DEPARTMENT OF COMPUTER GRAPHICS AND INTERACTION

TRIANGULATIONS

PETR FELKEL

FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start
Based on [Berg] and [Mount]

Version from 10.12.2016

Talk overview

- Polygon triangulation
- Monotone polygon triangulation
- Monotonization of non-monotone polygon

Delaunay triangulation (DT) of points

- Input: set of 2D points
- Properties

- Incremental Algorithm
- Relation of DT in 2D and lower envelope (CH) in 3D and relation of VD in 2D to upper envelope in 3D

Polygon triangulation problem

- Triangulation (in general)
= subdividing a spatial domain into simplices
- Application
- decomposition of complex shapes into simpler shapes
- art gallery problem (how many cameras and where)
- We will discuss
- Triangulation of a simple polygon
- without demand on triangle shapes
- Complexity of polygon triangulation
- $\mathrm{O}(n)$ alg. exists [Chazelle91], but it is too complicated

鲃

Terminology

Simple polygon

$=$ region enclosed by a closed polygonal chain that does not intersect itself

Visible points

$=$ two points on the boundary are visible if the interior of the line segment joining them lies entirely in the interior of the polygon

Diagonal

= line segment joining any pair of visible vertices

Terminology

- A polygonal chain C is strictly monotone with respect to line L, if any line orthogonal to L intersects C in at most one point
- A chain C is monotone with respect to line L, if any line orthogonal to L intersects C in at most one connected component (point, line segment,...)
- Polygon P is monotone with respect to line L, if its boundary (bnd(P), $\partial \mathrm{P}$) can be split into two chains, each of which is monotone with respect to L

Terminology

- Horizontally monotone polygon
$=$ monotone with respect to x-axis
- Can be tested in $O(n)$
- Find leftmost and rightmost point in $O(n)$
- Split boundary to upper and lower chain
- Walk left to right, verifying that x-coord are nondecreasing

x-monotone polygon

Terminology

- Every simple polygon can be triangulated
- Simple polygon with n vertices consists of
- exactly n-2 triangles
- exactly n-3 diagonals
- Each diagonal is added once => O(n) sweep line algorithm exist

Proof by induction

$\mathrm{n}=3$ => 0 diagonal

$\mathrm{n}=4$ => 1 diagonal

$\mathrm{n}:=\mathrm{n}+1 \Rightarrow \mathrm{n}+1-3$ diagonals
$n+1=7=>4$ diagonals)

Simple polygon triangulation

- Simple polygon can be triangulated in 2 steps:

1. Partition the polygon into x-monotone pieces
2. Triangulate all monotone pieces
(we will discuss the steps in the reversed order)

2. Triangulation of the monotone polygon

- Sweep left to right - in O(n) time
- Triangulate everything you can by adding diagonals between visible points
- Remove triangulated region from further consideration - mark as DONE

2. Triangulation of the monotone polygon

- Sweep left to right - in O(n) time
- Triangulate everything you can by adding diagonals between visible points
- Remove triangulated region from further consideration - mark as DONE

2. Triangulation of the monotone polygon

- Sweep left to right - in O(n) time
- Triangulate everything you can by adding diagonals between visible points
- Remove triangulated region from further consideration - mark as DONE

2. Triangulation of the monotone polygon

- Sweep left to right - in O(n) time
- Triangulate everything you can by adding diagonals between visible points
- Remove triangulated region from further consideration - mark as DONE

2. Triangulation of the monotone polygon

- Sweep left to right - in O(n) time
- Triangulate everything you can by adding diagonals between visible points
- Remove triangulated region from further consideration - mark as DONE

2. Triangulation of the monotone polygon

- Sweep left to right - in O(n) time
- Triangulate everything you can by adding diagonals between visible points
- Remove triangulated region from further consideration - mark as DONE

Triangulation of the monotone polygon

Triangulation of the monotone polygon

Felkel: Computational geometry
(10/79)

Triangulation of the monotone polygon

Felkel: Computational geometry
(10/79)

Triangulation of the monotone polygon

Felkel: Computational geometry
(10/79)

Triangulation of the monotone polygon

Felkel: Computational geometry
(10/79)

Triangulation of the monotone polygon

Felkel: Computational geometry
(10/79)

Triangulation of the monotone polygon

Felkel: Computational geometry
(10/79)

Triangulation of the monotone polygon

Felkel: Computational geometry
(10/79)

Triangulation of the monotone polygon

[^0]Felkel: Computational geometry
(10/79)

Triangulation of the monotone polygon

[^1]Felkel: Computational geometry
(10/79)

Triangulation of the monotone polygon

[^2]Felkel: Computational geometry
(10/79)

Triangulation of the monotone polygon

[^3]Felkel: Computational geometry
(10/79)

Triangulation of the monotone polygon

Felkel: Computational geometry
(10/79)

Triangulation of the monotone polygon

Felkel: Computational geometry
(10/79)

Triangulation of the monotone polygon

Felkel: Computational geometry
(10/79)

Triangulation of the monotone polygon

Felkel: Computational geometry
(10/79)

Triangulation of the monotone polygon

Felkel: Computational geometry
(10/79)

Triangulation of the monotone polygon

Felkel: Computational geometry
(10/79)

Triangulation of the monotone polygon

Felkel: Computational geometry
(10/79)

Triangulation of the monotone polygon

Felkel: Computational geometry
(10/79)

Main invariant of the untriangulated region

Main invariant

- Let v_{i} be the vertex being just processed
- The untriangulated region left of v_{i} consists of two x-monotone chains (upper and lower)
- Each chain has at least one edge
- If it has more than one edge
- these edges form a reflex chain
= sequence of vertices with interior angle $\geq 180^{\circ}$

Initial invariant

- the other chain consist of single edge $u v_{i}$
- Left vertex of the last added diagonal is u
- Vertices between u and v_{i} are waiting in the stack

