprocessing: None.
Query: $O(N^2)$ \(\binom{N}{2} = \frac{N(N-1)}{2} \in O(N^2) \).
Storage: $O(N)$
Plane sweep intersection algorithm

- Vertical sweep line moves from left to right
- Stops at every x-coordinate of a rectangle (either at its left side or at its right side).

- active rectangles – a set
 - $= \text{rectangles currently intersecting the sweep line}$
 - left side event of a rectangle
 - \implies the rectangle is added to the active set.
 - right side
 - \implies the rectangle is deleted from the active set.

- The active set used to detect rectangle intersection
Example rectangles and sweep line

- Active rectangle
- Not active rectangle
- Sweep line

[Image of a diagram showing example rectangles and a sweep line with labels]
Interval tree as sweep line status structure

- Vertical sweep-line => Only y-coordinates along it
- Turn our view in slides 90° right
- Sweep line (y-axis) will be drawn as horizontal

...
Intersection test – between pair of intervals

- Given two intervals \(R = [y_1, y_2] \) and \(R' = [y'_1, y'_2] \) the condition \(R \cap R' \) is equivalent to one of these mutually exclusive conditions:

 a) \(y_1 \leq y'_1 \leq y_2 \)

 b) \(y'_1 \leq y_1 \leq y'_2 \)

Intervals along the sweep line

Intersection (fork)
Static interval tree – stores all end points

- Let $v = y_{med}$ be the median of end-points of segments
- S_l: segments of S that are completely to the left of y_{med}
- S_{med}: segments of S that contain y_{med}
- S_r: segments of S that are completely to the right of y_{med}
Static interval tree – Example

\[\begin{align*}
M_l &= (s_4, s_6, s_1) \\
M_r &= (s_1, s_4, s_6)
\end{align*} \]

Interval tree on \(s_3 \) and \(s_5 \)

Interval tree on \(s_2 \) and \(s_7 \)

Left ends – ascending

Right ends – descending
Static interval tree [Edelsbrunner80]

- Stores intervals along y sweep line
- 3 kinds of information
 - end points
 - incident intervals
 - active nodes
Primary structure – static tree for endpoints

\[v = \text{midpoint of all segment endpoints} \]
\[H(v) = \text{value (y-coord) of } v \]
Secondary lists of incident interval end-pts.

ML(v) – left endpoints of interval containing v
(sorted ascending)

MR(v) – right endpoints
(descending)
Active nodes – intersected by the sweep line

Subset of all nodes currently intersected by the sweep line (nodes with intervals)
Query = sweep and report intersections

RectangleIntersections(S)

Input: Set S of rectangles

Output: Intersected rectangle pairs

1. Preprocess(S) // create the interval tree T (for y-coords)
 // and event queue Q (for x-coords)
2. while ($Q \neq \emptyset$) do
3. Get next entry (x_i, y_{il}, y_{ir}, t) from Q // $t \in \{ \text{left} | \text{right} \}$
4. if ($t = \text{left}$) // left edge
5. a) QueryInterval ($y_{il}, y_{ir}, \text{root}(T)$) // report intersections
6. b) InsertInterval ($y_{il}, y_{ir}, \text{root}(T)$) // insert new interval
7. else // right edge
8. c) DeleteInterval ($y_{il}, y_{ir}, \text{root}(T)$)
Preprocessing

Preprocess(S)

Input: Set S of rectangles

Output: Primary structure of the interval tree T and the event queue Q

1. \(T = \text{PrimaryTree}(S) \) \hspace{1cm} // Construct the static primary structure
 \hspace{1cm} // of the interval tree \(\rightarrow \) sweep line STATUS \(T \)

2. // Init event queue Q with vertical rectangle edges in ascending order \(\sim x \)
 // Put the left edges with the same \(x \) ahead of right ones

3. for \(i = 1 \) to \(n \)
4. insert(\((x_{il}, y_{il}, y_{ir}, \text{left}) \), Q) \hspace{1cm} // left edges of \(i-th \) rectangle

