PETR FELKEL

FEL CTU PRAGUE

felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Reiberg] and [Nandy]

Version from 11.11.2015

Talk overview

- Incremental construction
- Voronoi diagram of line segments
- VD of order k
- Farthest-point VD

Incremental construction - bounded cell

Incremental construction - unbounded cell

Incremental construction algorithm

InsertPoint(S, Vor(S), y) ... y = a new site
Input: Point set S, its Voronoi diagram, and inserted point yùS
Output: VD after insertion of y

1. Find the cell $\mathrm{V}(x)$ in which y falls, set $c=$ undef $\ldots \mathrm{O}(\log n)$
2. Detect the intersections $\{a, b\}$ of bisector $L(x, y)$ with boundary of cell $V(x)$ $=>$ * first edge $e=a b$ on the border of cells of sites x and $y \ldots O(n)$
3. $p=b$, site $z=$ neighbor site across the border with point $b \ldots \mathrm{O}(1)$
4. while(exists(p) and c û a) // trace the bisectors from b in one direction
a. Detect the intersection c of bisector $L(z, y)$ with $V(z)$
b. Report Voronoi edge $p c$
c. $p=c, z=$ neighbor site across border with c
5. if(c û a) then // trace the bisectors from a in other direction
a. $p=a$
b. while(exists (p) and c û b)
a. Detect the intersection c of bisector $L(z, y)$ with $V(z)$
b. Report Voronoi edge pc

地 $+c$ c. $p=\underline{c}, z=$ neighbor site across border with c
$+\mathrm{O}\left(n^{2}\right)$ worst-case, $\mathrm{O}(n)$ expected time for some distributions

Voronoi diagram of line segments

VD of line segments with bounding box

Bisector of 2 line-segments in detail

- Consists of line segments and parabolic arcs

Distance from point-to-object is measured to the closest point on the object (perpendicularly to the object silhouette)

- Line segment - bisector of end-points or of interiors
- Parabolic arc - of point and interior of a line segment

Bisector in greater details

Bisector of two line segment interiors

Bisector of (end-)point and line segment interior (in intersection of perpendicular slabs only)

Voronoi diagram of line segments

- More complex bisectors of line segments
- line segments and parabolic arcs
- Still combinatorial complexity of O(n)
- Assumptions on the input line segments:
- non-crossing
- strictly disjoint end-points (slightly shorten the segm.)

Voronoi diagram of line segments

- Variant with touching segments in their end-points
- Two types of Voronoi vertices:
- Type 3 - three different objects
- Type 2 - two objects (segment and one of its end-points)
- Contains also 2D areas
- Not only 1D line segments and parabolic arcs

VD of points and line segments examples

2 points Point \& segment 2 line segments

Beach line

$=$ Points with distance to the closest site above sweep line l equal to the distance to l

- Beach line contains
- parabolic arcs when closest to a site end-point
- straight line segments when closest to a site interior (or just the part of the site interior above l if the site s intersects l)
(This is the shape of the beach line)

Beach line breakpoints types

Breakpoint p is equidistant from l and

 equidistant and closest to:1. two site end-points $\quad=>p$ traces a VD line segment
2. two site interiors $\quad=>p$ traces a VD line segment
3. end-point and interior $=>p$ traces a VD parabolic arc
4. one site end-point $\quad=>p$ traces a line segment (border of the slab perpendicular to the site)
5. site interior intersects $=>p=$ intersection, traces the scan line l the input line segment
Cases 4 and 5 involve only one site and therefore do not form a Voronoi diagram edge (are used by alg.only)

Breakpoints types and what they trace

[Berg]

- 1,2 trace a Voronoi line segment (part of VD edge) draw
- 3 traces a Voronoi parabolic arc (part of VD edge) draw
- 4,5 trace a line segment (used only by the algorithm) моve
- 4 limits the slab perpendicular to the line segment
- 5 traces the intersection of input segment with a sweep line
(This is the shape of the traced VD arcs)

Site event - sweep line reaches an endpoint

I. At upper endpoint of ${ }^{\bullet}$

- Arc above is split into two
- 4 new arcs are created (2 segments + 2 parabolas)
- Breakpoints for 2 segments are of type 4-5-4
- Breakpoints for parabolas depend on the surrounding sites
- Type 1 for two end-points
- Type 3 for endpoint and interior
- etc...