Triangulation cases

- Case 1: v_{i} lies on the opposite chain
- Add diagonals from next(u) to $\mathrm{v}_{\mathrm{i}-1}$ (empty the stack)
- Set $u=v_{i-1}$. Last diagonal (invariant) is $v_{i} v_{i-1}$
- Case 2: v_{i} is on the same chain as v_{i-1}
a) walk back, adding diagonals joining v_{i} to prior vertices until the angle becomes $>180^{\circ}$ or u is reached - pop)

Case 1

Case 2a

Felkel: Computational geometry
b) push to stack

Case 2b
[Mount]

1. Polygon subdivision into monotone pieces

- X-monotonicity breaks the polygon in vertices with edges directed both left or both right

- The monotone polygons parts are separated by the splitting diagonals (joining vertex and helper)

Felkel: Computational geometry
(13/79)

Data structures for subdivision

- Events
- Endpoints of edges, known from the beginning
- Can be stored in sorted list - no priority queue
- Sweep status
- List of edges intersecting sweep line (top to bottom)
- Stored in O(log n) time dictionary (like balanced tree)
- Event processing
- Six event types based on local structure of edges around vertex v

Helper - definition

helper(e_{a})
$=$ the rightmost vertically visible processed vertex u below edge e_{a} on polygonal chain between edges $e_{a} \& e_{b}$ is visible to every point along the sweep line between $e_{a} \& e_{b}$

Helper

helper(e_{a})

is defined only for edges intersected by the sweep line

Six event types of vertex v

1. Split vertex

- Find edge e above v, connect v with helper(e) by diagonal

- Add 2 new edges incident to v into SL status
- Set new helper(e) $=$ helper(lower edge of these two) $=v$

2. Merge vertex

- Find two edges incident with v in SL status
- Delete both from SL status
- Let e is edge immediately above v
- Make helper $(\mathrm{e})=v$

(Interior angle $>180^{\circ}$ for both - split \& merge vertices)

Six event types of vertex v

3. Start vertex

- Both incident edges lie right from v
- But interior angle < 180°
- Insert both edges to SL status
- Set helper(upper edge) $=v$

4. End vertex

- Both incident edges lie left from v
- But interior angle <180 ${ }^{\circ}$
- Delete both edges from SL status

- No helper set - we are out of the polygon

Six event types of vertex v

5. Upper chain-vertex

- one side is to the left, one side to the right,
 interior is below
- replace the left edge with the right edge in SL status
- Make v helper of the new (upper) edge

6. Lower chain-vertex

- one side is to the left, one side to the right, interior is above
- replace the left edge with the right edge in SL status
Make v helper of the edge e above

Polygon subdivision complexity

- Simple polygon with n vertices can be partitioned into x-monotone polygons in
$-\mathrm{O}(n \log n)$ time (n steps of $\mathrm{SL}, \log \mathrm{n}$ search each)
- O(n) storage
- Complete simple polygon triangulation
- O($n \log n)$ time for partitioning into monotone polygons
- O(n) time for triangulation
- O(n) storage

Dual graph G for a Voronoi diagram

Graph G: Node for each Voronoi-diagram cell $V(p) \sim$ VD site p Arc connects neighboring cells (arc for every voronoi edge)
= straight line embedding of G (straight-line dual of Voronoi diagram)

- Node for cell $V(p)$ is site p
- Arc (DG edge) connecting cells
$V(p)$ and $V(q)$
is the segment $p q$
VD cell $\mathrm{V}(p)$
site (point) p
= DG node

VD vertex

Delaunay graph and Delaunay triangulation

－Delaunay graph $D G(P)$ has convex polygonal faces （with number of vertices ≥ 3 ，equal to the degree of Voronoi vertex）
－Delaunay triangulation DT（P） ＝Delaunay graph for sites in general position
－No four sites on a circle

－Faces are triangles（Voronoi vertices have degree＝3）
－DT is unique（DG not！Can be triangulated differently）
$D G(P)$ sites not in general position
－Triangulate larger faces－such triangulation is not
地志寺 unique
DCGI

Delaunay graph and Delaunay triangulation

－Delaunay graph $D G(P)$ has convex polygonal faces （with number of vertices ≥ 3 ，equal to the degree of Voronoi vertex）
－Delaunay triangulation DT（P） ＝Delaunay graph for sites in general position
－No four sites on a circle

－Faces are triangles（Voronoi vertices have degree＝3）
－DT is unique（DG not！Can be triangulated differently）
$D G(P)$ sites not in general position
－Triangulate larger faces－such triangulation is not
地志寺 unique
DCGI

Delaunay triangulation properties

Circumcircle property

- The circumcircle of any triangle in DT is empty (no sites) Proof: It's center is the Voronoi vertex
- Three points a, b, c are vertices of the same face of $D G(P)$ iff circle through a, b, c contains no point of P in its interior Empty circle property and legal edge
- Two points a, b form an edge of $D G(P)$ - it is a legal edge iff \exists closed disc with a, b on its boundary that contains no other point of P in its interior
... disc minimal diameter $=\operatorname{dist}(\mathrm{a}, \mathrm{b})$
Closest pair property
- The closest pair of points in P are neighbors in $D T(P)$

Delaunay triangulation properties

- DT edges do not intersect
- Triangulation T is legal, iff T is a Delaunay triangulation (i.e., if it does not contain illegal edges)
- Edge that was legal before may become illegal if one of the triangles incident to it changes
- In convex quadrilateral abcd (abcd do not lie on common circle) exactly one of $a c, b d$
is an illegal edge
and the other edge is legal
principle of edge flip operation

Delaunay triangulation properties

- DT edges do not intersect
- Triangulation T is legal, iff T is a Delaunay triangulation (i.e., if it does not contain illegal edges)
- Edge that was legal before may become illegal if one of the triangles incident to it changes
- In convex quadrilateral abcd (abcd do not lie on common circle) exactly one of $a c, b d$
is an illegal edge
and the other edge is legal
principle of edge flip operation

Edge flip operation

Edge flip

= a local operation, that increases the angle vector

- Given two adjacent triangles $\Delta a b c$ and $\Delta c d a$ such that their union forms a convex quadrilateral, the edge flip operation replaces the diagonal $a c$ with $b d$.