5. insert(\((x_{ir}, y_{il}, y_{ir}, \text{right}) \), Q) \hspace{1cm} // right edges
Interval tree – primary structure construction

PrimaryTree(S) // only the y-tree structure, without intervals
Input: Set S of rectangles
Output: Primary structure of an interval tree T
1. $S_y = \text{Sort endpoints of all segments in } S \text{ according to } y\text{-coordinate}$
2. $T = \text{BST}(S_y)$
3. return T

BST(S_y)
1. if($|S_y| = 0$) return null
2. $yMed = \text{median of } S_y$
3. $L = \text{endpoints } p_y \leq yMed$
4. $R = \text{endpoints } p_y > yMed$
5. $t = \text{new IntervalTreeNode}(yMed)$
6. $t.left = \text{BST}(L)$
7. $t.right = \text{BST}(R)$
8. return t
Interval tree – search the intersections

QueryInterval\((b, e, T)\)

Input: Interval of the edge and current tree \(T\)

Output: Report the rectangles that intersect \([b, e]\)

1. \(\text{if} (T = \text{null}) \text{return}\)
2. \(i=0; \text{if} (b < H(v) < e) \) // forks at this node
3. \(\text{while} (MR(v).[i] >= b) \&\& (i < \text{Count}(v)) \) // Report all intervals inM
4. \(\text{ReportIntersection}; i++\)
5. \(\text{QueryInterval}(b,e,T.LPTR)\)
6. \(\text{QueryInterval}(b,e,T.RPTR)\)
7. \(\text{else if} (H(v) \leq b < e) \) // search RIGHT (←)
8. \(\text{while} (MR(v).[i] >= b) \&\& (i < \text{Count}(v))\)
9. \(\text{ReportIntersection}; i++\)
10. \(\text{QueryInterval}(b,e,T.RPTR)\)
11. \(\text{else} \) // \(b < e \leq H(v)\) //search LEFT(→)
12. \(\text{while} (ML(v).[i] <= e)\)
13. \(\text{ReportIntersection}; i++\)
14. \(\text{QueryInterval}(b,e,T.LPTR)\)

Stored intervals of active rectangles

DCGI

Felkel: Computational geometry

Interval of the edge and current tree \(T\)

Report the rectangles that intersect \([b, e]\)

1. \(\text{if} (T = \text{null}) \text{return}\)
2. \(i=0; \text{if} (b < H(v) < e) \) // forks at this node
3. \(\text{while} (MR(v).[i] >= b) \&\& (i < \text{Count}(v)) \) // Report all intervals inM
4. \(\text{ReportIntersection}; i++\)
5. \(\text{QueryInterval}(b,e,T.LPTR)\)
6. \(\text{QueryInterval}(b,e,T.RPTR)\)
7. \(\text{else if} (H(v) \leq b < e) \) // search RIGHT (←)
8. \(\text{while} (MR(v).[i] >= b) \&\& (i < \text{Count}(v))\)
9. \(\text{ReportIntersection}; i++\)
10. \(\text{QueryInterval}(b,e,T.RPTR)\)
11. \(\text{else} \) // \(b < e \leq H(v)\) //search LEFT(→)
12. \(\text{while} (ML(v).[i] <= e)\)
13. \(\text{ReportIntersection}; i++\)
14. \(\text{QueryInterval}(b,e,T.LPTR)\)
Interval tree - interval insertion

InsertInterval (b, e, T)

Input: Interval [b,e] and interval tree T

Output: T after insertion of the interval

1. v = root(T)
2. while (v != null) // find the fork node
3. if (H(v) < b < e)
 4. v = v.right // continue right
4. else if (b < e < H(v))
 5. v = v.left // continue left
5. else // b ≤ H(v) ≤ e // insert interval
 6. set v node to active
 7. connect LPTR resp. RPTR to its parent
 8. insert [b,e] into list ML(v) – sorted in ascending order of b’s
 9. insert [b,e] into list MR(v) – sorted in descending order of e’s
 10. break
6. endwhile
7. return T
Example 1
Example 1 – static tree on endpoints