Site event - sweep line reaches an endpoint

II. At lower endpoint of $\boldsymbol{\imath}$

- Intersection with interior (breakpoint of type 5)

- is replaced by two breakpoints (of type 4) with parabolic arc between them

Circle event - lower point of circle of 3 sites

- Two breakpoints meet (on the beach-line)
- Solution depends on their type
- Any of first three types meet
- 3 sites involved - Voronoi vertex created
- Type 4 with something else
- two sites involved - breakpoint changes its type
- Voronoi vertex not created
(Voronoi edge may change its shape)
- Type 5 with something else
- never happens for disjoint segments (meet with type 4 happens before)

Summary of the VD terms

- Site = input point, line segment, ...
- Cell = area around the site, in VD_{1} the nearest to site
- Edge, arc = part of Voronoi diagram (border between cells)
- Vertex = intersection of VD edges

Motion planning example - retraction Rušení rran

Motion planning example - retraction Rušení rran

Find path for a circular robot of radius r from $Q_{\text {start }}$ to $Q_{\text {end }}$

- Create Voronoi diagram of line segments, take it as a graph
- Project $Q_{\text {start }}$ to $P_{\text {start }}$ on VD and $Q_{\text {end }}$ to $P_{\text {end }}$
- Remove segments with distance to sites smaller than radius r of a robot
- Depth first search if path from $P_{\text {start }}$ to $P_{\text {end }}$ exists
- Report path $Q_{\text {start }} P_{\text {start }}$..path... $P_{\text {end }}$ to $Q_{\text {end }}$
- $O(n \log n)$ time using $O(n)$ storage

Order-2 Voronoi diagram

Construction of V(3,5) = V(5,3)

[Nandy]
Intersection of all halfplanes $\quad \bigcap h(3, x) \cap \bigcap h(5, x)$

Order-2 Voronoi edges

edge : set of centers of circles passing through 2 sites s and t and containing one site p $=c_{p}(\mathrm{~s}, \mathrm{t})$

Question

Which are the regions on both sides of $\mathrm{c}_{\mathrm{p}}(\mathrm{s}, \mathrm{t})$?
$=>\mathrm{V}(\mathrm{p}, \mathrm{s})$ and $\mathrm{V}(\mathrm{p}, \mathrm{t})$

Order-2 Voronoi vertices

Order-2 Voronoi vertex $u_{\varnothing}(Q+p)$

Order-k Voronoi Diagram

Theorem vêta

The size of the order-k diagrams is $\mathrm{O}(\mathrm{k}(\mathrm{n}-\mathrm{k}))$

Theorem věta

The order-k diagrams can be constructed from the order-($\mathrm{k}-1$) diagrams in $\mathrm{O}(\mathrm{k}(\mathrm{n}-\mathrm{k}))$ time

Corollary dûsledek
The order-k diagrams can be iteratively constructed

Order n-1 = Farthest-point Voronoi diagram

cell $\mathrm{V}_{-1}(7)=\mathrm{V}_{\mathrm{n}-1}(\{1,2,3,4,5,6\})$
= set of points in the plane farther from $p_{i}=7$ than from any other site
$\operatorname{Vor}_{-1}(P)=\operatorname{Vor}_{n-1}(P)$ = partition of the plane formed by the farthest point Voronoi regions, their edges, and vertices

Farthest-point Voronoi diagrams example

Roundness of manufactured objects

- Input: set of measured points in 2D
- Output: width of the smallest-width annulus mezikuži s nejmensis sirikou (region between two concentric circles $\mathrm{C}_{\text {inner }}$ and $\mathrm{C}_{\text {outer }}$)
Three cases to test - one will win:

Smallest width annulus - cases with 3 pts

b) $\mathrm{C}_{\text {inner }}$ contains at least 3 points

- Center is the vertex of normal Voronoi diagram ($1^{\text {st }}$ order VD)
- The remaining point on $\mathrm{C}_{\text {outer }}$ in $\mathrm{O}(\mathrm{n})$ for each vertex $=$ not the alagest (ingeribeded empyy circe a as disusused on seminar as we must test all VD vertices in combination with point on C outer

a) $\mathrm{C}_{\text {outer }}$ contains at least 3 points
- Center is the vertex of the farthest Voronoi diagram
- The remaining point on $\mathrm{C}_{\text {inner }}^{+}$in $\mathrm{O}(\mathrm{n})=$ nothe smalsestercosing girive - asd disusised of seminar as we must test all vertices in combination with point on C inner

Smallest width annulus - case with 2+2 pts

c) $\mathrm{C}_{\text {inner }}$ and $\mathrm{C}_{\text {outer }}$ contain 2 points each

- Generate vertices of overlay of Voronoi (__) and farthest-point Voronoi (---) diagrams => $\mathrm{O}\left(\mathrm{n}^{2}\right)$ candidates for centers (we need only vertices, not the complete overlay)
- annulus computed in O(1) from center and 4 points (same for all 3 cases)
- $O\left(n^{2}\right)$

Smallest width annulus

Smallest-Width-Annulus

Input: \quad Set P of n points in the plane
Output: Smallest width annulus center and radii r and R (roundness)

1. Compute Voronoi diagram $\operatorname{Vor}(P)$ and farthest-point Voronoi diagram $\operatorname{Vor}_{-1}(P)$ of P
2. For each vertex of $\operatorname{Vor}_{-1}(P)(R)$ determine the closest point (r) from P => $O(n)$ sets of four points defining candidate annuli
3. For each vertex of $\operatorname{Vor}(P)(r)$ determine the farthest point (R) from P => $O(n)$ sets of four points defining candidate annuli
4. For every pair of edges $\operatorname{Vor}(P)$ and $\operatorname{Vor}_{-1}(P)$ test if they intersect => another set of four points defining candidate annulus
5. For all candidates of all three types chose the smallest-width annulus
$O\left(n^{2}\right)$ time using $O(n)$ storage