Edge flip operation

Edge flip

= a local operation, that increases the angle vector

- Given two adjacent triangles $\Delta a b c$ and $\Delta c d a$ such that their union forms a convex quadrilateral, the edge flip operation replaces the diagonal $a c$ with $b d$.

Edge flip operation

Edge flip

= a local operation, that increases the angle vector

- Given two adjacent triangles $\Delta a b c$ and $\Delta c d a$ such that their union forms a convex quadrilateral, the edge flip operation replaces the diagonal $a c$ with $b d$.

Edge flip operation

Edge flip

= a local operation, that increases the angle vector

- Given two adjacent triangles $\Delta a b c$ and $\Delta c d a$ such that their union forms a convex quadrilateral, the edge flip operation replaces the diagonal $a c$ with $b d$.

Delaunay triangulation

- Let T be a triangulation with m triangles (and $3 m$ angles)
- Angle-vector
$=$ non-decreasing ordered sequence $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{3 m}\right)$ inner angles of triangles, $\alpha_{i} \leq \alpha_{j}$, for $\mathrm{i}<\mathrm{j}$
- In the plane, Delaunay triangulation has the lexicographically largest angle sequence
- It maximizes the minimal angle (the first angle in angle-vector)
- It maximizes the second minimal angle, ...
- It maximizes all angles
- It is an angle sequence optimal triangulation

Delaunay triangulation

- It maximizes the minimal angle
- The smallest angle in the DT is at least as large as the smallest angle in any other triangulation.
- However, the Delaunay triangulation
- does not necessarily minimize the maximum angle.[4]
- does not necessarily minimize the length of the edges.

Thales's theorem ${ }_{(6245468 \mathrm{Bc})}$

Respective Central Angle Theorem

Let $C=$ circle,

- $\quad l=$ line intersecting C in points a, b
- $p, q, r, s=$ points on the same side of l
p, q on C, r is in, s is out
Then for the angles holds:
$\Varangle a r b>\Varangle a p b=\Varangle a q b>\Varangle a s b$
http://www.mathopenref.colo/arccèntralañgletheörem.html

Edge flip of illegal edge and angle vector

- The minimum angle increases after the edge flip

$$
|b d|<|a c| \quad \varphi_{\mathrm{ab}}>\theta_{\mathrm{ab}} \quad \varphi_{\mathrm{bc}}>\theta_{\mathrm{bc}} \quad \varphi_{\mathrm{cd}}>\theta_{\mathrm{cd}} \quad \varphi_{\mathrm{da}}>\theta_{\mathrm{da}}
$$

=> After limited number of edge flips

- Terminate with lexicographically maximum triangulation

Edge flip of illegal edge and angle vector

- The minimum angle increases after the edge flip

$$
|b d|<|a c| \quad \varphi_{\mathrm{ab}}>\theta_{\mathrm{ab}} \quad \varphi_{\mathrm{bc}}>\theta_{\mathrm{bc}} \quad \varphi_{\mathrm{cd}}>\theta_{\mathrm{cd}} \quad \varphi_{\mathrm{da}}>\theta_{\mathrm{da}}
$$

=> After limited number of edge flips

- Terminate with lexicographically maximum triangulation

Edge flip of illegal edge and angle vector

- The minimum angle increases after the edge flip

$$
|b d|<|a c| \quad \varphi_{\mathrm{ab}}>\theta_{\mathrm{ab}} \quad \varphi_{\mathrm{bc}}>\theta_{\mathrm{bc}} \quad \varphi_{\mathrm{cd}}>\theta_{\mathrm{cd}} \quad \varphi_{\mathrm{da}}>\theta_{\mathrm{da}}
$$

=> After limited number of edge flips

- Terminate with lexicographically maximum triangulation

Edge flip of illegal edge and angle vector

- The minimum angle increases after the edge flip

$$
|b d|<|a c| \quad \varphi_{\mathrm{ab}}>\theta_{\mathrm{ab}} \quad \varphi_{\mathrm{bc}}>\theta_{\mathrm{bc}} \quad \varphi_{\mathrm{cd}}>\theta_{\mathrm{cd}} \quad \varphi_{\mathrm{da}}>\theta_{\mathrm{da}}
$$

=> After limited number of edge flips

- Terminate with lexicographically maximum triangulation

Edge flip of illegal edge and angle vector

- The minimum angle increases after the edge flip

$$
|b d|<|a c| \quad \varphi_{\mathrm{ab}}>\theta_{\mathrm{ab}} \quad \varphi_{\mathrm{bc}}>\theta_{\mathrm{bc}} \quad \varphi_{\mathrm{cd}}>\theta_{\mathrm{cd}} \quad \varphi_{\mathrm{da}}>\theta_{\mathrm{da}}
$$

=> After limited number of edge flips

- Terminate with lexicographically maximum triangulation

Edge flip of illegal edge and angle vector

- The minimum angle increases after the edge flip

$$
|b d|<|a c| \quad \varphi_{\mathrm{ab}}>\theta_{\mathrm{ab}} \quad \varphi_{\mathrm{bc}}>\theta_{\mathrm{bc}} \quad \varphi_{\mathrm{cd}}>\theta_{\mathrm{cd}} \quad \varphi_{\mathrm{da}}>\theta_{\mathrm{da}}
$$

=> After limited number of edge flips

- Terminate with lexicographically maximum triangulation

Edge flip of illegal edge and angle vector

- The minimum angle increases after the edge flip

$$
|b d|<|a c| \quad \varphi_{\mathrm{ab}}>\theta_{\mathrm{ab}} \quad \varphi_{\mathrm{bc}}>\theta_{\mathrm{bc}} \quad \varphi_{\mathrm{cd}}>\theta_{\mathrm{cd}} \quad \varphi_{\mathrm{da}}>\theta_{\mathrm{da}}
$$

=> After limited number of edge flips

- Terminate with lexicographically maximum triangulation

Edge flip of illegal edge and angle vector

- The minimum angle increases after the edge flip

$$
|b d|<|a c| \quad \varphi_{\mathrm{ab}}>\theta_{\mathrm{ab}} \quad \varphi_{\mathrm{bc}}>\theta_{\mathrm{bc}} \quad \varphi_{\mathrm{cd}}>\theta_{\mathrm{cd}} \quad \varphi_{\mathrm{da}}>\theta_{\mathrm{da}}
$$