$H(v)$ – value of node v
Interval insertion [1,3] a) Query Interval

Search MR(v) or ML(v): \[b < H(v) < e \]
MR(v) is empty
No active sons, stop

Active rectangle
Current node
Active node

Felkel: Computational geometry
Interval insertion $[1,3]$ b) Insert Interval

$b \leq H(v) \leq e$

$? 1 \leq 2 \leq 3 ?$
Interval insertion [1,3]

b) Insert Interval

\[1 \leq 2 \leq 3 \]

fork

\[b \leq H(v) \leq e \]

\[1 \leq 2 \leq 3 \]

\[\Rightarrow \text{to lists} \]
Interval insertion [2,4] a) Query Interval

Search MR(v) only: $H(v) \leq b < e$

MR(v)[1] = 3 \geq 2?

\Rightarrow intersection

\[2 \leq 2 < 4\]
Interval insertion $[2,4]$

b) Insert Interval

$b \leq H(v) \leq e$

$2 \leq 2 \leq 4$

fork

\Rightarrow to lists

Active rectangle
Current node
Active node

Felkel: Computational geometry

(Drtina)
Interval delete [1,3]
Interval delete $[1,3]$
Interval delete [2,4]
Interval delete $[2,4]$
Example 2

RectangleIntersections(S) // this is a copy of the slide before
Input: Set S of rectangles // just to remember the algorithm
Output: Intersected rectangle pairs

1. Preprocess(S) // create the interval tree T and event queue Q

2. while (Q ≠ ∅) do
3. Get next entry (x_{il}, y_{il}, y_{ir}, t) from Q // t ∈ { left | right }
4. if (t = left) // left edge
5. a) QueryInterval (y_{il}, y_{ir}, root(T)) // report intersections
6. b) InsertInterval (y_{il}, y_{ir}, root(T)) // insert new interval
7. else // right edge
8. c) DeleteInterval (y_{il}, y_{ir}, root(T))
Example 2

Felkel: Computational geometry

[Drtina] (48 / 71)
Insert [2,3] – empty => b) Insert Interval

\[b \leq H(v) \leq e \]

Insert the new interval to secondary lists

fork node => active
=> to lists
Insert $[3,7]$

a) Query Interval

for (all in $MR(v)$) test $MR(v)[i] \geq 3$

\Rightarrow report intersection c

go right, nil, stop

$H(v) \leq b < e$

$?3 \leq 3 < 7 ?$
Insert $[3, 7]$

b) Insert Interval

Insert the new interval to secondary lists

\[b \leq H(v) \leq e \]

\[3 \leq 3 \leq 7 \]

fork node \Rightarrow active

\Rightarrow to lists

Active rectangle

Current node

Active node

Felkel: Computational geometry

[Drtina]

(51 / 71)
Insert [0,2]

a) Query Interval

for (all in ML(v)) test ML(v).[i] ≤ 2
⇒ report intersection c
go left, nil, stop

\[b < e \leq H(v) \]

? 0 < 2 ≤ 3?
Insert [0,2] b) Insert Interval 1/2

\[b < e < H(v) \]

? 0 < 2 < 3? => insert left

XY

Insert [0, 2]
b) Insert Interval 2/2

\[b \leq H(v) \leq e \]

? 0 ≤ 1 ≤ 2 ?

Insert the new interval to secondary lists of the left son link to parent

fork node => active

=> to lists

Active rectangle

Current node

Active node

Felkel: Computational geometry

(Drtina)
Insert \([1,5]\) a) Query Interval 1/2

For (all in MR(v))

- => report intersection c,d
- go left -> 1
- go right - nil

b < H(v) < e

? 1 < 3 < 5 ?

Active rectangle

Current node

Active node

Felkel: Computational geometry

[Drtina]

(55 / 71)
Insert [1,5] a) Query Interval 2/2

\[H(v) \leq b < e \]

for (all in MR(v)) test \(MR(v)[i] \geq 1 \)

\(\Rightarrow \) report intersection a

go right, nil, stop
Insert \([1,5]\) b) Insert Interval

\[b \leq H(v) \leq e \]

Insert the new interval to secondary lists

\[? \ 1 \leq 3 \leq 5 \ ? \]
Insert $[7, 8]$ a) Query Interval

for (all in $\text{MR}(v)$) test $\text{MR}(v).[i] \geq 7$

\Rightarrow report intersection d

go right, nil, stop

$H(v) \leq b < e$

$\Rightarrow 3 \leq 7 < 8$?
Insert \([7,8]\) b) **Insert Interval**

Insert the new interval to secondary lists
link to parent

\[
\begin{array}{c}
\text{right} \leq 3 \leq 7 < 8 ? \\
\text{right} \leq 5 \leq 7 < 8 ?
\end{array}
\]

\[
\begin{array}{c}
7 \leq 7 \leq 8
\end{array}
\]

Insert the new interval to secondary lists
link to parent

\[
\begin{array}{c}
b \leq H(v) \leq e
\end{array}
\]
Delete $[3,7]$ Delete Interval

$\text{Delete the interval } [3,7] \text{ from secondary lists}$

$b \leq H(v) \leq e$

$? \ 3 \leq \ 7 \leq \ 8 \ ?$
Insert $[4,6]$ a) Query Interval

for (all in MR(v)) test $MR(v).[i] \geq 4 \Rightarrow$ report intersection b

for (all in ML(v)) test $ML(v).[i] \leq 6$

\Rightarrow no intersection

$H(v) \leq b < e$
Insert $[4,6]$ b) Insert Interval

$H(v) \leq b < e$

Insert the new interval to secondary lists

$? 3 \leq 4 < 6 ?$

$? 4 \leq 5 \leq 6 ?$

Active rectangle
Current node
Active node

DCGI

Felkel: Computational geometry

(62 / 71)
Delete $[1, 5]$ Delete Interval

Delete the interval $[1, 5]$ from secondary lists

$b \leq H(v) \leq e$

? $1 \leq 3 \leq 5$?

Current node

Active node

Active rectangle

Felkel: Computational geometry

(63 / 71)
Delete \([0,2]\) Delete Interval \(1/2\)

Search for node with interval \([0,2]\)

\(b < e \leq H(v)\)

? \(0 < 2 \leq 3\)?

Active rectangle

Current node

Active node

Felkel: Computational geometry
Delete $[0,2]$ Delete Interval 2/2

Delete the interval $[0,2]$ from secondary lists of node 1

$0 \leq 1 \leq 2$

$\mathbf{b} \leq H(v) \leq \mathbf{e}$
Delete [7,8]

Delete Interval

Search for and delete node with interval [7,8]

\[b \leq H(v) \leq e \]

- \(? 3 \leq 7 < 8 ?\)
- \(? 5 \leq 7 < 8 ?\)
- \(? 7 \leq 7 \leq 8 ?\)

Current node

Active node

Active rectangle

[Drtina] (66 / 71)
Delete $[2,3]$ | Delete Interval

Search for and delete node with interval $[2,3]$
Delete $[4,6]$ Delete Interval

$\textbf{Search for and delete node with interval } [4,6]$

$\textbf{Delete } [4,6]$

$\begin{align*}
 b & \leq H(v) \leq e \\
 ? & \quad 4 \leq 5 \leq 6 \quad ?
\end{align*}$

- Active rectangle
- Current node
- Active node

Felkel: Computational geometry

(Drgina)

(Drgina)
Search for and delete node with interval [4,6]
Complexities of rectangle intersections

- n rectangles, s intersected pairs found
- $O(n \log n)$ preprocessing time to separately sort
 - x-coordinates of the rectangles for the plane sweep
 - the y-coordinates for initializing the interval tree.
- The plane sweep itself takes $O(n \log n + s)$ time, so the overall time is $O(n \log n + s)$
- $O(n)$ space
- This time is optimal for a decision-tree algorithm (i.e., one that only makes comparisons between rectangle coordinates).
References