Farthest-point Voronoi diagram

$\mathrm{V}_{-1}\left(p_{i}\right)$ cell
= set of points in the plane farther from p_{i} than from any other site

Vor $_{-1}(\mathrm{P})$ diagram = partition of the plane formed by the farthest point Voronoi regions, their edges, and vertices

Farthest-point Voronoi region (cell)

Computed as intersection of halfplanes, but we take "other sides" of bisectors

Construction of $\mathrm{V}_{-1}(7)$

$$
V_{-1}=\bigcap_{x=1}^{n} h(y, x), y \neq x
$$

Property
 The farthest point Voronoi regions are convex and unbounded

Farthest-point Voronoi region

Properties:

- Only vertices of the convex hull have their cells in farthest Voronoi diagram
- The farthest point Voronoi regions are unbounded
- The farthest point Voronoi edges and vertices form a tree (in the graph sense)

Farthest point Voronoi edges and vertices

edge : set of points equidistant from 2 sites and closer to all the other sites

vertex : point equidistant from at least 3 sites and closer to all the other sites

Application of Vor $_{-1}(\mathrm{P})$: Smallest enclosing circle

- Construct Vor $_{-1}(P)$ and find minimal circle with center in $\operatorname{Vor}_{-1}(\mathrm{P})$ vertices or on edges

Modified DCEL for farthest-point Voronoi d

- Half-infinite edges -> we adapt DCEL
- Half-edges with origin in infinity
- Special vertex-like record for origin in infinity
- Store direction instead of coordinates
- Next(e) or Prev(e) pointers undefined
- For each inserted site p_{j}
- store a pointer to the most CCW half-infinite half-edge of its cell in DCEL

Idea of the algorithm

1. Create the convex hull and number the CH points randomly
2. Remove the points starting in the last of this
random order and store $\operatorname{cw}\left(p_{i}\right)$ and $\operatorname{ccw}\left(p_{i}\right)$ points at the time of removal.
3. Include the points back and compute V_{-1}

p_{i}	$\operatorname{ccw}\left(p_{i}\right)$	$\operatorname{cw}\left(p_{i}\right)$
p_{6}	p_{3}	p_{5}
p_{5}	p_{3}	p_{2}
\cdots		

Farthest-point Voronoi d. construction

Farthest-pointVoronoi

$O(n \log n)$ time in $O(n)$ storage
Input: Set of points P in plane
Output: Farthest-point VD $\operatorname{Vor}_{-1}(P)$

1. Compute convex hull of P
2. Put points in $\mathrm{CH}(P)$ of P in random order p_{1}, \ldots, p_{h}
3. Remove p_{h}, \ldots, p_{4} from the cyclic order (around the CH). When removing p_{i}, store the neighbors: $\operatorname{cw}\left(p_{i}\right)$ and $\operatorname{ccw}\left(p_{i}\right)$ at the time of removal. (This is done to know the neighbors needed in step 6.)
4. Compute $\operatorname{Vor}_{-1}\left(\left\{p_{1}, p_{2}, p_{3}\right\}\right)$ as init
5. for $i=4$ to h do
6. Add site p_{i} to $\operatorname{Vor}_{-1}\left(\left\{p_{1}, p_{2}, \ldots, p_{i-1}\right\}\right)$ between site $\operatorname{cw}\left(p_{i}\right)$ and $\operatorname{ccw}\left(p_{i}\right)$
7. - start at most CCW edge of the cell $\operatorname{ccw}\left(p_{i}\right)$
8. - continue CW to find intersection with bisector $\left(\operatorname{ccw}\left(p_{i}\right), p_{i}^{*}\right)$
9.

- trace borders of Voronoi cell p_{i} in CCW order, add edges

10.

- remove invalid edges inside of Voronoi cell p_{i}

Farthest-point Voronoi d. construction

Farthest-point Voronoi d. construction

References

[Berg]	M
	Computational Geometry: Algorithms and Applications, SpringerVerlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapter 7, \qquad
[Preparata]	Preperata, F.P., Shamos, M.I.: Computational Geometry. An Introduction. Berlin, Springer-Verlag,1985. Chapters 5 and 6
[Reiberg]	Reiberg, J: Implementierung Geometrischer Algoritmen. Berechnung von Voronoi Diagrammen fuer Liniensegmente. http:/lwww.reiberg.net/project/voronoilavortrag.ps.gz
[Nandy]	Subhas C. Nandy: Voronoi Diagram - presentation. Advanced Computing and Microelectronics Unit. Indian Statistical Institute. Kolkata 700108
[CGAL]	http://www.cgal.org/Manual/3.1/doc html/cgal manual/Segment Voronoi diagram 2/Chapter main.html
[applets]	http://www.personal.kent.edu/~rmuhamma/Compgeometryl MyCG/Voronoi/Fortune/fortune.htm a http:/lwww.liefke.com/hartmut/cis677/