=> After limited number of edge flips

- Terminate with lexicographically maximum triangulation

Edge flip of illegal edge and angle vector

- The minimum angle increases after the edge flip

$$
|b d|<|a c| \quad \varphi_{\mathrm{ab}}>\theta_{\mathrm{ab}} \quad \varphi_{\mathrm{bc}}>\theta_{\mathrm{bc}} \quad \varphi_{\mathrm{cd}}>\theta_{\mathrm{cd}} \quad \varphi_{\mathrm{da}}>\theta_{\mathrm{da}}
$$

=> After limited number of edge flips

- Terminate with lexicographically maximum triangulation

Incremental algorithm principle

1. Create a large triangle containing all points (to avoid problems with unbounded cells)

- must be larger than the largest circle through 3 points
- will be discarded at the end

2. Insert the points in random order

- Find triangle with inserted point p
- Add edges to its vertices (these new edges are correct)
- Check correctness of the old edges (triangles) "around p " and legalize (flip) potentially illegal edges

3. Discard the large triangle and incident edges

Felkel: Computational geometry
(31/79)

Incremental algorithm in detail

DelaunayTriangulation (P) Input: \quad Set P of n points in the plane Output: A Delaunay triangulation T of P

1. Let p_{-2}, p_{-1}, p_{0} form a triangle large enough to contain P
2. Initialize T as the triangulation consisting a single triangle $p_{-2} p_{-1} p_{0}$
3. Compute random permutation $p_{1}, p_{2}, \ldots, p_{n}$ of $P \backslash\left\{p_{0}\right\}$
4. for $r=1$ to n do
5. $\quad T=\operatorname{Insert}\left(p_{r}, T\right)$
6. Discard $\mathrm{p}_{-1}, \mathrm{p}_{-2}$ with all incident edges from T
7. return T

Incremental algorithm - insertion of a point

Insert (p, T)
Input: \quad Point p being inserted into triangulation T
Output: Correct Delaunay triangulation after insertion of p

1. Find a triangle $a b c \in T$ containing p
2. if p lies in the interior of $a b c$ then
3. Insert edges $p a, p b, p c$ into triangulation T (splitting abc into 3 triangles pab, pbc, pca)
4. LegalizeEdge $(p, a b, T)$
5. LegalizeEdge $(p, b c, T)$
6. LegalizeEdge $(p, c a, T)$

7. else // p lies on the edge of $a b c$, say $a b$, point d is right from edge $a b$
8. Remove $a b$ and insert edges $p a, p b, p c, p d$ into triangulation T (splitting abc and abd into 4 triangles pad, pdb, pbc, pca)
9. LegalizeEdge $(p, a b, T)$
10. LegalizeEdge $(p, b c, T)$
11. LegalizeEdge ($p, c d, T$)
12. LegalizeEdge $(p, d a, T)$
13. return T

Incremental algorithm - insertion of a point

Insert (p, T)
Input: \quad Point p being inserted into triangulation T
Output: Correct Delaunay triangulation after insertion of p

1. Find a triangle $a b c \in T$ containing p
2. if p lies in the interior of $a b c$ then
3. Insert edges $p a, p b, p c$ into triangulation T (splitting abc into 3 triangles pab, pbc, pca)
LegalizeEdge ($p, a b, T$)
LegalizeEdge ($p, b c, T$)
4. LegalizeEdge $(p, c a, T)$

else // p lies on the edge of $a b c$, say $a b$, point d is right from edge $a b$
5. Remove $a b$ and insert edges $p a, p b, p c, p d$ into triangulation T (splitting abc and abd into 4 triangles pad, pdb, pbc, pca)
6. LegalizeEdge $(p, a b, T)$
7. LegalizeEdge $(p, b c, T)$
8. LegalizeEdge $(p, c d, T)$
9. LegalizeEdge $(p, d a, T)$
10. return T

Incremental algorithm - insertion of a point

Insert (p, T)
Input: \quad Point p being inserted into triangulation T
Output: Correct Delaunay triangulation after insertion of p

1. Find a triangle $a b c \in T$ containing p
2. if p lies in the interior of $a b c$ then
3. Insert edges $p a, p b, p c$ into triangulation T (splitting abc into 3 triangles pab, pbc, pca)
LegalizeEdge ($p, a b, T$)
LegalizeEdge ($p, b c, T$)
4. LegalizeEdge ($p, c a, T)$

else // p lies on the edge of $a b c$, say $a b$, point d is right from edge $a b$
5. Remove $a b$ and insert edges $p a, p b, p c, p d$ into triangulation T (splitting abc and abd into 4 triangles pad, pdb, pbc, pca)
6. LegalizeEdge $(p, a b, T)$
7. LegalizeEdge $(p, b c, T)$
8. LegalizeEdge $(p, c d, T)$
9. LegalizeEdge $(p, d a, T)$
10. return T

Incremental algorithm - insertion of a point

Insert (p, T)
Input: \quad Point p being inserted into triangulation T
Output: Correct Delaunay triangulation after insertion of p

1. Find a triangle $a b c \in T$ containing p
2. if p lies in the interior of $a b c$ then
3. Insert edges $p a, p b, p c$ into triangulation T (splitting abc into 3 triangles pab, pbc, pca)
LegalizeEdge ($p, a b, T$)
4. LegalizeEdge $(p, b c, T)$
5. LegalizeEdge ($p, c a, T$)

6. else // p lies on the edge of $a b c$, say $a b$, point d is right from edge $a b$
7. Remove $a b$ and insert edges $p a, p b, p c, p d$ into triangulation T (splitting abc and abd into 4 triangles pad, pdb, pbc, pca)
8. LegalizeEdge $(p, a b, T)$
9. LegalizeEdge $(p, b c, T)$
10. LegalizeEdge ($p, c d, T$)
11. LegalizeEdge $(p, d a, T)$
12. return T

Incremental algorithm - insertion of a point

Insert (p, T)
Input: \quad Point p being inserted into triangulation T
Output: Correct Delaunay triangulation after insertion of p

1. Find a triangle $a b c \in T$ containing p
2. if p lies in the interior of $a b c$ then
3. Insert edges $p a, p b, p c$ into triangulation T (splitting abc into 3 triangles pab, pbc, pca)
LegalizeEdge ($p, a b, T$)
4. LegalizeEdge $(p, b c, T)$
5. LegalizeEdge ($p, c a, T$)

6. else // p lies on the edge of $a b c$, say $a b$, point d is right from edge $a b$
7. Remove $a b$ and insert edges $p a, p b, p c, p d$ into triangulation T (splitting abc and abd into 4 triangles pad, pdb, pbc, pca)
8. LegalizeEdge $(p, a b, T)$
9. LegalizeEdge $(p, b c, T)$
10. LegalizeEdge $(p, c d, T)$
11. LegalizeEdge $(p, d a, T)$
12. return T

Incremental algorithm - insertion of a point

Insert (p, T)
Input: \quad Point p being inserted into triangulation T
Output: Correct Delaunay triangulation after insertion of p

1. Find a triangle $a b c \in T$ containing p
2. if p lies in the interior of $a b c$ then
3. Insert edges $p a, p b, p c$ into triangulation T (splitting abc into 3 triangles pab, pbc, pca)
LegalizeEdge ($p, a b, T$)
4. LegalizeEdge $(p, b c, T)$
5. LegalizeEdge $(p, c a, T)$

6. else // p lies on the edge of $a b c$, say $a b$, point d is right from edge $a b$
7. Remove $a b$ and insert edges $p a, p b, p c, p d$ into triangulation T (splitting abc and abd into 4 triangles pad, pdb, pbc, pca)
8. LegalizeEdge $(p, a b, T)$
9. LegalizeEdge $(p, b c, T)$
10. LegalizeEdge ($p, c d, T$)
11. LegalizeEdge $(p, d a, T)$
12. return T

Incremental algorithm - insertion of a point

Insert (p, T)
Input: \quad Point p being inserted into triangulation T
Output: Correct Delaunay triangulation after insertion of p

1. Find a triangle $a b c \in T$ containing p
2. if p lies in the interior of $a b c$ then
3. Insert edges $p a, p b, p c$ into triangulation T (splitting abc into 3 triangles pab, pbc, pca)
LegalizeEdge ($p, a b, T$)
4. LegalizeEdge $(p, b c, T)$
5. LegalizeEdge $(p, c a, T)$

6. else // p lies on the edge of $a b c$, say $a b$, point d is right from edge $a b$
7. Remove $a b$ and insert edges $p a, p b, p c, p d$ into triangulation T (splitting abc and abd into 4 triangles pad, pdb, pbc, pca)
8. LegalizeEdge $(p, a b, T)$
9. LegalizeEdge $(p, b c, T)$
10. LegalizeEdge $(p, c d, T)$
11. LegalizeEdge $(p, d a, T)$
12. return T

Incremental algorithm - edge legalization

LegalizeEdge($p, a b, T$)
Input: Edge $a b$ being checked after insertion of point p to triangulation T
Output: Delaunay triangulation of $p \cup T$

1. if($a b$ is edge on the exterior face) return
2. let d be the vertex to the right of edge $a b$
3. if($\operatorname{inCircle}(p, a, b, d)) / / d$ is in the circle around $p a b=>d$ is illegal
4. Flip edge $a b$ for $p d$
5. LegalizeEdge (p, ad, T)
6. LegalizeEdge $(p, d b, T)$

Incremental algorithm - edge legalization

LegalizeEdge($p, a b, T$)
Input: Edge $a b$ being checked after insertion of point p to triangulation T
Output: Delaunay triangulation of $p \cup T$

1. if($a b$ is edge on the exterior face) return
2. let d be the vertex to the right of edge $a b$
3. $\operatorname{if}(\operatorname{inCircle}(p, a, b, d)) / / d$ is in the circle around $p a b=>d$ is illegal
4. Flip edge $a b$ for $p d$
5. LegalizeEdge (p, ad, T)
6. LegalizeEdge $(p, d b, T)$

Insertion of p may make edges $a b, b c$ \& ca illegal (circle around pab will contain point d)

Incremental algorithm - edge legalization

LegalizeEdge($p, a b, T$)
Input: Edge $a b$ being checked after insertion of point p to triangulation T
Output: Delaunay triangulation of $p \cup T$

1. if($a b$ is edge on the exterior face) return
2. let d be the vertex to the right of edge $a b$
3. if($\operatorname{inCircle}(p, a, b, d)) / / d$ is in the circle around $p a b=>d$ is illegal
4. Flip edge $a b$ for $p d$
5. LegalizeEdge (p, ad, T)
6. LegalizeEdge $(p, d b, T)$

Insertion of p may make edges $a b, b c \& c a$ illegal (circle around pab will contain point d)
After edge flip, the edge $p d$ will be legal (the circumcircles of the resulting triangles $p d b$, and pad will bee empty)

Incremental algorithm - edge legalization

LegalizeEdge($p, a b, T$)
Input: Edge $a b$ being checked after insertion of point p to triangulation T
Output: Delaunay triangulation of $p \cup T$

1. if($a b$ is edge on the exterior face) return
2. let d be the vertex to the right of edge $a b$
3. if($\operatorname{inCircle}(p, a, b, d)) / / d$ is in the circle around $p a b=>d$ is illegal
4. Flip edge $a b$ for $p d$
5. LegalizeEdge (p, ad, T)
6. LegalizeEdge $(p, d b, T)$

Insertion of p may make edges $a b, b c$ \& ca illegal (circle around pab will contain point d)
After edge flip, the edge $p d$ will be legal (the circumcircles of the resulting triangles $p d b$, and pad will bee empty)

Incremental algorithm - edge legalization

LegalizeEdge($p, a b, T$)
Input: Edge $a b$ being checked after insertion of point p to triangulation T
Output: Delaunay triangulation of $p \cup T$

1. if($a b$ is edge on the exterior face) return
2. let d be the vertex to the right of edge $a b$
3. if($\operatorname{inCircle}(p, a, b, d)) / / d$ is in the circle around $p a b=>d$ is illegal
4. Flip edge $a b$ for $p d$
5. LegalizeEdge (p, ad, T)
6. LegalizeEdge $(p, d b, T)$

Insertion of p may make edges $a b, b c \& c a$ illegal (circle around pab will contain point d)
After edge flip, the edge $p d$ will be legal (the circumcircles of the resulting triangles $p d b$, and pad will bee empty)
We must check and possibly flip edges $a d, d b$

Incremental algorithm - edge legalization

LegalizeEdge($p, a b, T$)
Input: Edge $a b$ being checked after insertion of point p to triangulation T
Output: Delaunay triangulation of $p \cup T$

1. if($a b$ is edge on the exterior face) return
2. let d be the vertex to the right of edge $a b$
3. if($\operatorname{inCircle}(p, a, b, d)) / / d$ is in the circle around $p a b=>d$ is illegal
4. Flip edge $a b$ for $p d$
5. LegalizeEdge $(p, a d, T)$
6. LegalizeEdge $(p, d b, T)$

Insertion of p may make edges $a b, b c \& c a$ illegal (circle around pab will contain point d)
After edge flip, the edge $p d$ will be legal (the circumcircles of the resulting triangles $p d b$, and pad will bee empty)
We must check and possibly flip edges $a d, d b$
(We must check and possibly flip edges bc \& ca - liness $5 ;-6$ in Insert (p, T))

Incremental algorithm - edge legalization

LegalizeEdge($p, a b, T$)
Input: Edge $a b$ being checked after insertion of point p to triangulation T
Output: Delaunay triangulation of $p \cup T$

1. if($a b$ is edge on the exterior face) return
2. let d be the vertex to the right of edge $a b$
3. if($\operatorname{inCircle}(p, a, b, d)) / / d$ is in the circle around $p a b=>d$ is illegal
4. Flip edge $a b$ for $p d$
5. LegalizeEdge $(p, a d, T)$
6. LegalizeEdge $(p, d b, T)$

Insertion of p may make edges $a b, b c \& c a$ illegal (circle around pab will contain point d)
After edge flip, the edge $p d$ will be legal (the circumcircles of the resulting triangles $p d b$, and pad will bee empty)
We must check and possibly flip edges $a d, d b$
(We must check and possibly flip edges bc \& ca - liness $5 ;-6$ in $\operatorname{Insert}(p, T)$)

Incremental algorithm - edge legalization

LegalizeEdge($p, a b, T$)
Input: Edge $a b$ being checked after insertion of point p to triangulation T
Output: Delaunay triangulation of $p \cup T$

1. if($a b$ is edge on the exterior face) return
2. let d be the vertex to the right of edge $a b$
3. if($\operatorname{inCircle}(p, a, b, d)) / / d$ is in the circle around $p a b=>d$ is illegal
4. Flip edge $a b$ for $p d$
5. LegalizeEdge $(p, a d, T)$
6. LegalizeEdge $(p, d b, T)$

Insertion of p may make edges $a b, b c \& c a$ illegal (circle around pab will contain point d)
After edge flip, the edge $p d$ will be legal (the circumcircles of the resulting triangles $p d b$, and pad will bee empty)
We must check and possibly flip edges $a d, d b$
(We must check and possibly flip edges bc \& ca - liness $5 ;-6$ in $\operatorname{Insert}(p, T)$)

Correctness of edge flip of illegal edge

- Assume point p is in C (it violates DT criteria for $a d b$)
- $\quad a d b$ was a triangle of DT => C was an empty circle
- Create circle C^{\prime} trough point p, C^{\prime} is inscribed to $C, C^{\prime} \subset C$ $=>C^{\prime}$ is also an empty circle $(a, b \notin C)$ => new edge $p d$ is a Delaunay edge

Correctness of edge flip of illegal edge

- Assume point p is in C (it violates DT criteria for $a d b$)
- $\quad a d b$ was a triangle of DT => C was an empty circle
- Create circle C^{\prime} trough point p, C^{\prime} is inscribed to $C, C^{\prime} \subset C$ $=>C^{\prime}$ is also an empty circle $(a, b \notin C)$ => new edge $p d$ is a Delaunay edge

Correctness of edge flip of illegal edge

- Assume point p is in C (it violates DT criteria for $a d b$)
- $\quad a d b$ was a triangle of DT => C was an empty circle
- Create circle C^{\prime} trough point p, C^{\prime} is inscribed to $C, C^{\prime} \subset C$ $=>C^{\prime}$ is also an empty circle $(a, b \notin C)$ => new edge $p d$ is a Delaunay edge

DT- point insert and mesh legalization

Every new edge created due to insertion of p will be incident to p

Delaunay triangulation - other point insert

insert p
 check pab

Delaunay triangulation - other point insert

insert p
 check pab

Delaunay triangulation - other point insert

insert p
 check pab

Delaunay triangulation - other point insert

Correctness of the algorithm

- Every new edge (created due to insertion of p)
- is incident to p
- must be legal
=> no need to test them
- Edge can only become illegal if one of its incident triangle changes
- Algorithm tests any edge that may become illegal
=> the algorithm is correct
- Every edge flip makes the angle-vector larger => algorithm can never get into infinite loop

Point location data structure

- For finding a triangle $a b c \in T$ containing p
- Leaves for active (current) triangles
- Internal nodes for destroyed triangles
- Links to new triangles
- Search p: start in root (initial triangle)
- In each inner node of T :
- Check all children (max three)
- Descend to child containing p

Point location data structure

Simplified

- it should also contain the root node Δ_{1}

Δ_{3}

Point location data structure

Point location data structure

Point location data structure

InCircle test

- a,b,c are counterclockwise in the plane
- Test, if d lies to the left of the oriented circle through a, b, c

Creation of the initial triangle

Idea: For given points set P :

- Initial triangle $p_{-2} P_{-1} p_{0}$
- Must contain all points of P
- Must not be (none of its points) in any circle defined by non-collinear points of P
- $I_{-2}=$ horizontal line above P

- $I_{-1}=$ horizontal line below P
- $p_{-2}=$ lies on I_{-2} as far left that p_{-2} lies outside every circle
- $p_{-1}=$ lies on I_{-1} as far right that p_{-1} lies outside every circle defined by 3 non-collinear points of P

Symbolical tests with this triangle $=>p_{-1}^{+}$and p_{-2} always out

Complexity of incremental DT algorithm

- Delaunay triangulation of a set P in the plane can be computed in
$-\mathrm{O}(\mathrm{n} \log \mathrm{n})$ expected time
- using $O(n)$ storage
- For details see [Berg, Section 9.4] Idea
- expected number of created triangles is $9 n+1$
- expected search $O(\log n)$ in the search structure done n times for n inserted points

Delaunay triangulations and Convex hulls

- Delaunay triangulation in R^{d} can be computed as part of the convex hull in R^{d+1} (lower CH)
- 2D: Connection is the paraboloid: $z=x^{2}+y^{2}$

Project onto paraboloid.

Compute convex hull.

Project hull faces back to plane.

Vertical projection of points to paraboloid

- Vertical projection of 2D point to paraboloid in 3D

$$
(x, y) \rightarrow\left(x, y, x^{2}+y^{2}\right)
$$

- Lower convex hull
$=$ portion of CH visible from $Z=-\infty$ (forms DT)

Relation between CH and DT

- Delaunay condition (2D)

Points $p, q, r \in S$ form a Delaunay triangle iff the circumcircle of p, q, r is empty (contains no point)

- Convex hull condition (3D)

Points $p^{\prime}, q^{\prime}, r^{\prime} \in S^{\prime}$ form a face of $C H\left(S^{\prime}\right)$ iff the plane passing through $p^{\prime}, q^{\prime}, r^{\prime}$ is supporting S^{\prime}

- all other points lie to one side of the plane
- plane passing through $p^{\prime}, q^{\prime}, r^{\prime}$ is supporting hyperplane of the convex hull $\mathrm{CH}\left(\mathrm{S}^{\prime}\right)$

Relation between CH and DT

- 4 distinct points p, q, r, s in the plane, and let $p^{\prime}, q^{\prime}, r^{\prime}, s^{\prime}$ be their respective projections onto the paraboloid, $z=x^{2}+y^{2}$.
- The point s lies within the circumcircle of pqr iff s' lies on the lower side of the plane passing through $p^{\prime}, q^{\prime}, r^{\prime}$.

Relation between CH and DT

- 4 distinct points p, q, r, s in the plane, and let $p^{\prime}, q^{\prime}, r^{\prime}, s^{\prime}$ be their respective projections onto the paraboloid, $z=x^{2}+y^{2}$.
- The point s lies within the circumcircle of pqr iff s' lies on the lower side of the plane passing through $p^{\prime}, q^{\prime}, r^{\prime}$.

Relation between CH and DT

- 4 distinct points p, q, r, s in the plane, and let $p^{\prime}, q^{\prime}, r^{\prime}, s^{\prime}$ be their respective projections onto the paraboloid, $z=x^{2}+y^{2}$.
- The point s lies within the circumcircle of pqr iff s' lies on the lower side of the plane passing through $p^{\prime}, q^{\prime}, r^{\prime}$.

Relation between CH and DT

- 4 distinct points p, q, r, s in the plane, and let $p^{\prime}, q^{\prime}, r^{\prime}, s^{\prime}$ be their respective projections onto the paraboloid, $z=x^{2}+y^{2}$.
- The point s lies within the circumcircle of pqr iff s' lies on the lower side of the plane passing through $p^{\prime}, q^{\prime}, r^{\prime}$.

Tangent and secant planes

Tangent plane to paraboloid

- Non-vertical tangent plane through $\left(a, b, a^{2}+b^{2}\right)$
- Paraboloid $z=x^{2}+y^{2}$
- Derivation at this point

$$
\frac{\partial z}{\partial x}=2 x \quad \frac{\partial z}{\partial y}=2 y
$$

Evaluates to $2 a$ and $2 b$

- Plane: $z=2 a x+2 b y+\gamma \quad \gamma=-\left(a^{2}+b^{2}\right)$

$$
a^{2}+b^{2}=2 a \cdot a+2 b \cdot b+\gamma
$$

- Tangent plane through point $\left(a, b, a^{2}+b^{2}\right)$

$$
z=2 a x+2 b y-\left(a^{2}+b^{2}\right)
$$

Plane intersecting the paraboloid (secant plane)

- Non-vertical tangent plane through $\left(a, b, a^{2}+b^{2}\right)$

$$
z=2 a x+2 b y-\left(a^{2}+b^{2}\right)
$$

- Shift this plane r^{2} upwards -> secant plane intersects the paraboloid in an ellipse in 3D

$$
z=2 a x+2 b y-\left(a^{2}+b^{2}\right)+r^{2}
$$

- Eliminate z (project to 2D) $z=x^{2}+y^{2}$

$$
x^{2}+y^{2}=2 a x+2 b y-\left(a^{2}+b^{2}\right)+r^{2}
$$

- This is a circle projected to 2D with center (a, b) :

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

Felkel: Computational geometry

Secant plane defined by three points

Test inCircle - meaning in 3D

- Points p, q, r are counterclockwise in the plane
- Test, if s lies in the circumcircle of $\Delta p q r_{\text {is equal to }}$
= test, weather s'lies within a lower half space of the plane passing through $p^{\prime}, q^{\prime}, r^{\prime}$ (3D)
$=$ test, if quadruple $p^{\prime}, q^{\prime}, r^{\prime}, s^{\prime}$ is positively oriented (3D)
= test, if s lies to the left of the oriented circle through pqr (2D)

Delaunay triangulation and inCircle test

- DT splits each quadrangle by one of its two diagonals
- For a valid diagonal, the fourth point is not inCircle
=> the fourth point is right from the oriented circumcircle (outside)
=> inCircle(....) < 0 for CCW orientation
- inCircle $(P, Q, R, S)=$ inCircle $(P, R, S, Q)=-\operatorname{inCircle}(P, Q, S, R)=-\operatorname{inCircle}(S, Q, R, P)$

$S \xlongequal[\text { inCircle(...)<0 }]{\text { Valid diagonal }} Q$

Delaunay triangulation and inCircle test

- DT splits each quadrangle by one of its two diagonals
- For a valid diagonal, the fourth point is not inCircle
=> the fourth point is right from the oriented circumcircle (outside)
=> inCircle(....) < 0 for CCW orientation
- inCircle $(P, Q, R, S)=$ inCircle $(P, R, S, Q)=-\operatorname{inCircle}(P, Q, S, R)=-\operatorname{inCircle}(S, Q, R, P)$

Delaunay triangulation and inCircle test

- DT splits each quadrangle by one of its two diagonals
- For a valid diagonal, the fourth point is not inCircle
=> the fourth point is right from the oriented circumcircle (outside)
=> inCircle(....) < 0 for CCW orientation
- inCircle $(P, Q, R, S)=\operatorname{inCircle}(P, R, S, Q)=-\operatorname{inCircle}(P, Q, S, R)=-\operatorname{inCircle}(S, Q, R, P)$
inCircle $(\ldots)>0$
Invalid diagonal
$S \xlongequal[\text { inCircle(...)<0 }]{\text { Valid diagonal }} Q$

Delaunay triangulation and inCircle test

- DT splits each quadrangle by one of its two diagonals
- For a valid diagonal, the fourth point is not inCircle
=> the fourth point is right from the oriented circumcircle (outside)
=> inCircle(....) < 0 for CCW orientation
- inCircle $(P, Q, R, S)=\operatorname{inCircle}(P, R, S, Q)=-\operatorname{inCircle}(P, Q, S, R)=-\operatorname{inCircle}(S, Q, R, P)$
inCircle $(\ldots)>0$
Invalid diagonal
$S \xlongequal[\text { inCircle(...)<0 }]{\text { Valid diagonal }} Q$

Delaunay triangulation and inCircle test

- DT splits each quadrangle by one of its two diagonals
- For a valid diagonal, the fourth point is not inCircle
=> the fourth point is right from the oriented circumcircle (outside)
=> inCircle(....) < 0 for CCW orientation
- inCircle $(P, Q, R, S)=\operatorname{inCircle}(P, R, S, Q)=-\operatorname{inCircle}(P, Q, S, R)=-\operatorname{inCircle}(S, Q, R, P)$
inCircle $(\ldots)>0$
Invalid diagonal
$S \xlongequal[\text { inCircle(...)<0 }]{\text { Valid diagonal }} Q$

Delaunay triangulation and inCircle test

- DT splits each quadrangle by one of its two diagonals
- For a valid diagonal, the fourth point is not inCircle
=> the fourth point is right from the oriented circumcircle (outside)
=> inCircle(....) < 0 for CCW orientation
- inCircle $(P, Q, R, S)=\operatorname{inCircle}(P, R, S, Q)=-\operatorname{inCircle}(P, Q, S, R)=-\operatorname{inCircle}(S, Q, R, P)$
inCircle $(\ldots)>0$
Invalid diagonal

inCircle test detail

Point P moves right toward point R

We test position of R in relation to oriented circle (P, Q, S)

inCircle(P, Q,S,R) < 0
R is right (out)

inCircle(P,Q,S,R) $=0$
R is on the circle

inCircle $(P, Q, S, R)>0$ R is left (in)

Invalid diagonal
Valid diagonal

inCircle test detail

An the Voronoi diagram?

- VD and DT are dual structures
- Points and lines in the plane are dual to points and planes in 3D space
- VD of points in the plane can be transformed to intersection of halfspaces in 3D space

Voronoi diagram as upper envelope in $\mathrm{R}^{\mathrm{d}+1}$

- For each point $p=(a, b)$ a tangent plane to the paraboloid is $\quad z=2 a x+2 b y-\left(a^{2}+b^{2}\right)$
- $H^{+}(p)$ is the set of points above this plane

$$
H^{+}(p)=\left\{(x, y, z) \mid z \geq 2 a x+2 b y-\left(a^{2}+b^{2}\right)\right.
$$

VD of points in the plane can be computed as intersection of halfspaces $\mathrm{H}^{+}\left(p_{i}\right)$ in 3D
This intersection of halfspaces
= unbounded convex polyhedron
= upper envelope of halfspaces $H^{+}\left(p_{i}\right)$

Projection to 2D

- Upper envelope of tangent hyperplanes (through sites projected upwards to the cone)
- Projected to 2D gives Voronoi diagram

Voronoi diagram as upper envelope in 3D

Derivation of projected Voronoi edge

- 2 points: $p=(a, b)$ and $q=(c, d)$ in the plane $z=2 a x+2 b y-\left(a^{2}+b^{2}\right) \quad$ Tangent planes $z=2 c x+2 d y-\left(c^{2}+d^{2}\right) \quad$ to paraboloid
- Intersect the planes, project onto xy (eliminate z)

$$
x(2 a-2 c)+y(2 b-2 d)=\left(a^{2}-c^{2}\right)+\left(b^{2}-d^{2}\right)
$$

- This line passes through midpoint between p and q

$$
\frac{a+c}{2}(2 a-2 c)+\frac{b+d}{2}(2 b-2 d)=\left(a^{2}-c^{2}\right)+\left(b^{2}-d^{2}\right)
$$

- It is perpendicular bisector with slope

$$
-(a-c) /(b-d)
$$

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, SpringerVerlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/
[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lectures 7,22, 13,14, and 30.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml
[Rourke] Joseph O’Rourke: .: Computational Geometry in C, Cambridge University Press, 1993, ISBN 0-521- 44592-2 http://maven.smith.edu/~orourke/books/compgeom.html
[Fukuda] Komei Fukuda: Frequently Asked Questions in Polyhedral Computation. Version June 18, 2004 http://www.ifor.math.ethz.ch/~fukuda/polyfaq/polyfaq:html

[^0]:

[^1]:

[^2]:

[^3]:

