

VORONOI DIAGRAM PART II

PETR FELKEL

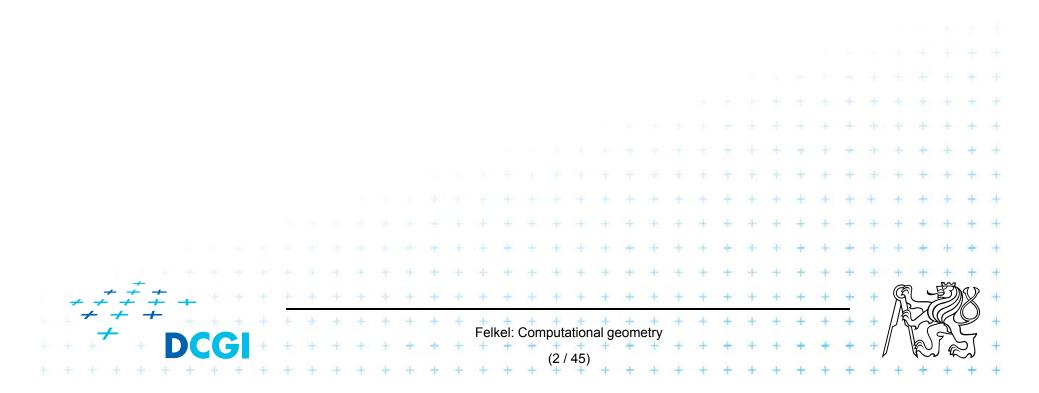
FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

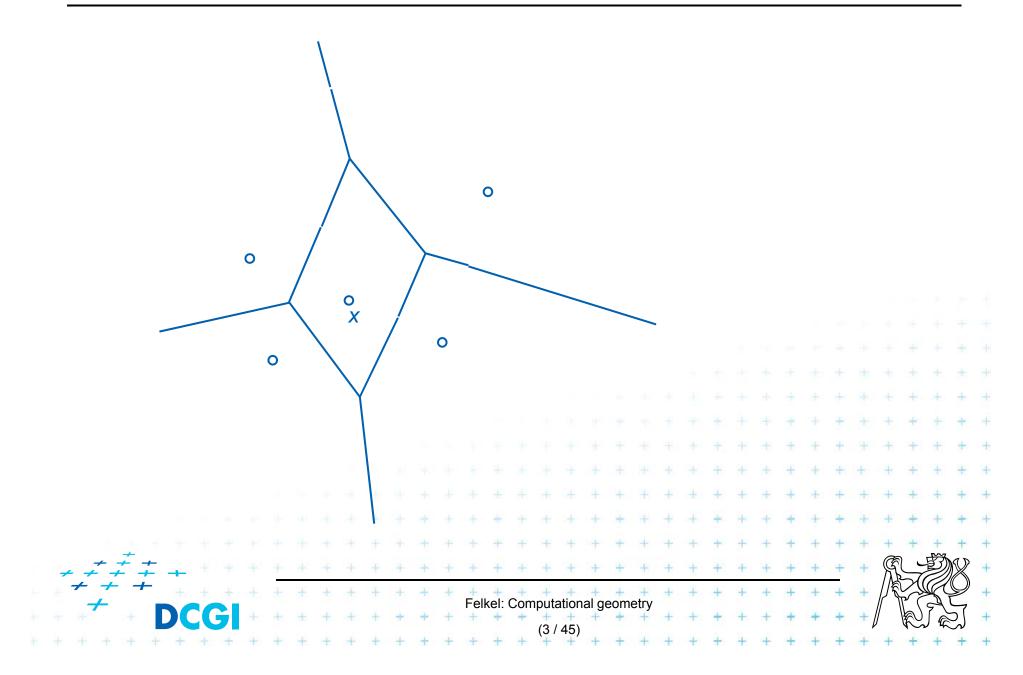
Based on [Berg], [Reiberg] and [Nandy]

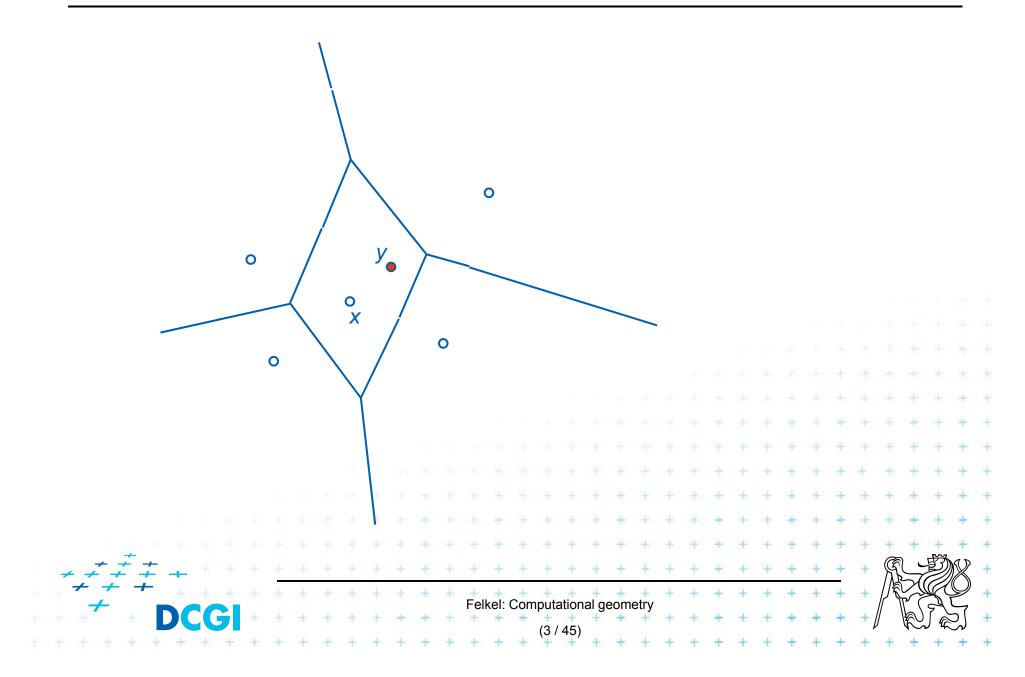
Version from 13.11.2015

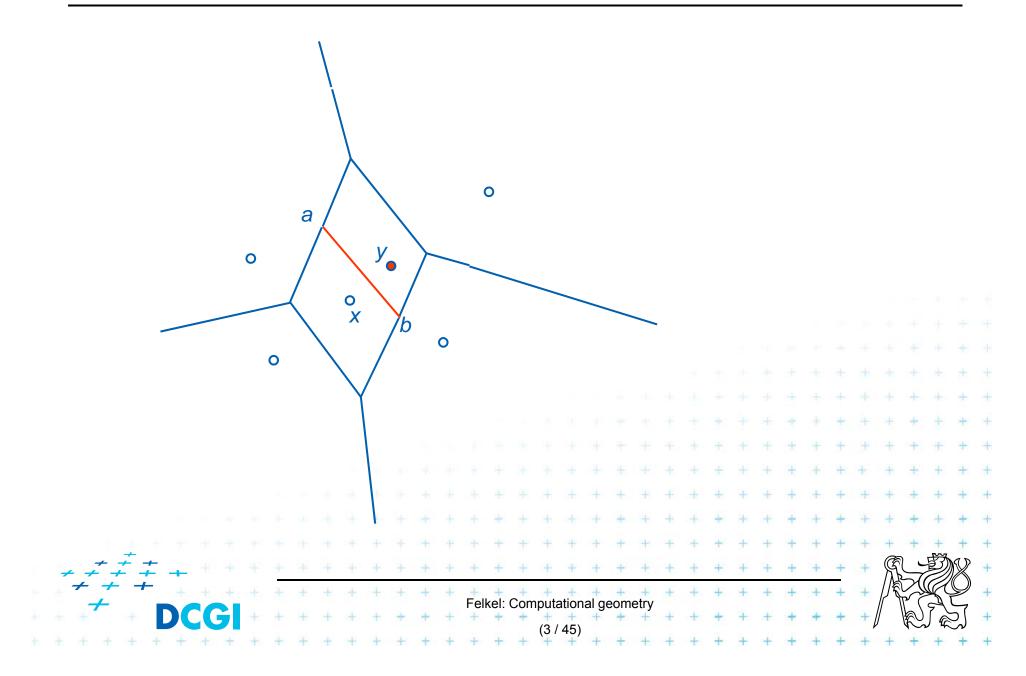
Talk overview

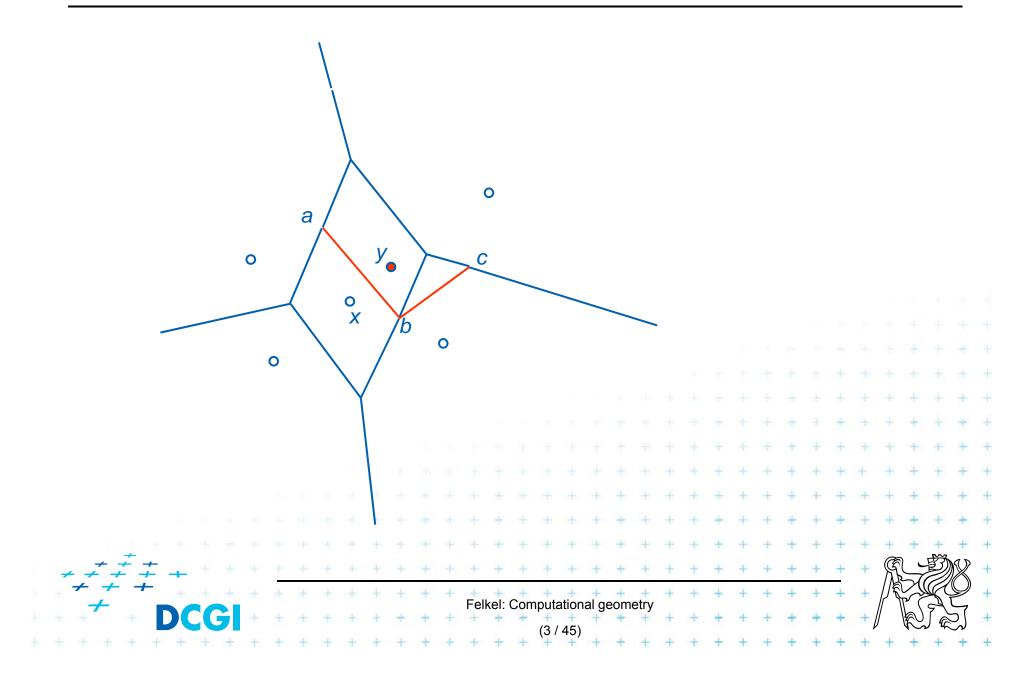
- Incremental construction
- Voronoi diagram of line segments
- VD of order k
- Farthest-point VD

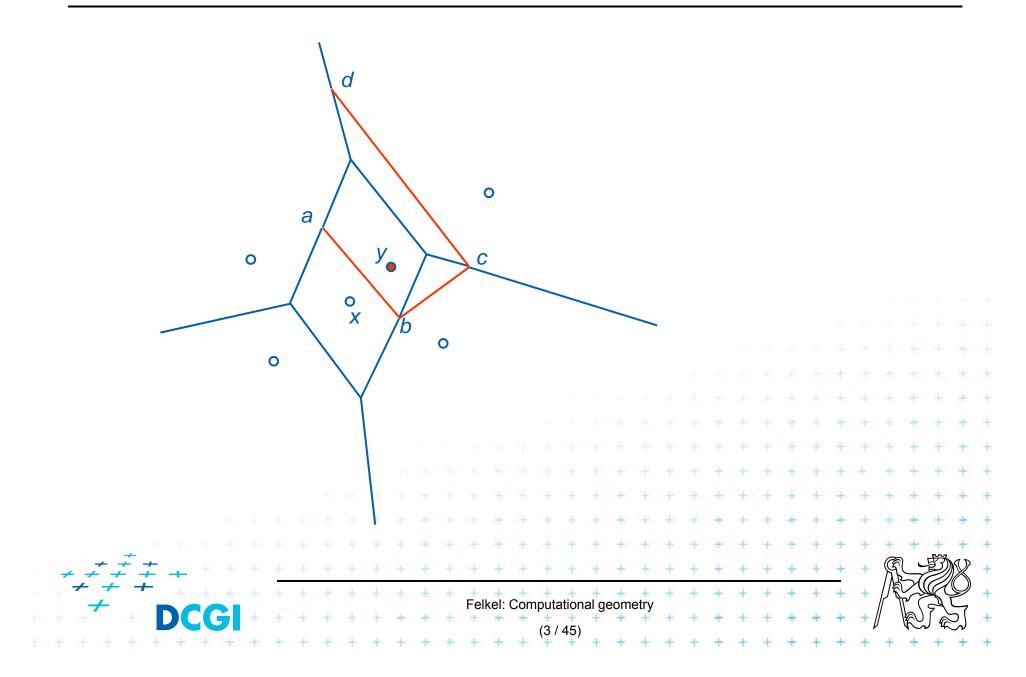


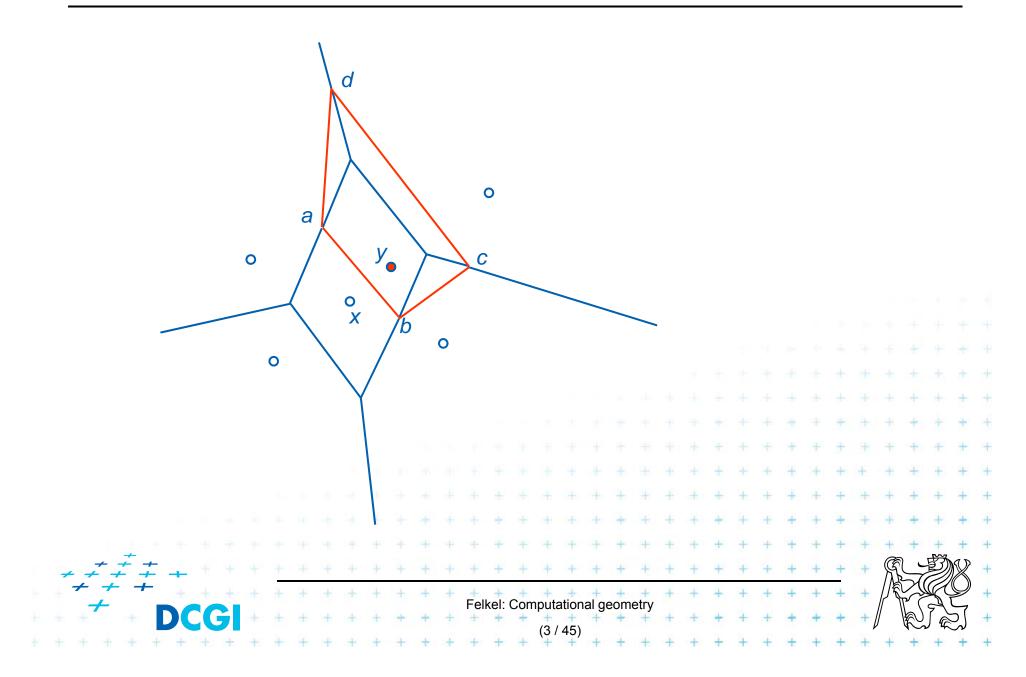


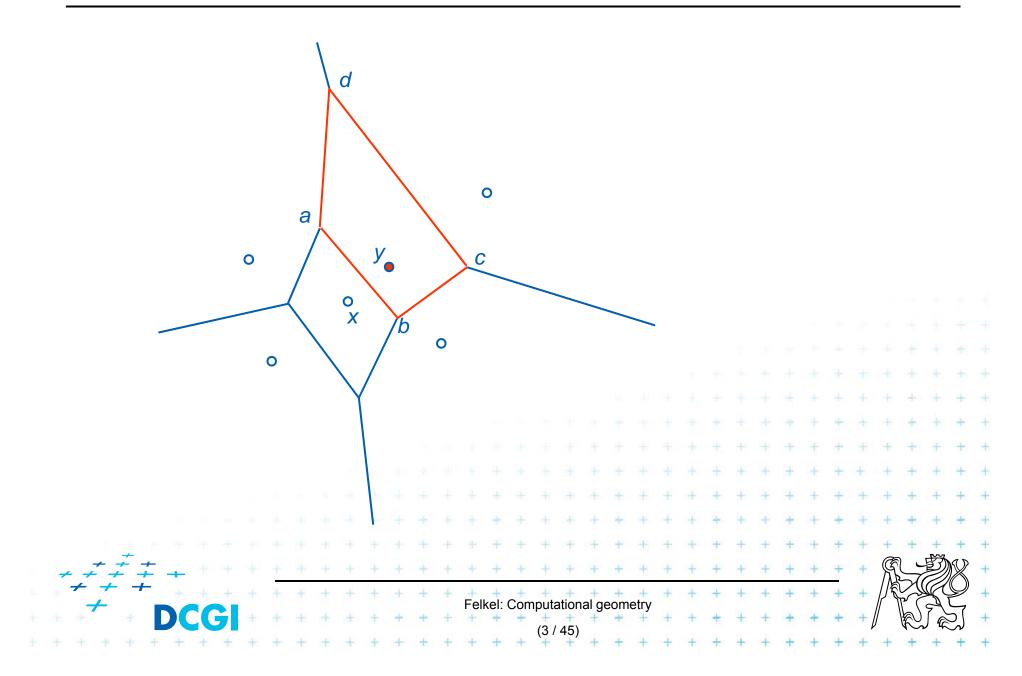


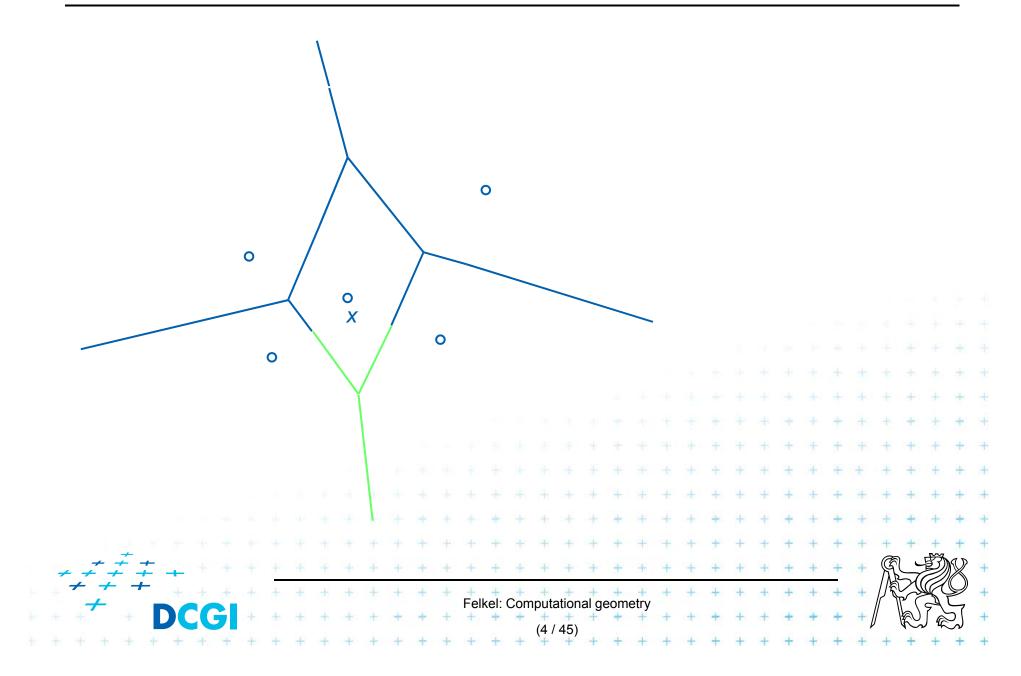


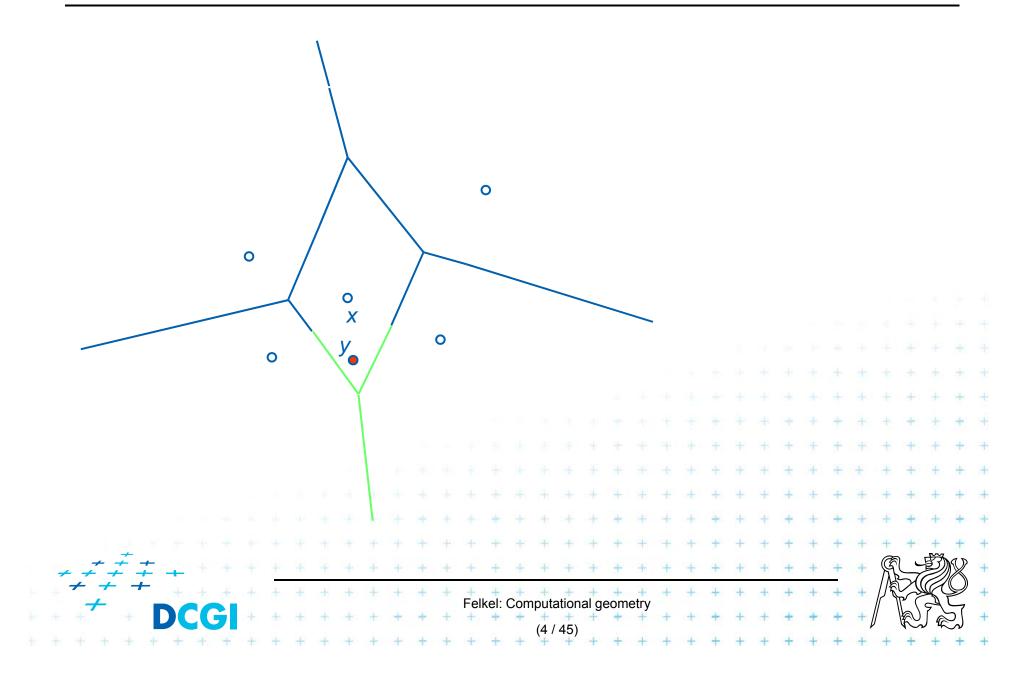


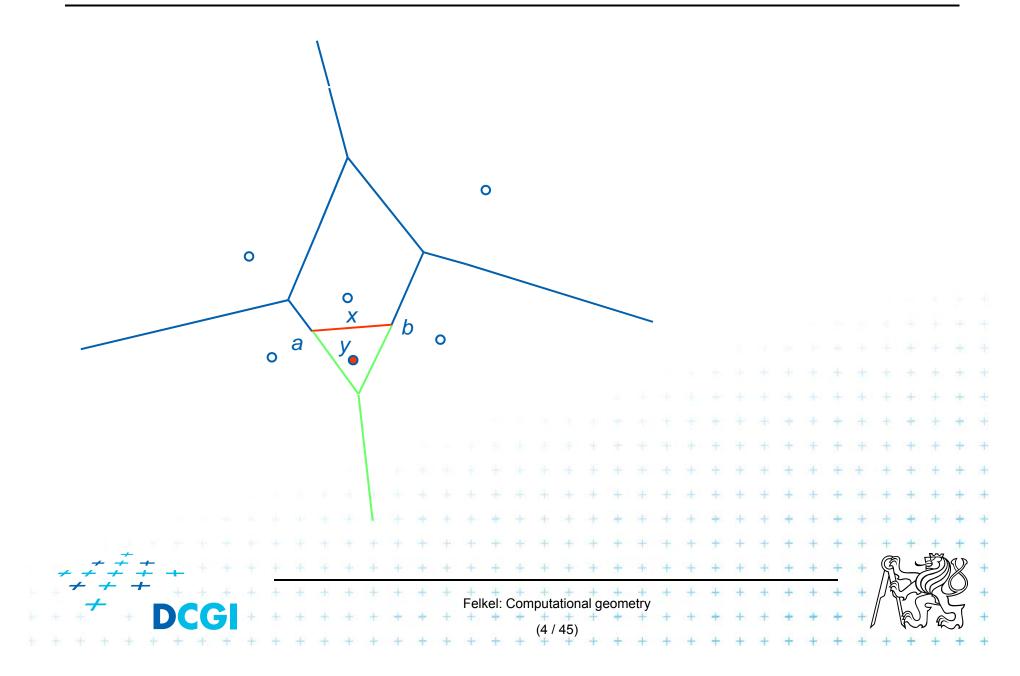


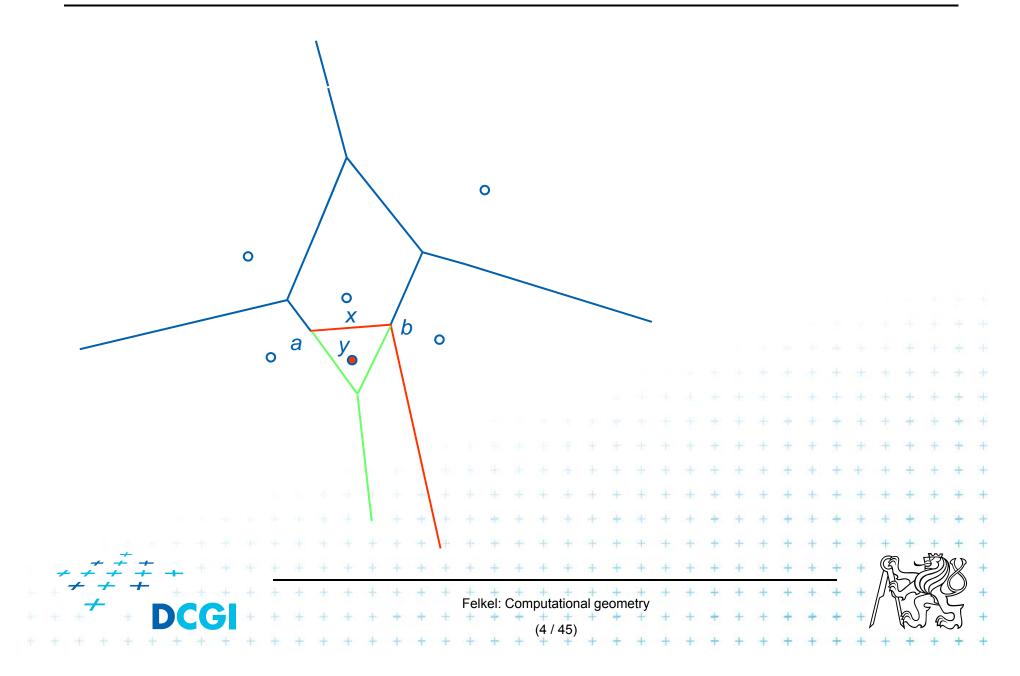


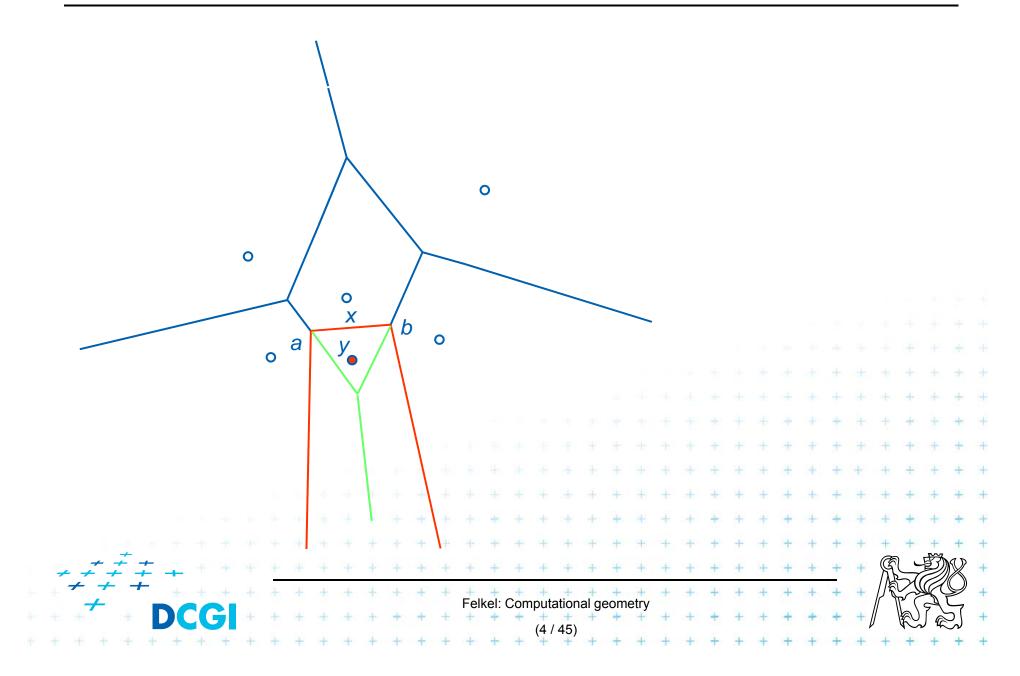


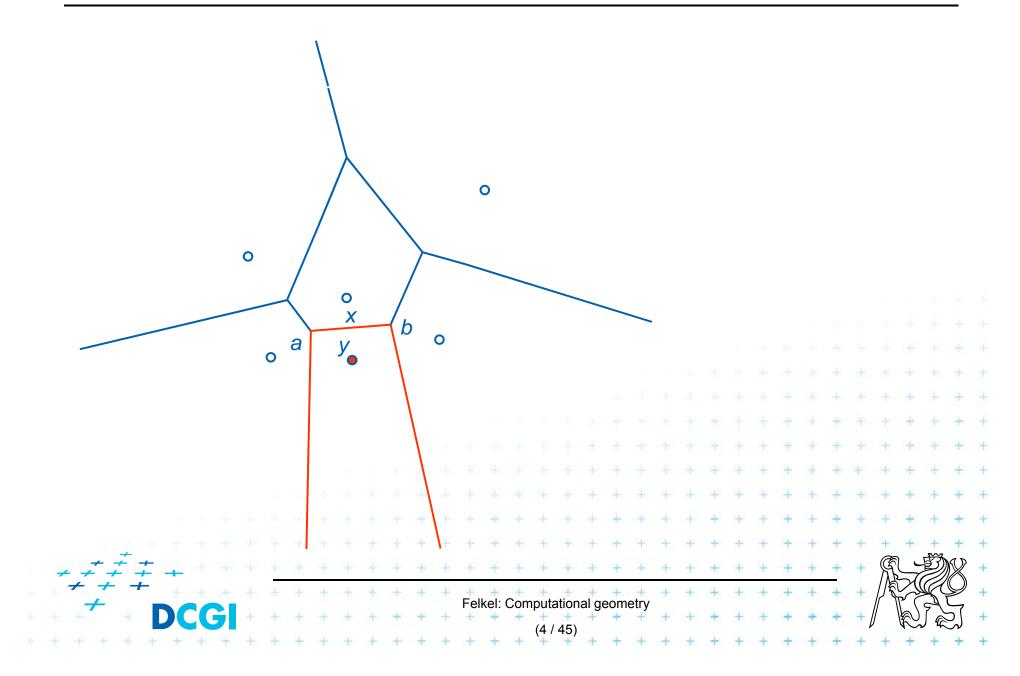












Incremental construction algorithm

InsertPoint(*S*, Vor(*S*), *y*) ... *y* = a new site Input: Point set *S*, its Voronoi diagram, and inserted point $y \hat{U}S$ Output: VD after insertion of *y* 1. Find the cell V(*x*) in which *y* falls, set *c* = undef ...

- Find the cell V(x) in which y falls, set c = undef ...O(log n)
 Detect the intersections {a,b} of bisector L(x,y) with boundary of cell V(x) => * first edge e = ab on the border of cells of sites x and y ...O(n)
- 3. p = b, site z = neighbor site across the border with point $b \dots O(1)$
- 4. while (exists (p) and $c \hat{u} a$) // trace the bisectors from b in one direction

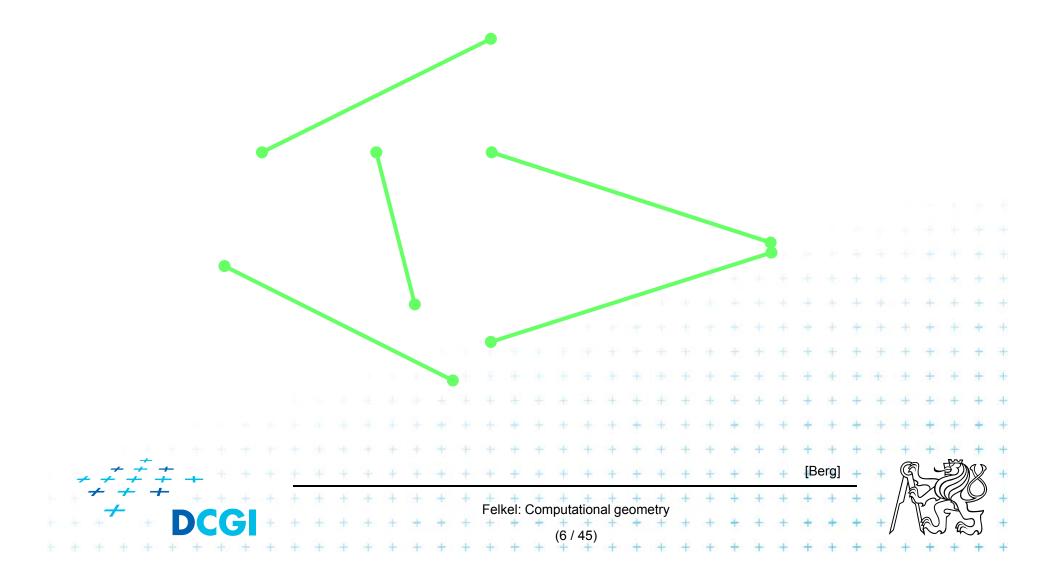
....O(1

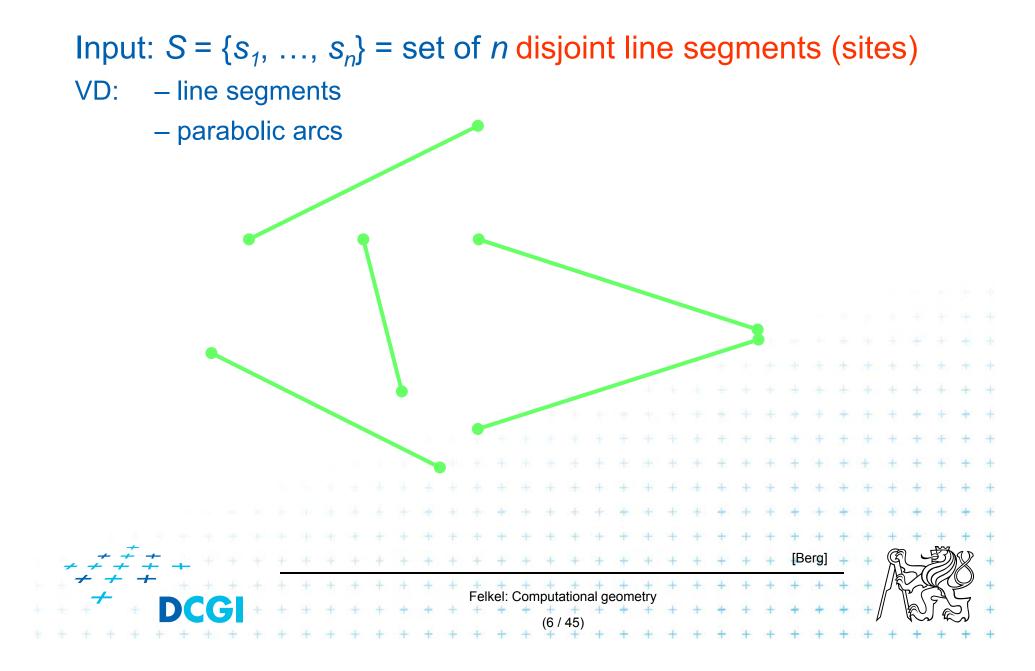
...O(*n*²)

- a. Detect the intersection c of bisector L(z, y) with V(z)
- b. Report Voronoi edge pc
- *c.* p = c, z=neighbor site across border with c
- 5. if ($c \hat{u} a$) then // trace the bisectors from *a* in other direction
 - a. p = a
 - **b.** while(exists(p) and c û b)
 - a. Detect the intersection c of bisector L(z, y) with V(z)
 - b. Report Voronoi edge pc
 - $r \rightarrow c$. p = c, z = neighbor site across border with <math>c + + + c

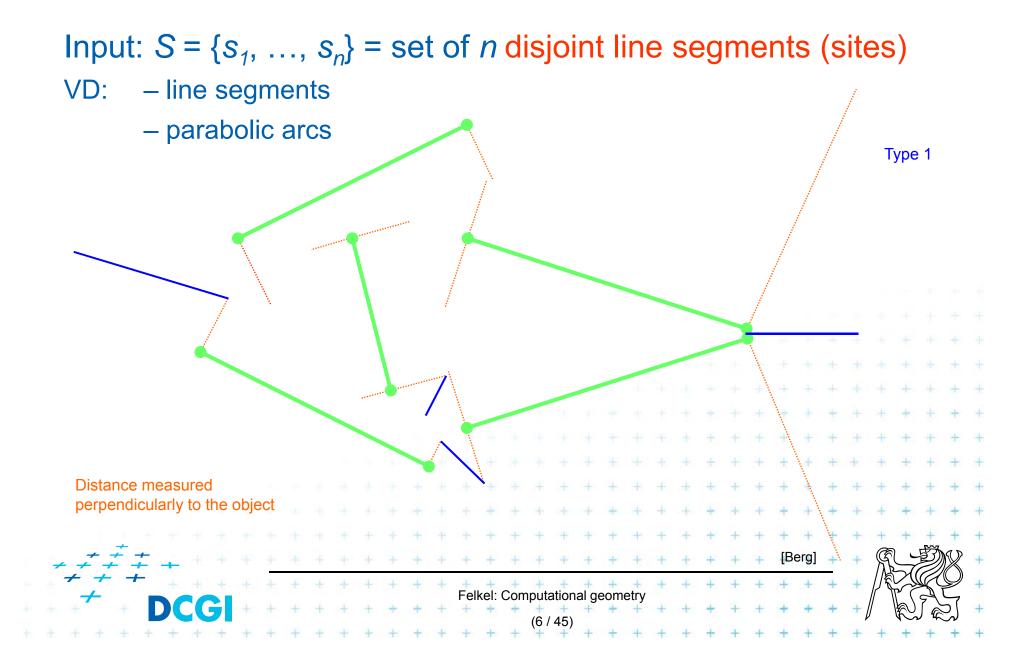
+ + \checkmark O(*n*²) worst-case, O(*n*) expected time for some distributions +

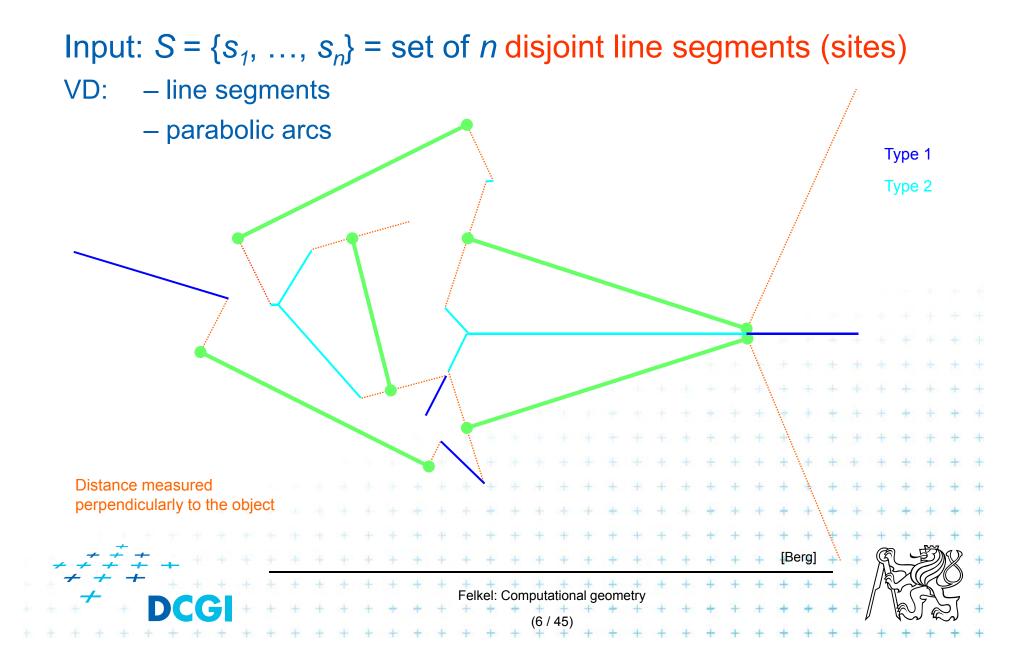
Input: $S = \{s_1, ..., s_n\} = \text{set of } n \text{ disjoint line segments (sites)}$

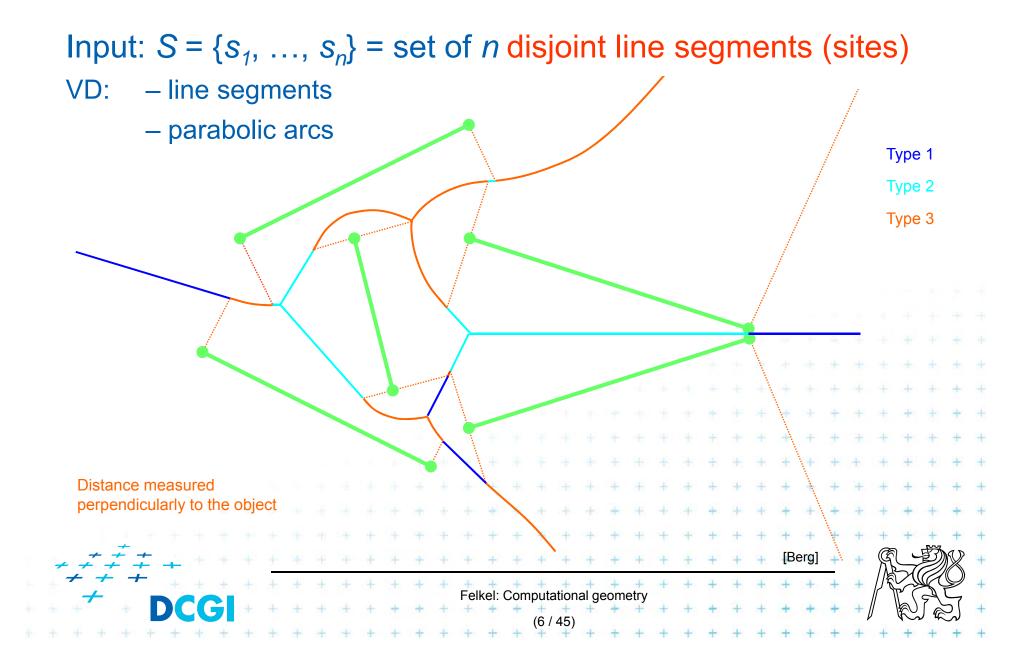


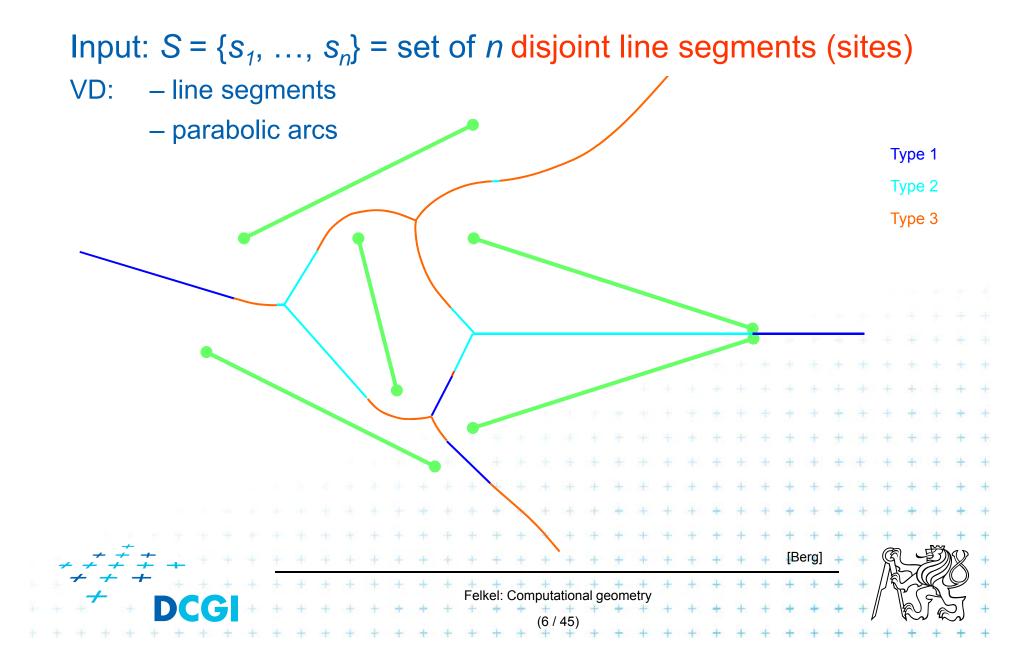




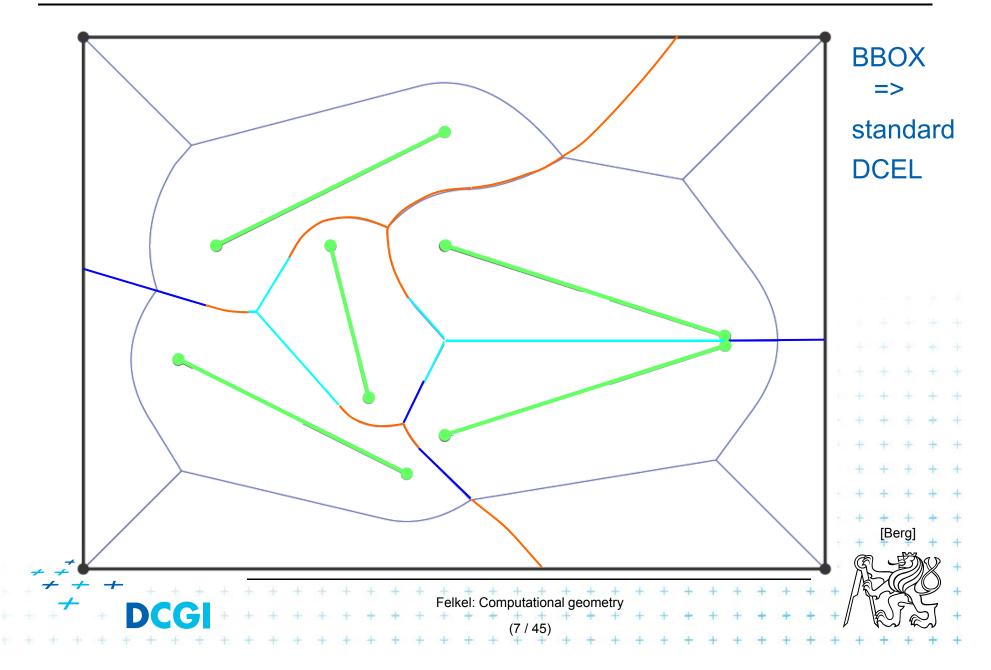






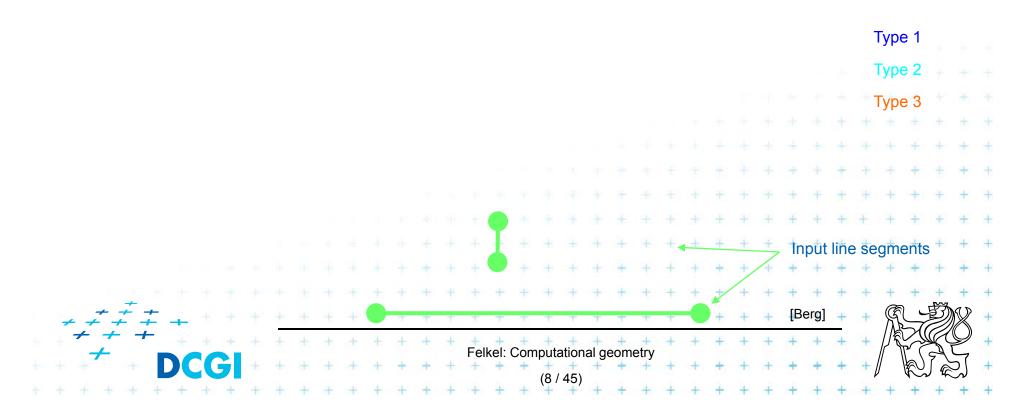


VD of line segments with bounding box



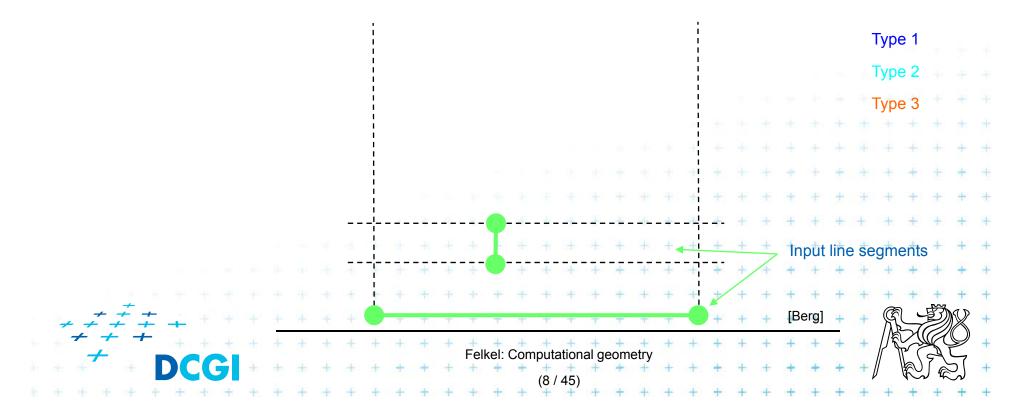
Consists of line segments and parabolic arcs
 Distance from point-to-object is measured to the closest point on the object

- Line segment bisector of end-points(1) or of interiors(2)
- Parabolic arc of point and interior(3) of a line segment



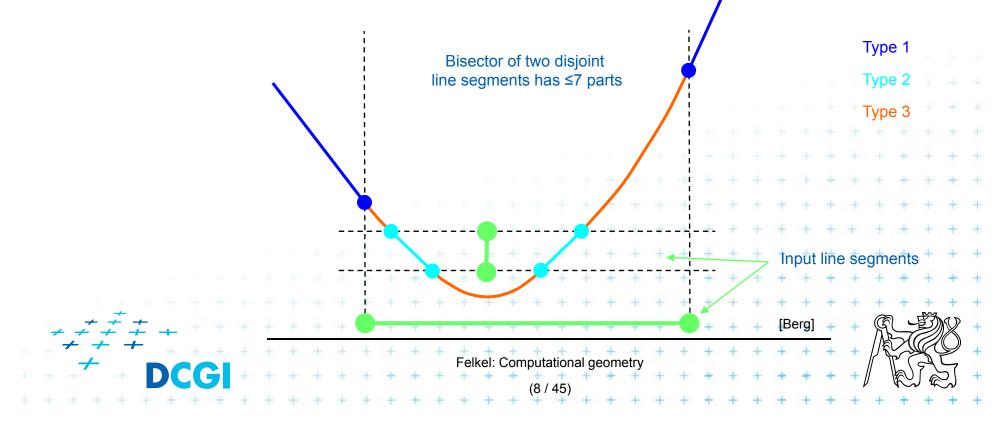
Consists of line segments and parabolic arcs

- Line segment bisector of end-points(1) or of interiors(2)
- Parabolic arc of point and interior(3) of a line segment



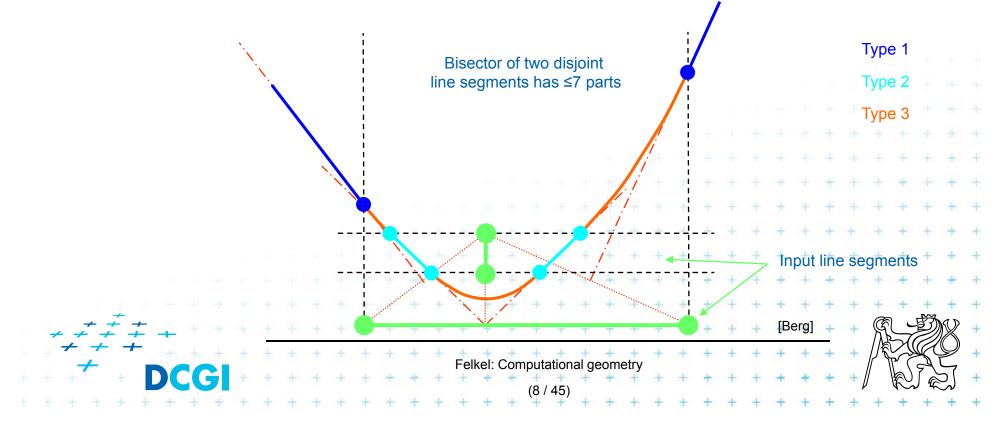
Consists of line segments and parabolic arcs

- Line segment bisector of end-points(1) or of interiors(2)
- Parabolic arc of point and interior(3) of a line segment



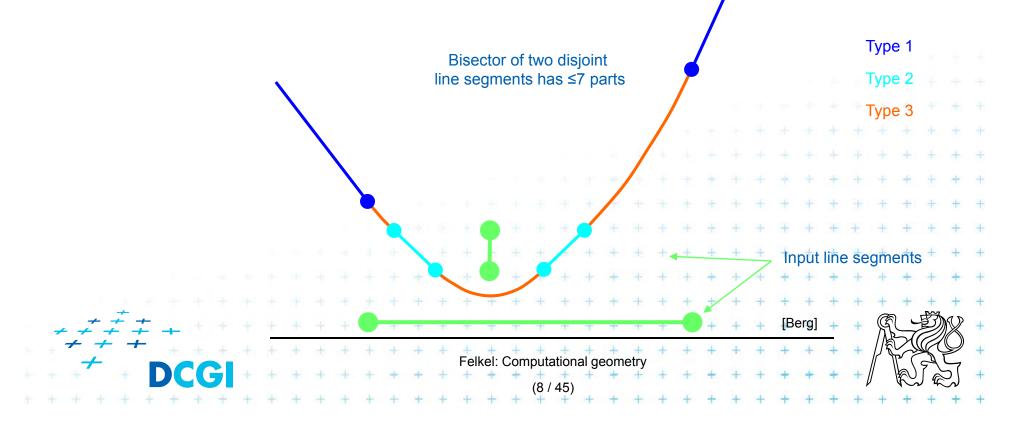
Consists of line segments and parabolic arcs

- Line segment bisector of end-points(1) or of interiors(2)
- Parabolic arc of point and interior(3) of a line segment

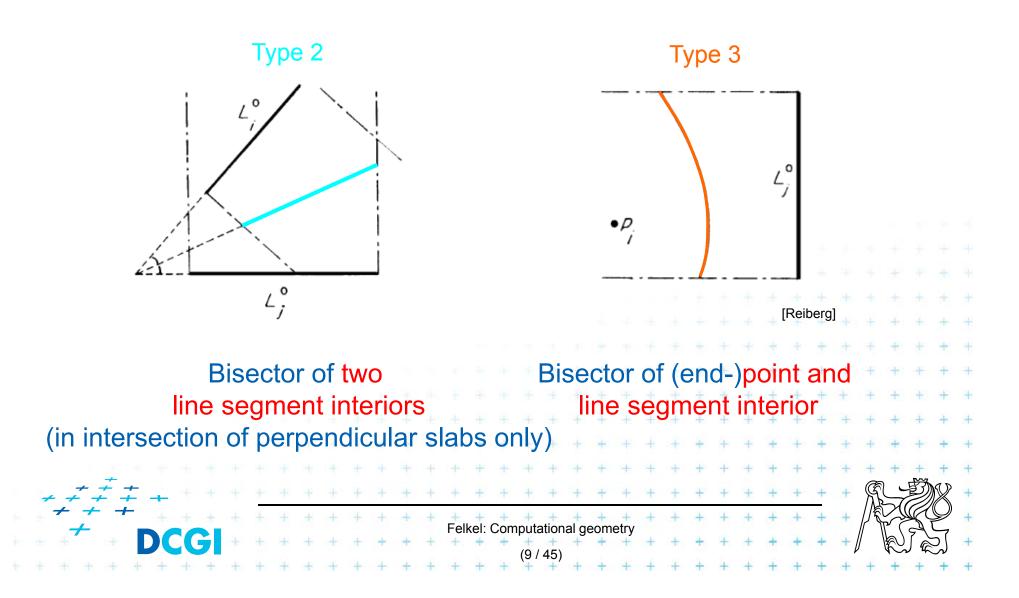


Consists of line segments and parabolic arcs

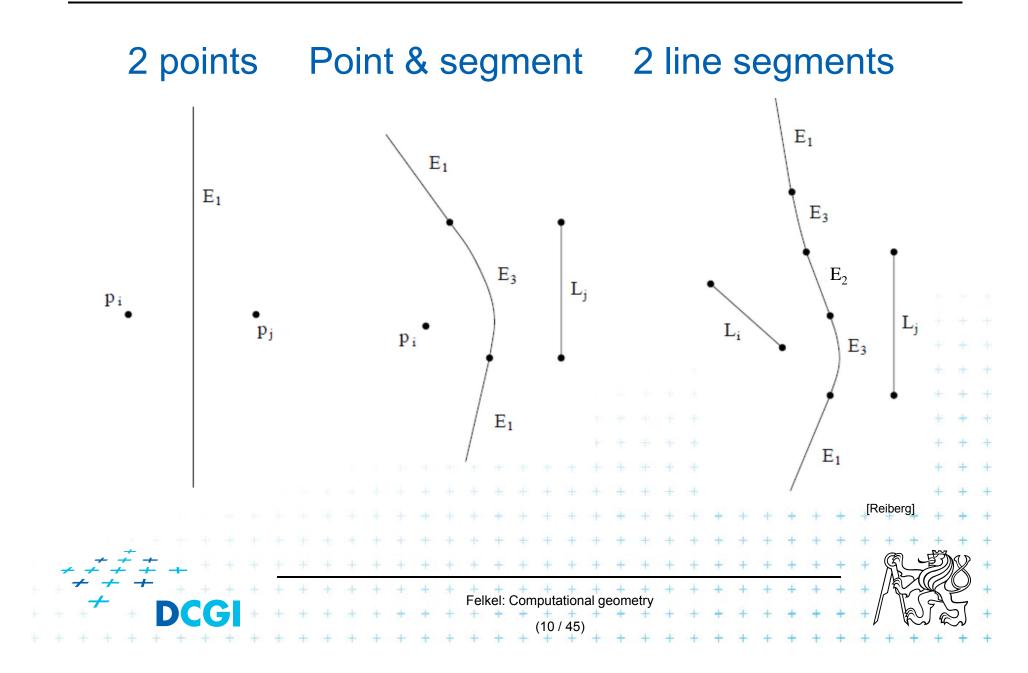
- Line segment bisector of end-points(1) or of interiors(2)
- Parabolic arc of point and interior(3) of a line segment



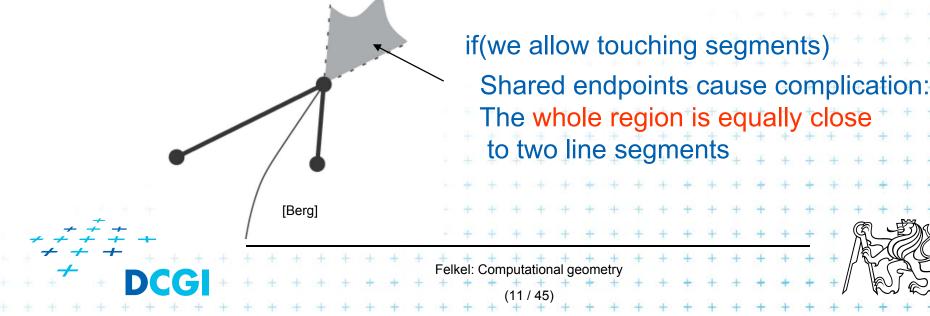
Bisector in greater details



VD of points and line segments examples



- More complex bisectors of line segments
 - line segments and parabolic arcs
- Still combinatorial complexity of O(n)
- Assumptions on the input line segments:
 - non-crossing
 - strictly disjoint end-points (slightly shorten the segm.)



VD of line segments - touching segments

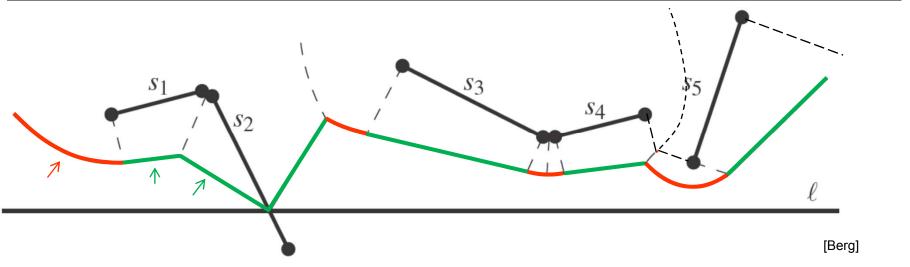
Variant with touching segments in their end-points

Felkel: Computational geometry

Nandv

- Two types of Voronoi vertices:
 - Type 3 three different objects
 - Type 2 two objects (segment and one of its end-points)
- Contains also 2D areas
 - Not only 1D line segments and parabolic arcs

Shape of Beach line for line segments



- Points with distance to the closest site above sweep line *l* equal to the distance to *l*
- Beach line contains
 - parabolic arcs when closest to a site end-point
 - straight line segments when closest to a site interior
 (or just the part of the site interior above *l* if the site *s* intersects *l*)

(This is the shape of the beach line)

Felkel: Computational geometry

Beach line breakpoints types

Breakpoint *p* is equidistant from *l* and equidistant and closest to:

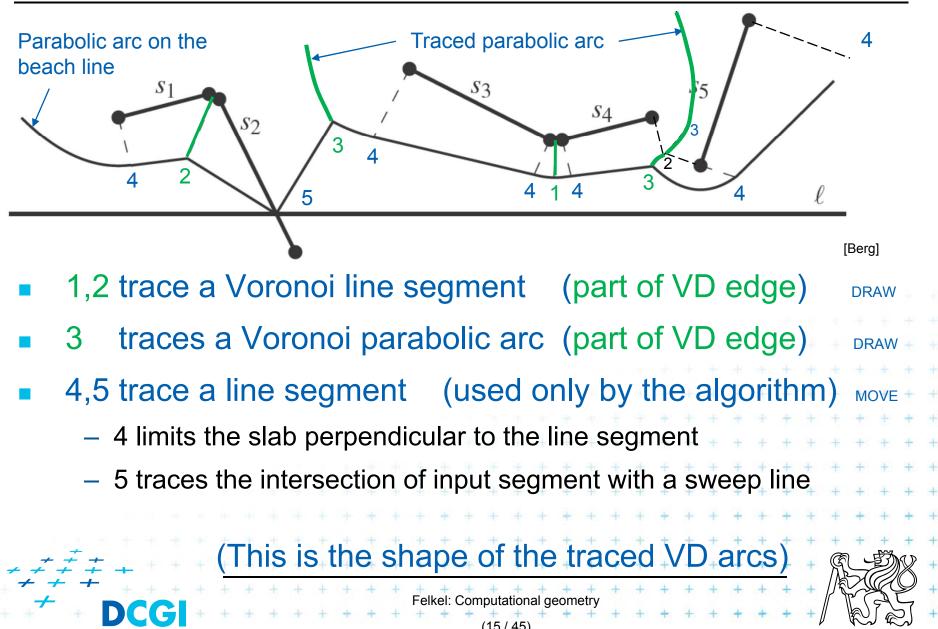
- 1. two site end-points => *p* traces a VD line segment
- 2. two site interiors
- 3. end-point and interior
- 4. one site end-point

- => *p* traces a VD line segment
- => *p* traces a VD parabolic arc
- => p traces a line segment (border of the slab perpendicular to the site)
- 5. site interior intersects => p = intersection, traces
 the scan line l
 the input line segment

Cases 4 and 5 involve only one site and therefore do not form a Voronoi diagram edge (are used by alg.only)

Felkel: Computational geometry

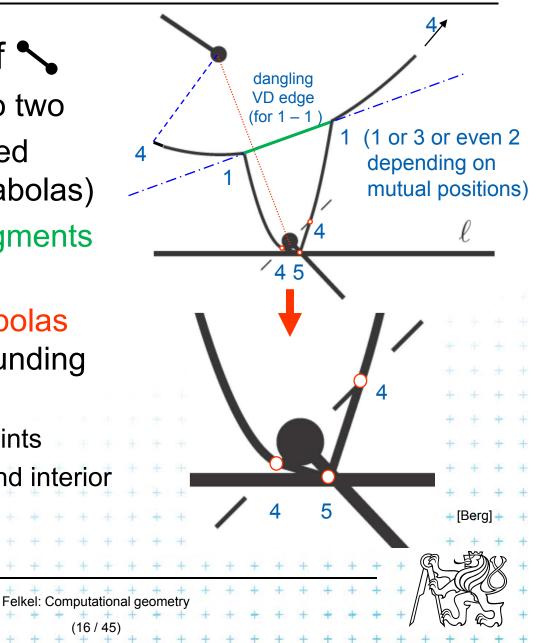
Breakpoints types and what they trace

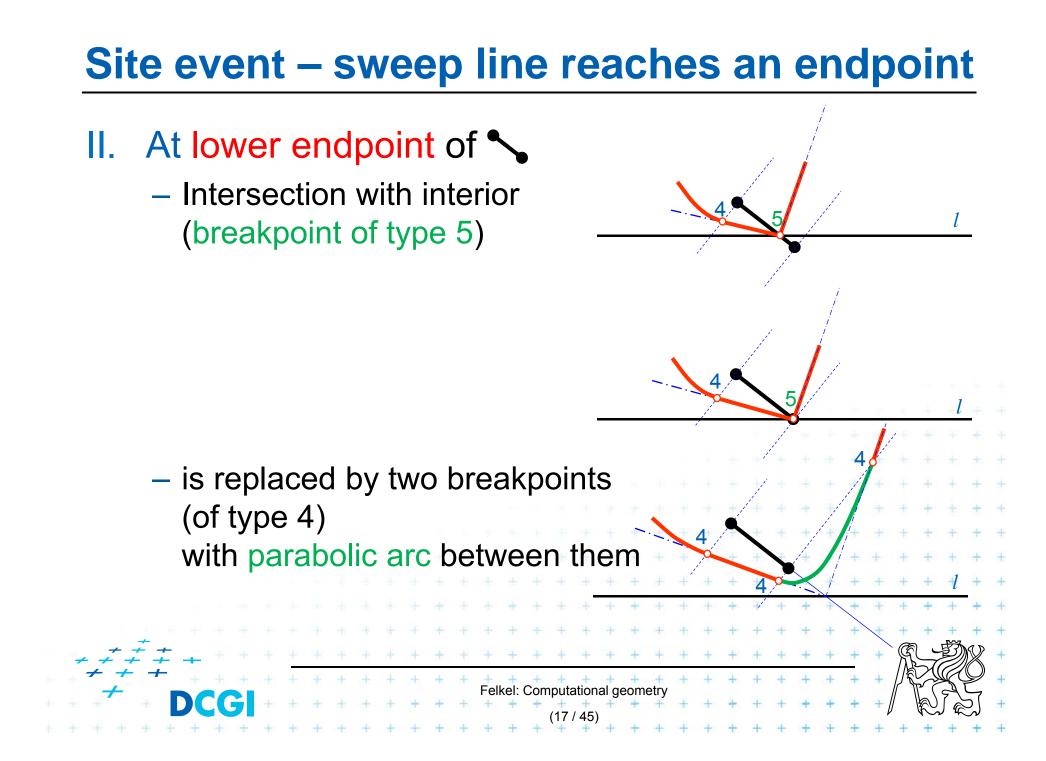


Site event – sweep line reaches an endpoint

I. At upper endpoint of 🔨

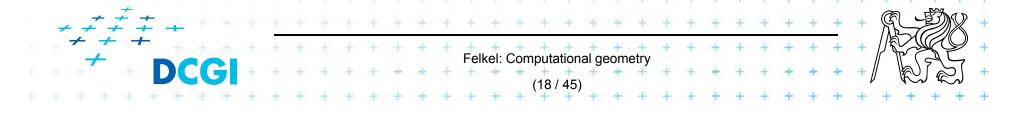
- Arc above is split into two
- 4 new arcs are created(2 segments + 2 parabolas)
- Breakpoints for 2 segments are of type 4-5-4
- Breakpoints for parabolas depend on the surrounding sites
 - Type 1 for two end-points
 - Type 3 for endpoint and interior
 - etc...





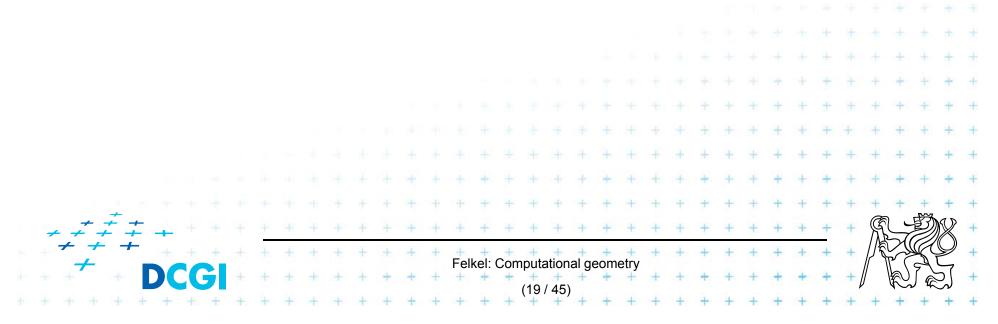
Circle event – lower point of circle of 3 sites

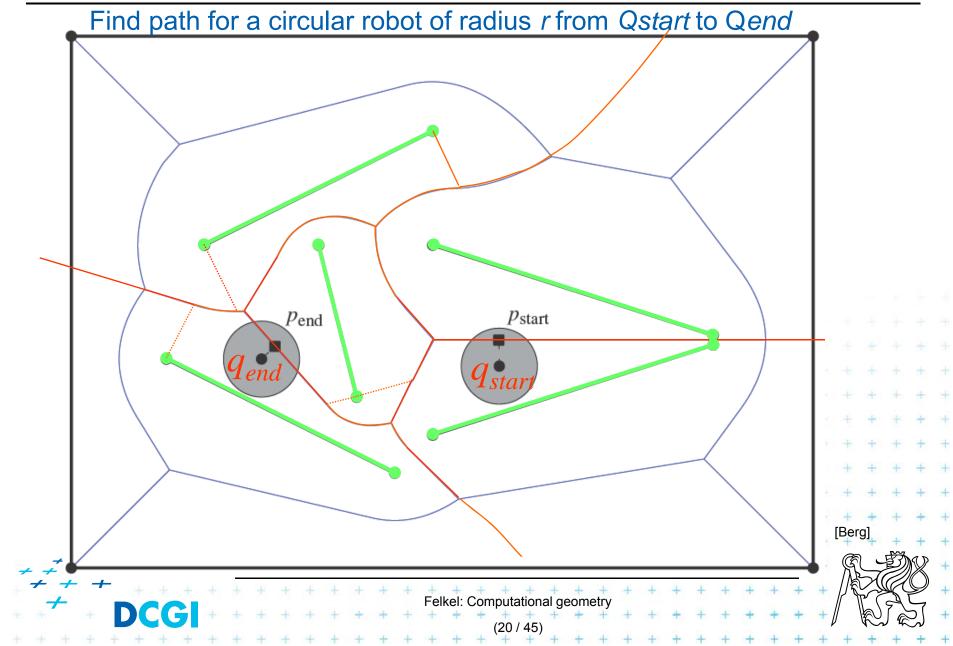
- Two breakpoints meet (on the beach-line)
- Solution depends on their type
 - Any of first three types meet
 - 3 sites involved Voronoi vertex created
 - Type 4 with something else
 - two sites involved breakpoint changes its type
 - Voronoi vertex not created
 (Voronoi edge may change its shape)
 - Type 5 with something else
 - never happens for disjoint segments (meet with type 4 happens before)

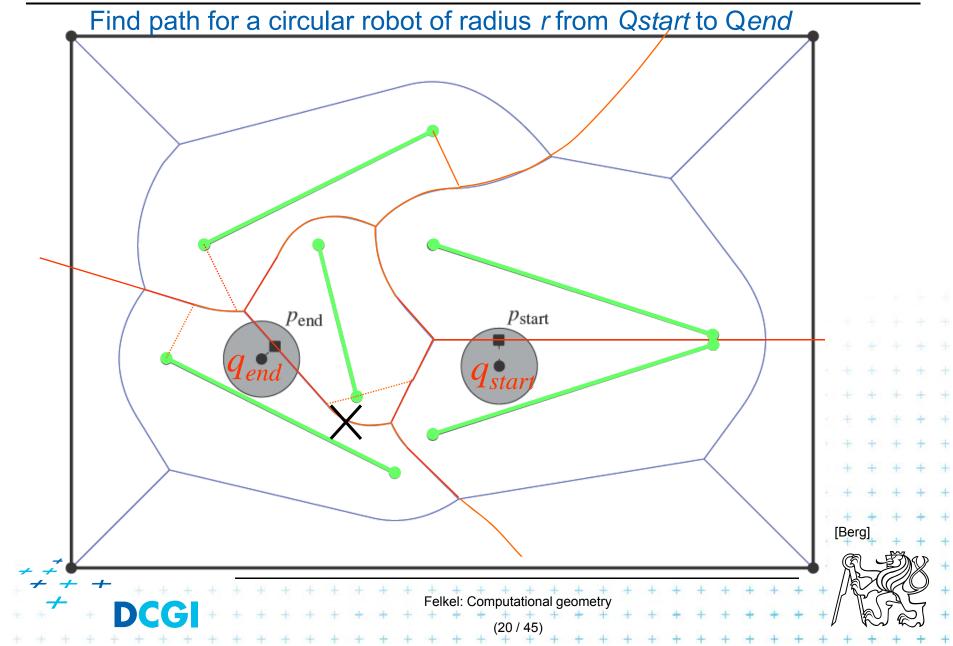


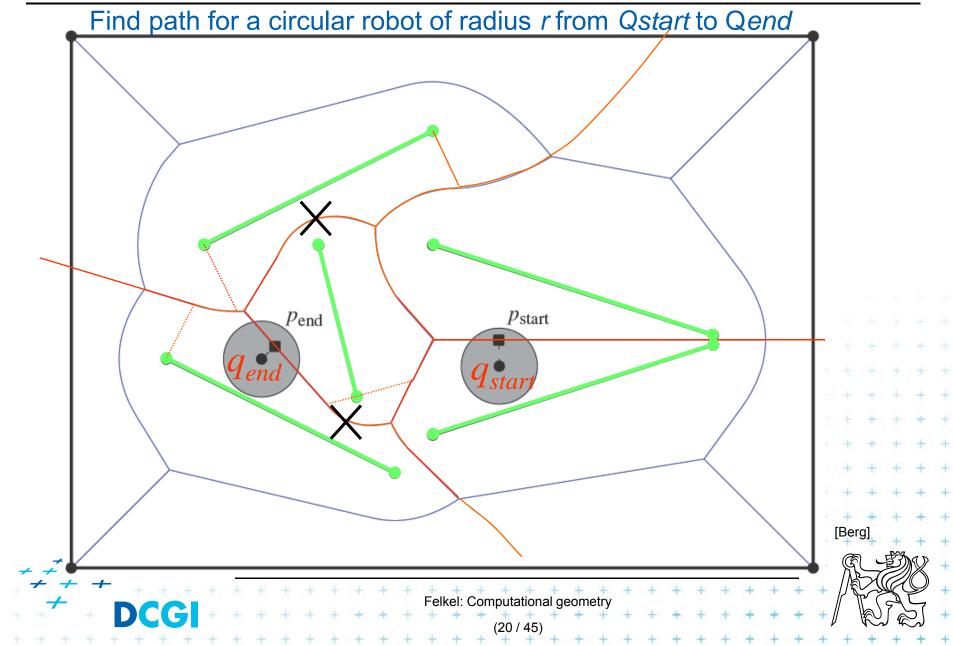
Summary of the VD terms

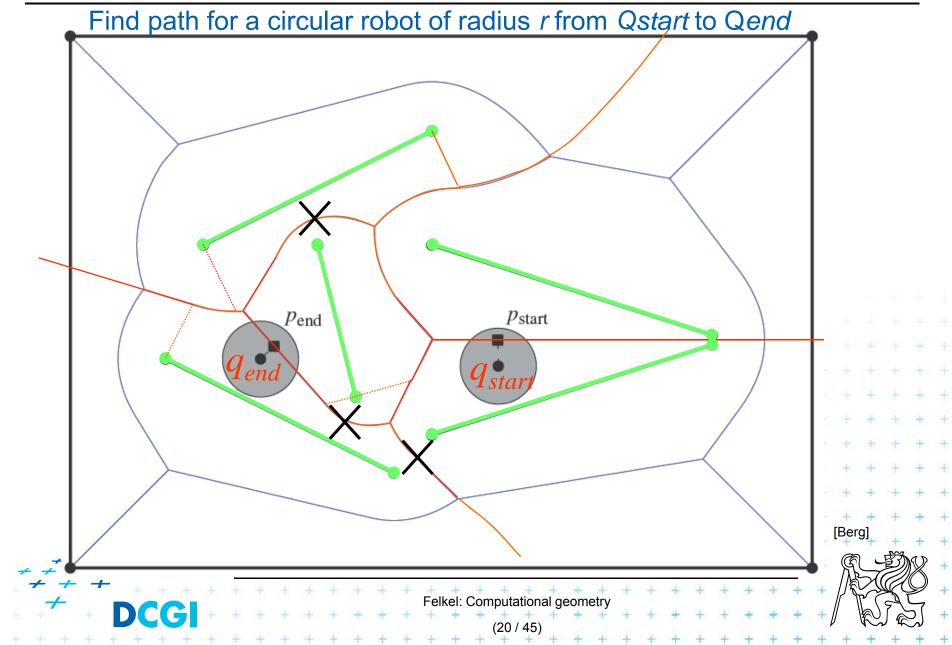
- Site = input point, line segment, …
- Cell = area around the site, in VD₁ the nearest to site
- Edge, arc = part of Voronoi diagram (border between cells)
- Vertex = intersection of VD edges

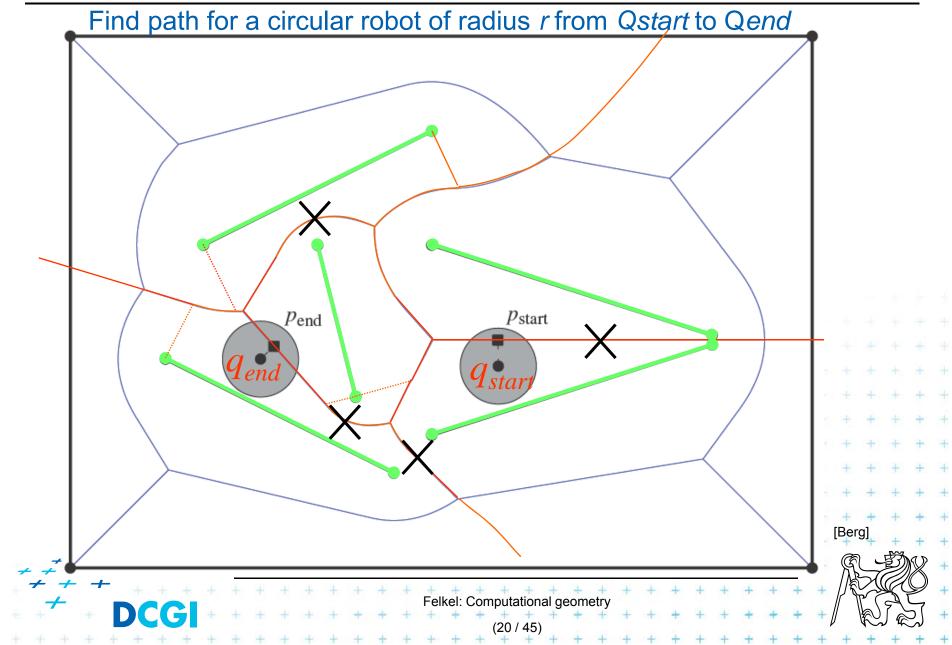








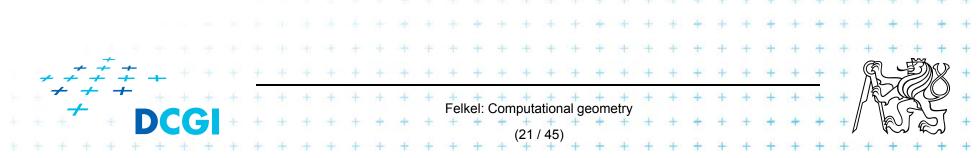




Motion planning example - retraction Rušení hran Find path for a circular robot of radius r from Qstart to Qend *p*_{start} p_{end} **q**_{stat} [Berg -Felkel: Computational geometry (20 / 45

Find path for a circular robot of radius *r* from Q_{start} to Q_{end}

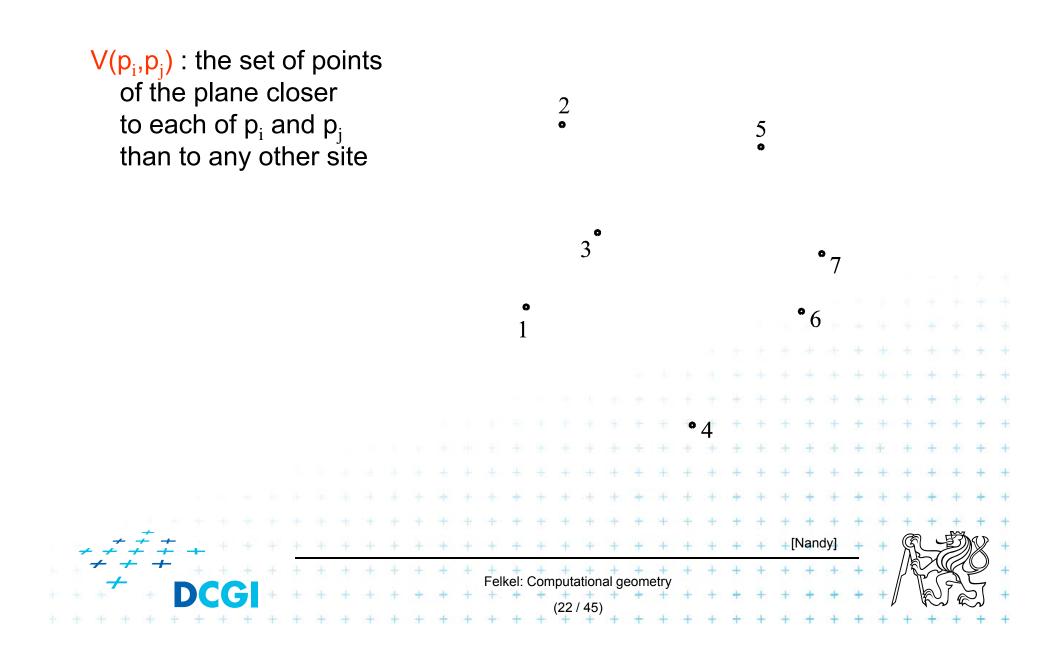
- Create Voronoi diagram of line segments, take it as a graph
- Project Q_{start} to P_{start} on VD and Q_{end} to P_{end}
- Remove segments with distance to sites smaller than radius r of a robot
- Depth first search if path from P_{start} to P_{end} exists
- Report path Q_{start} P_{start}...path... P_{end} to Q_{end}
- O(n log n) time using O(n) storage

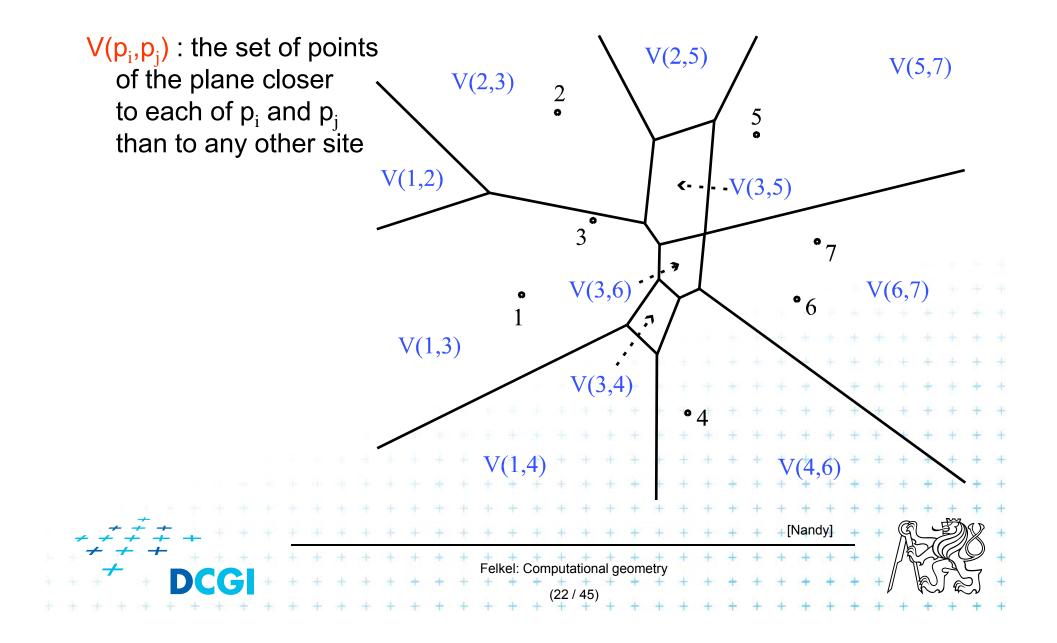


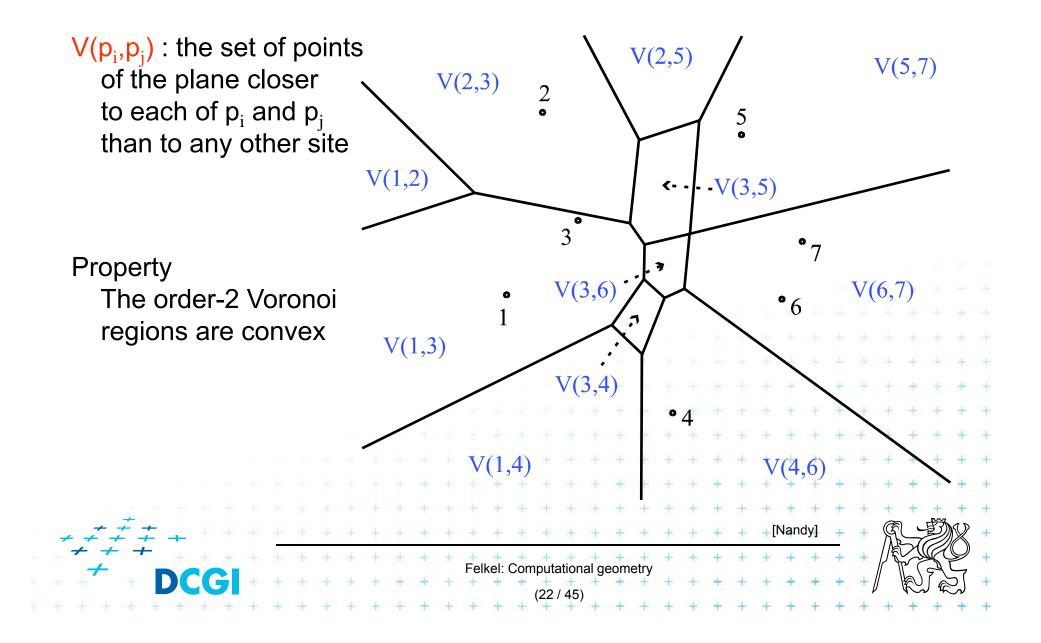
 +
 +
 [Nandy]

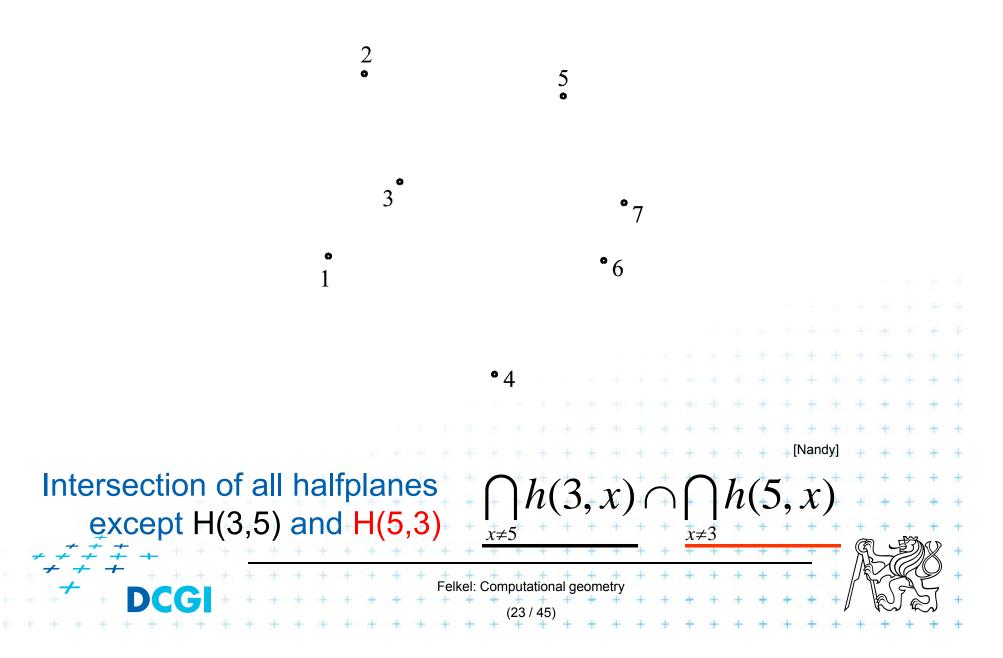
 +
 Felkel: Computational geometry

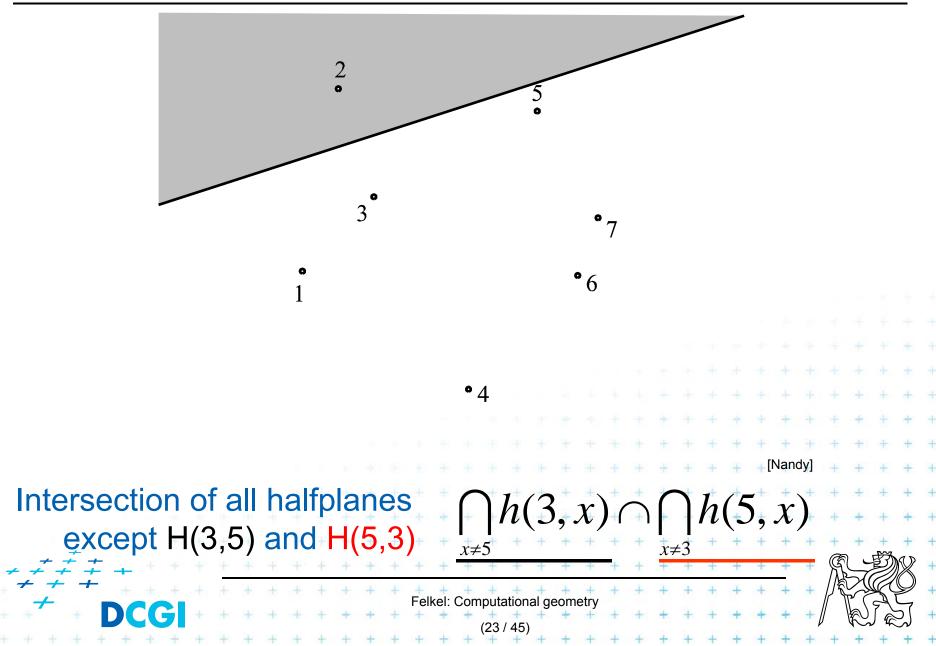
 (22 / 45)

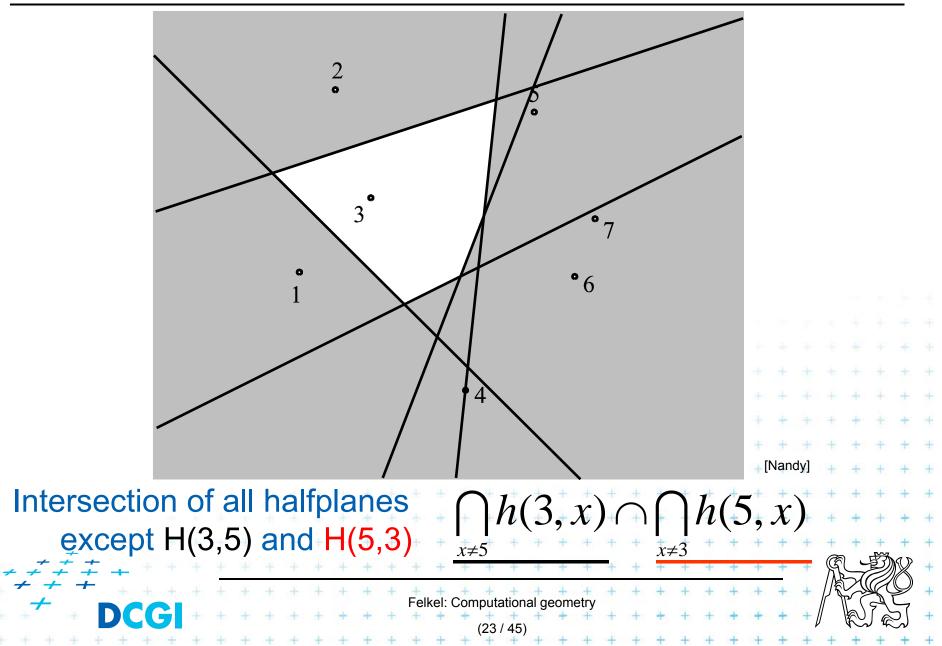


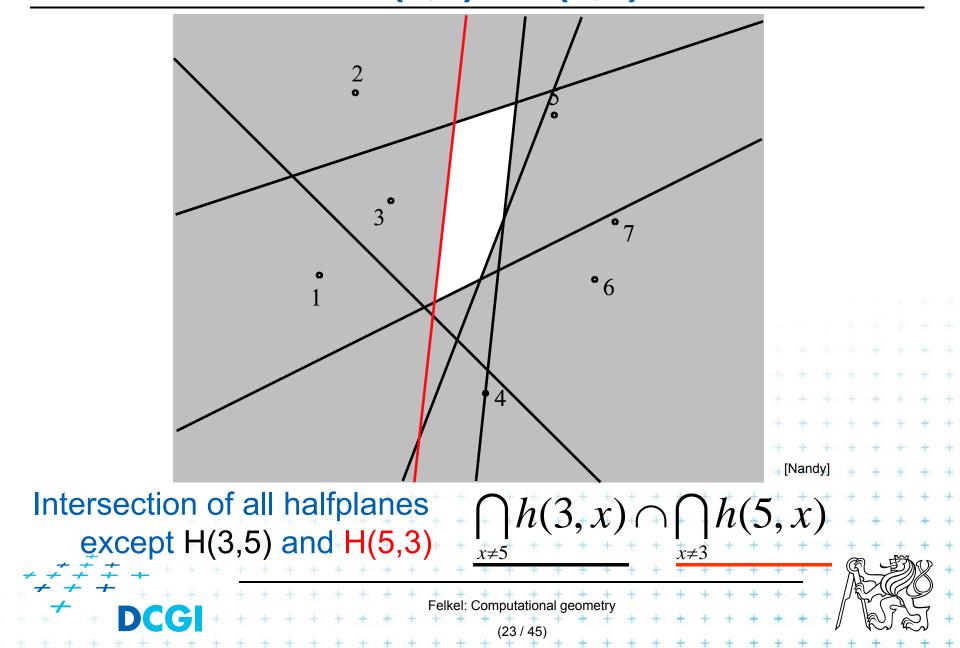


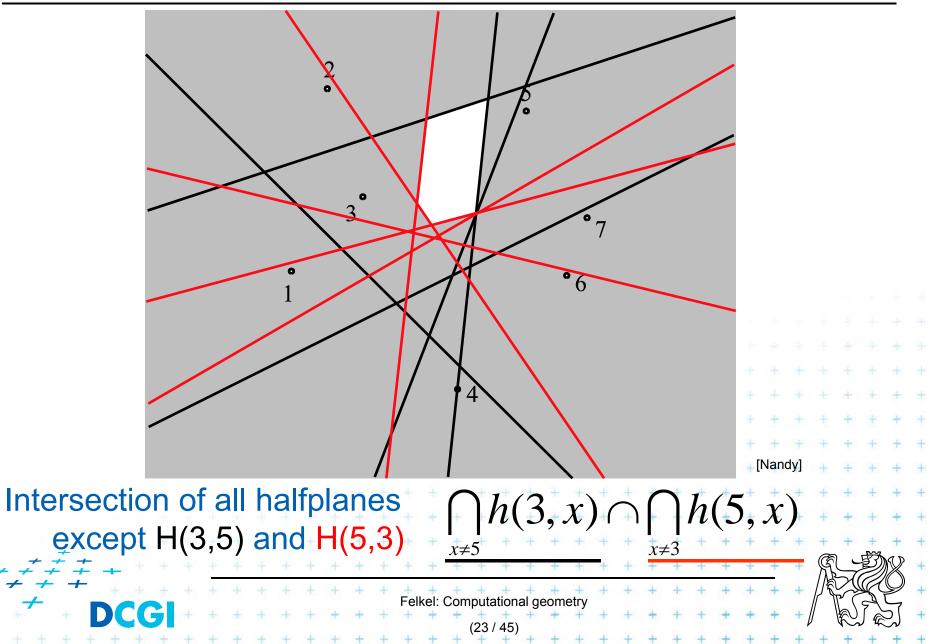


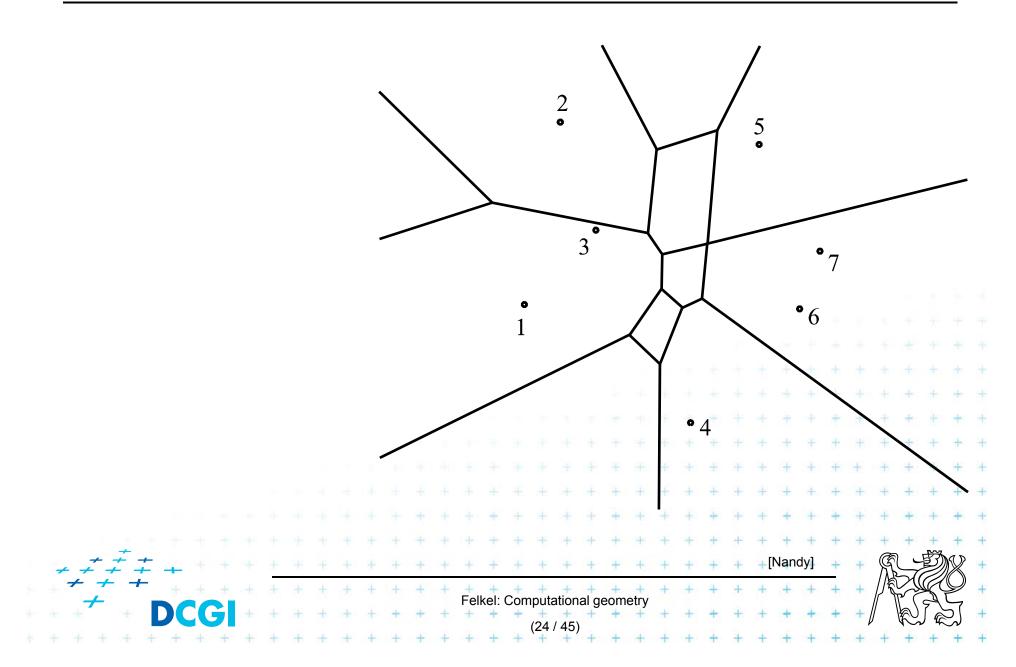


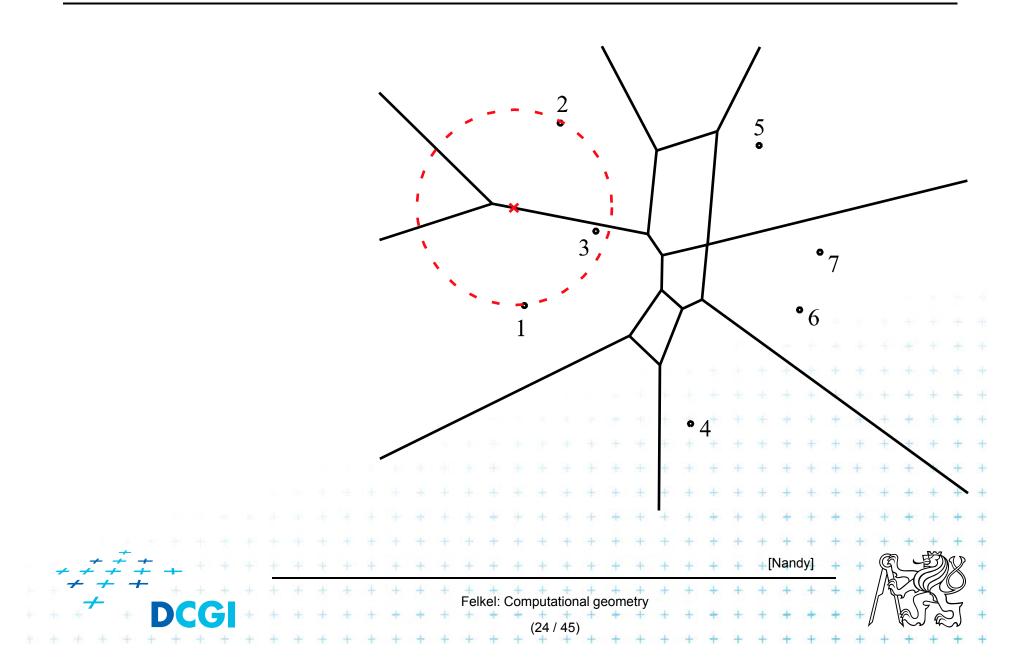


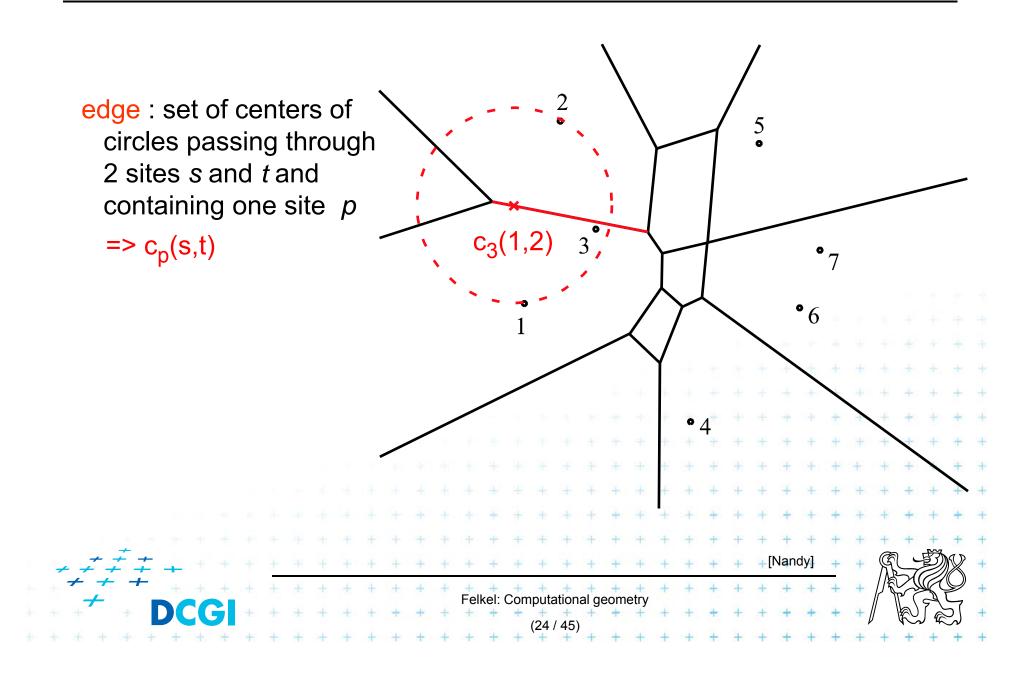


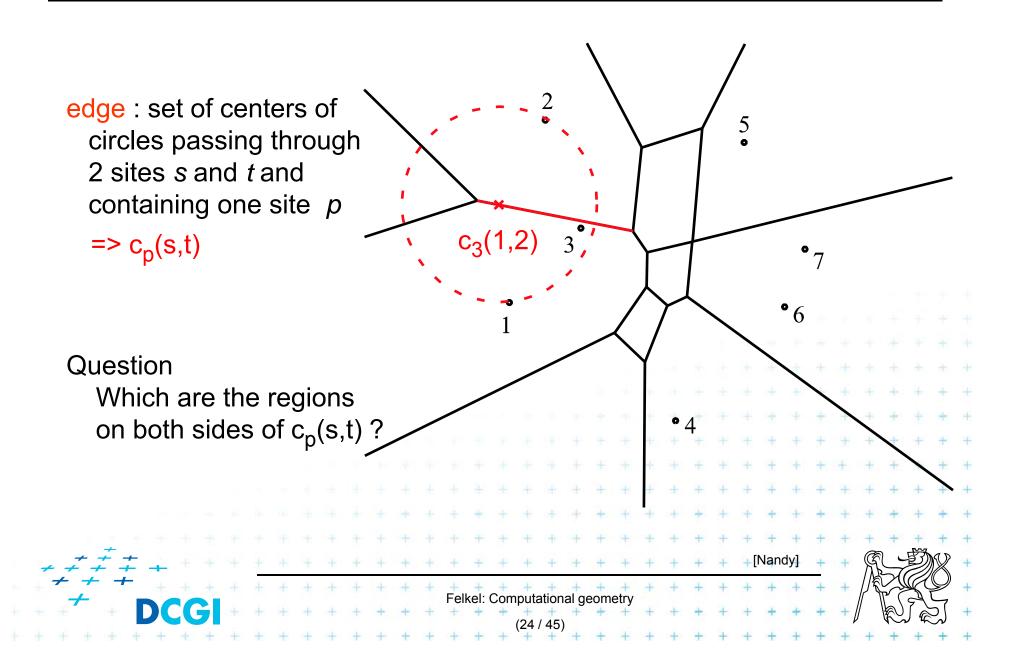


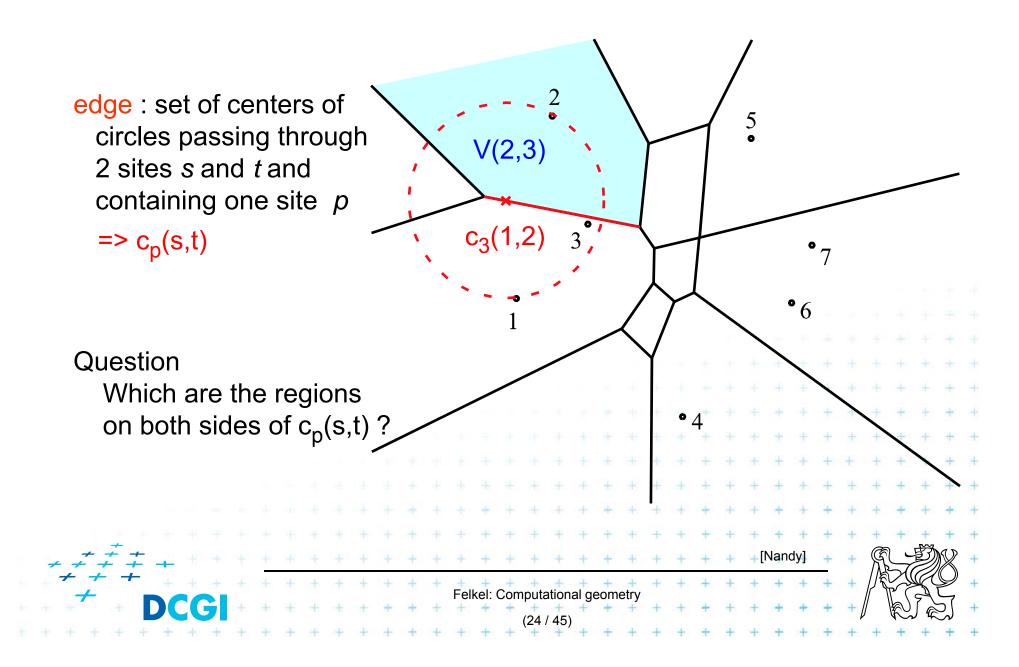


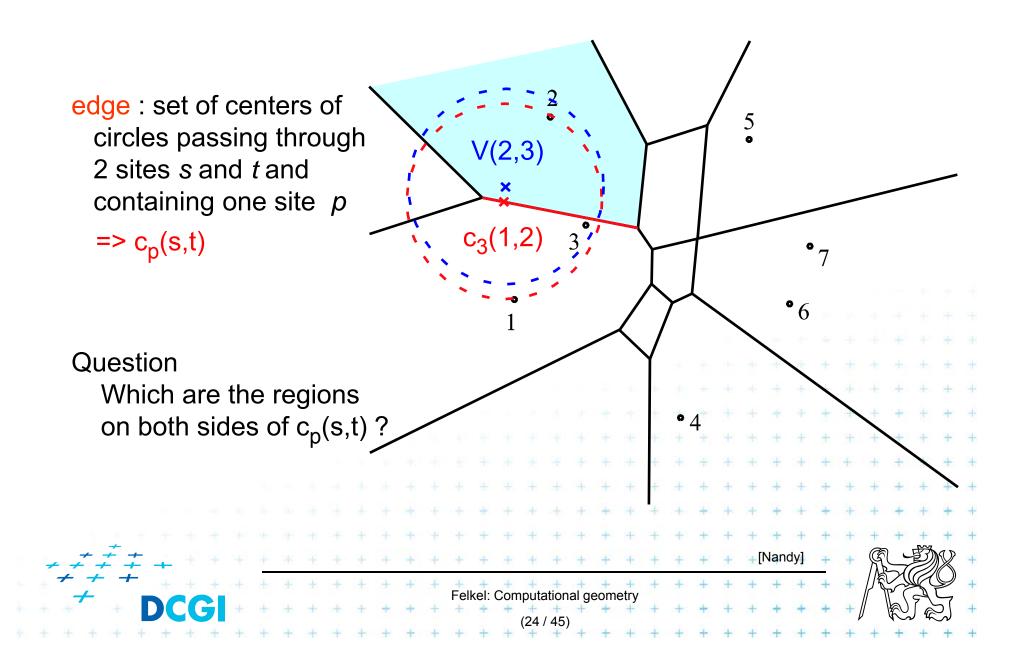


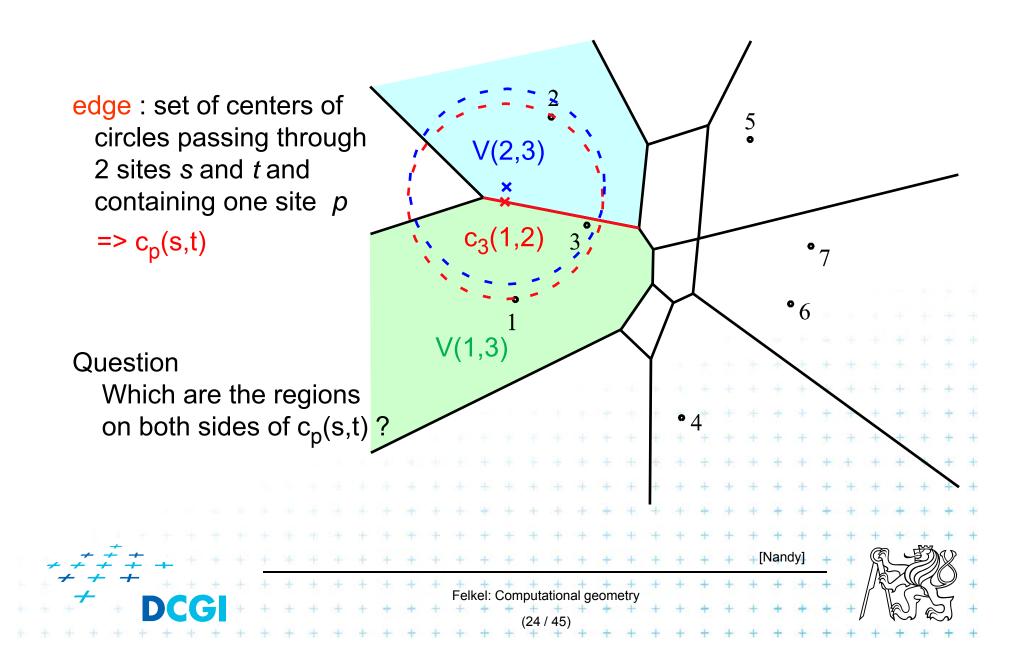


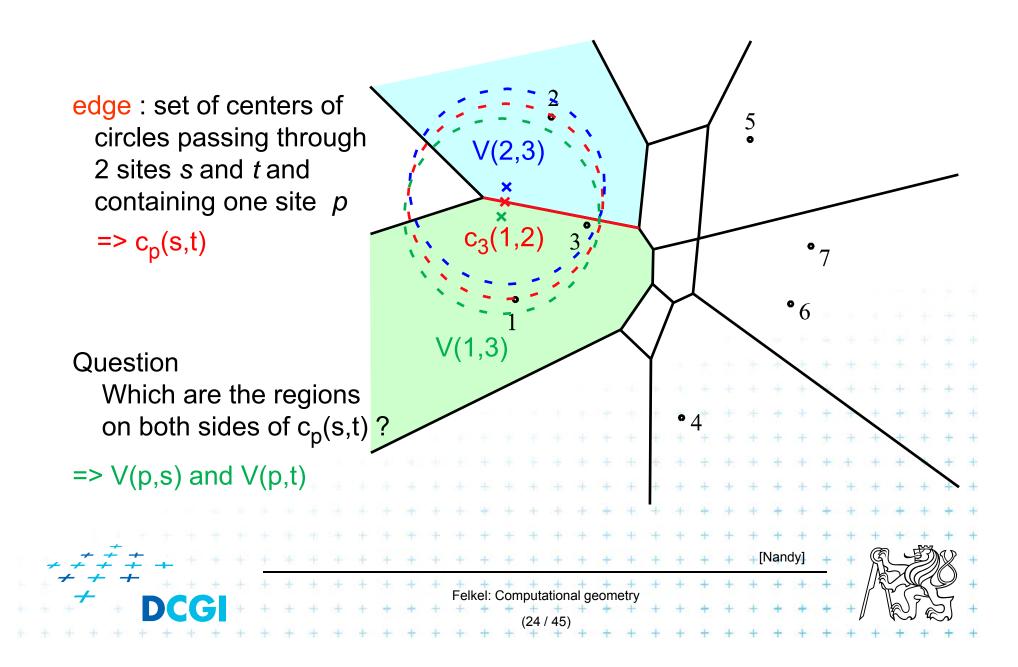


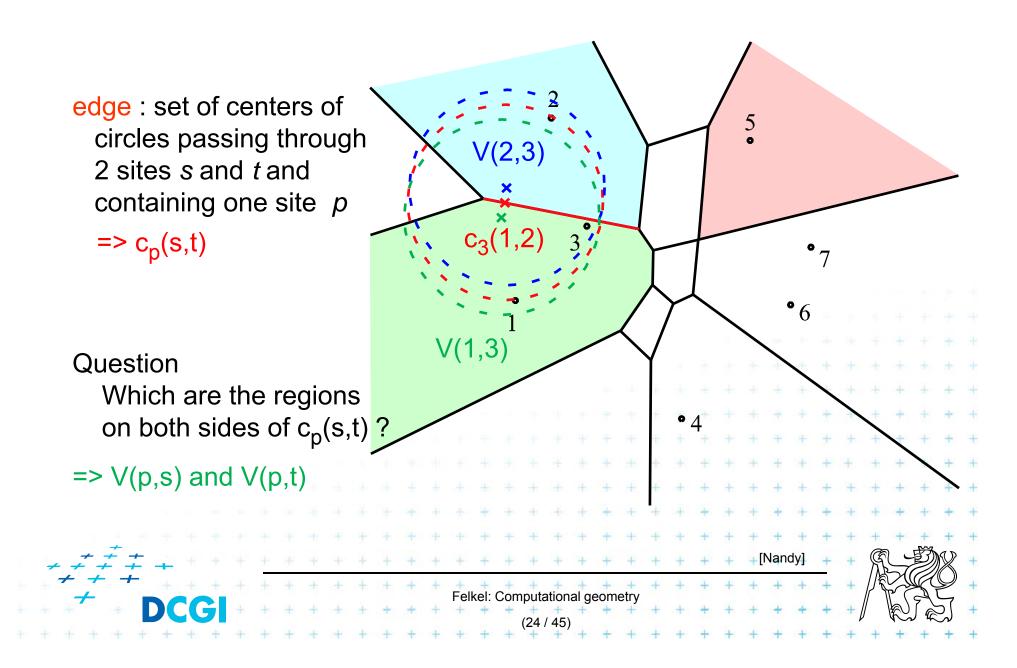


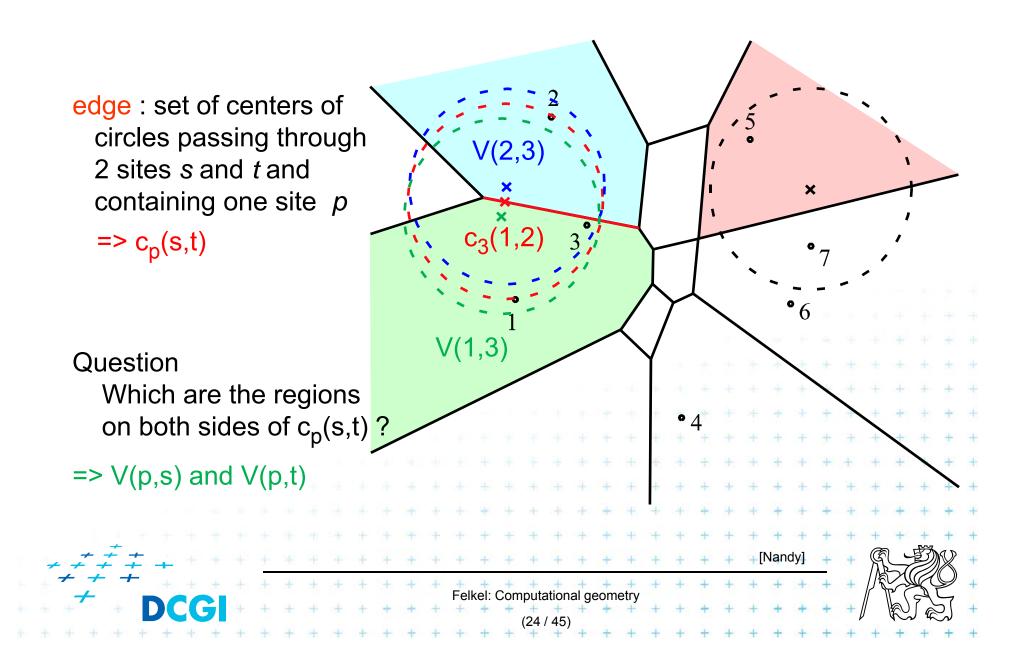


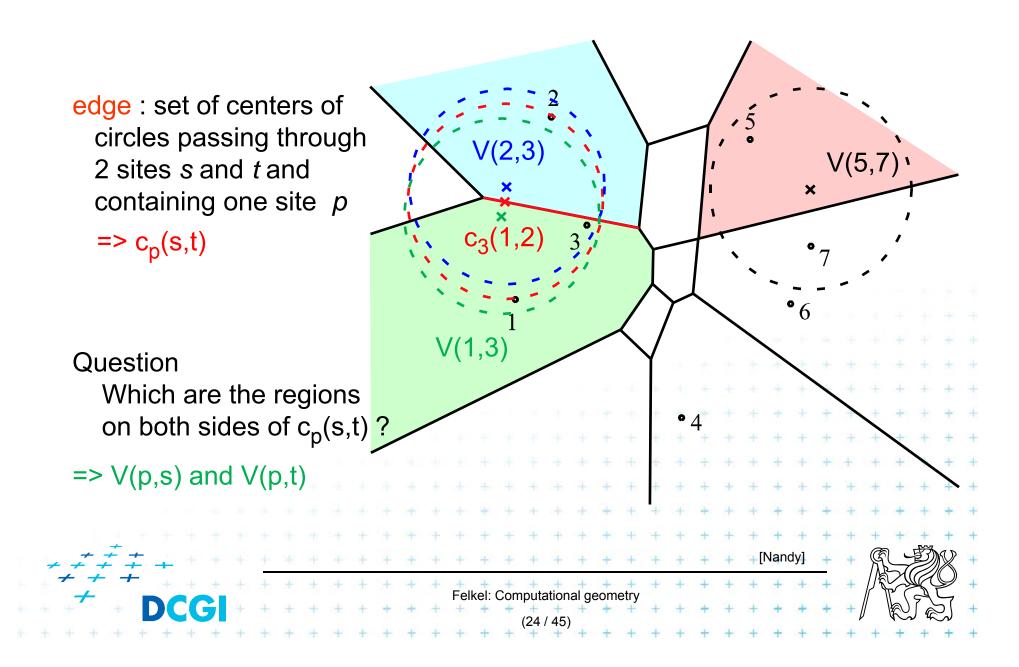


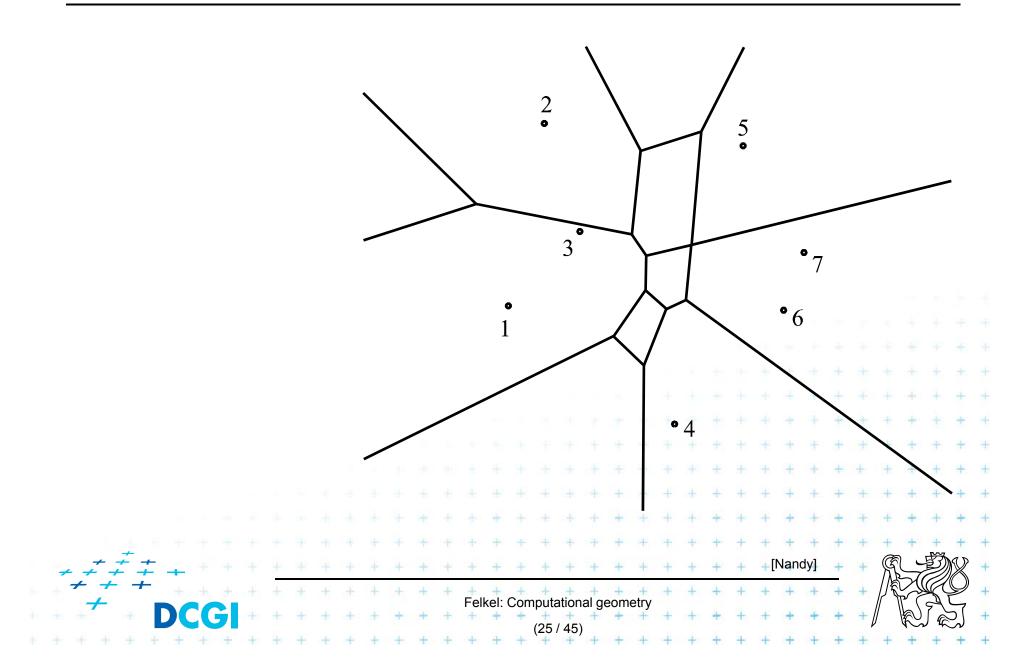


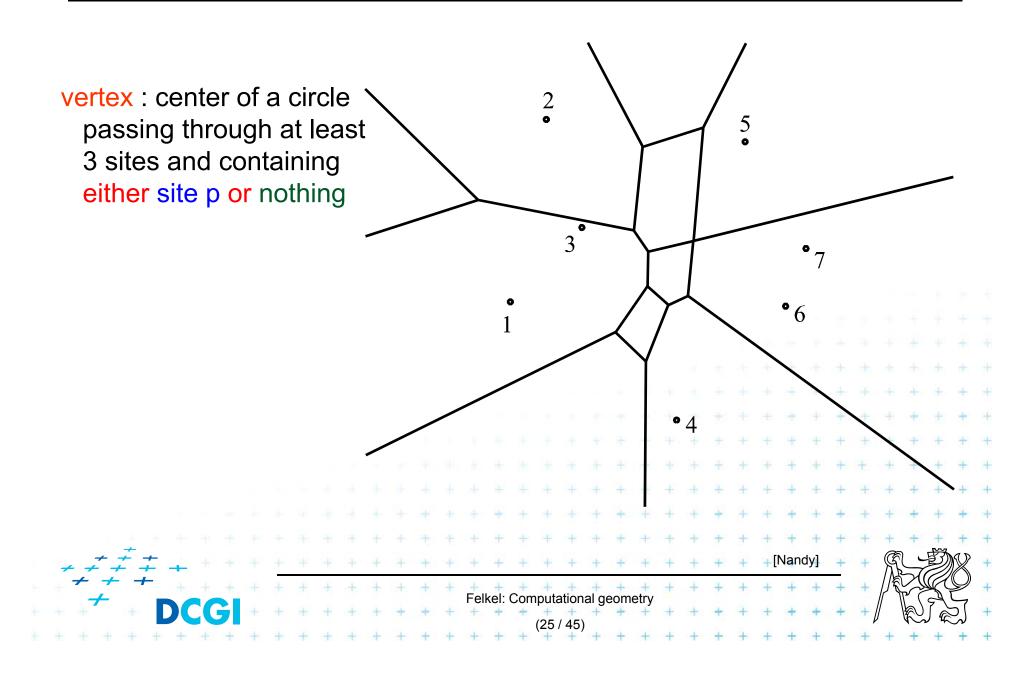


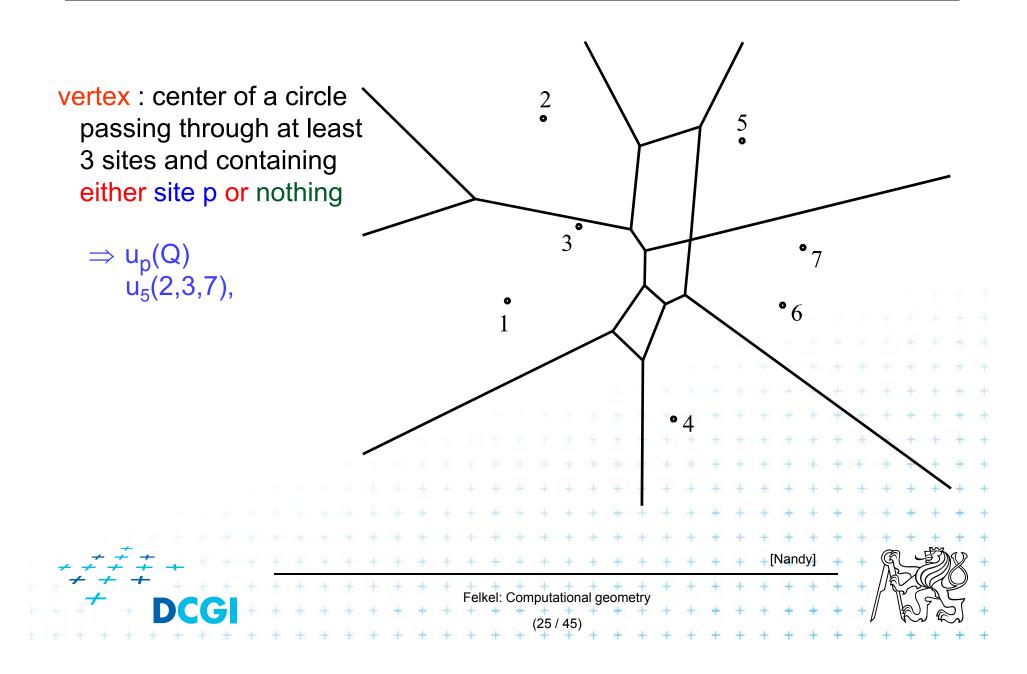


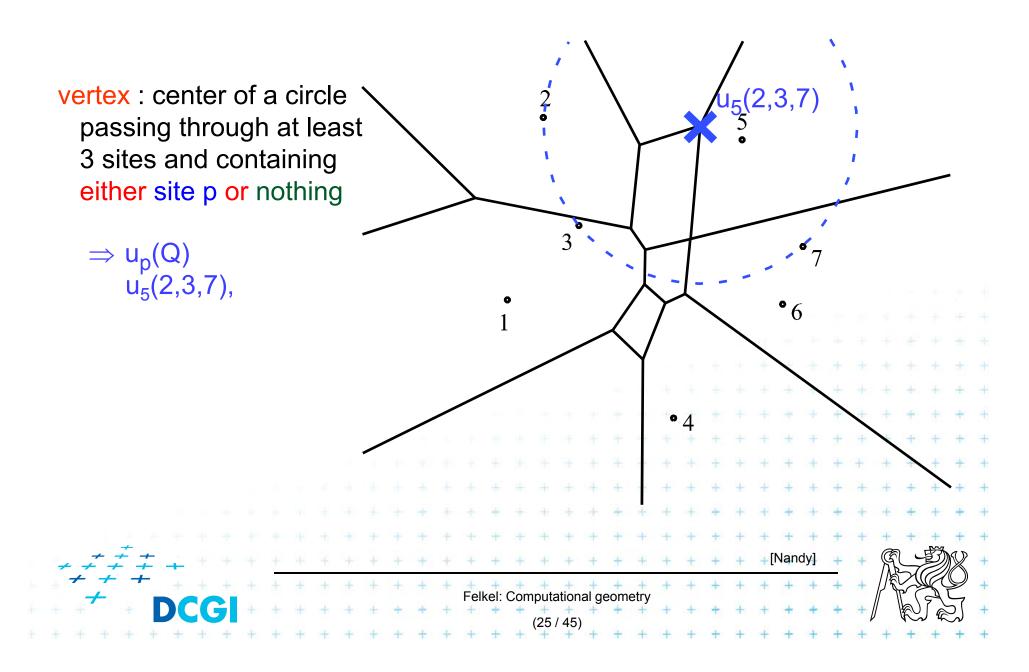


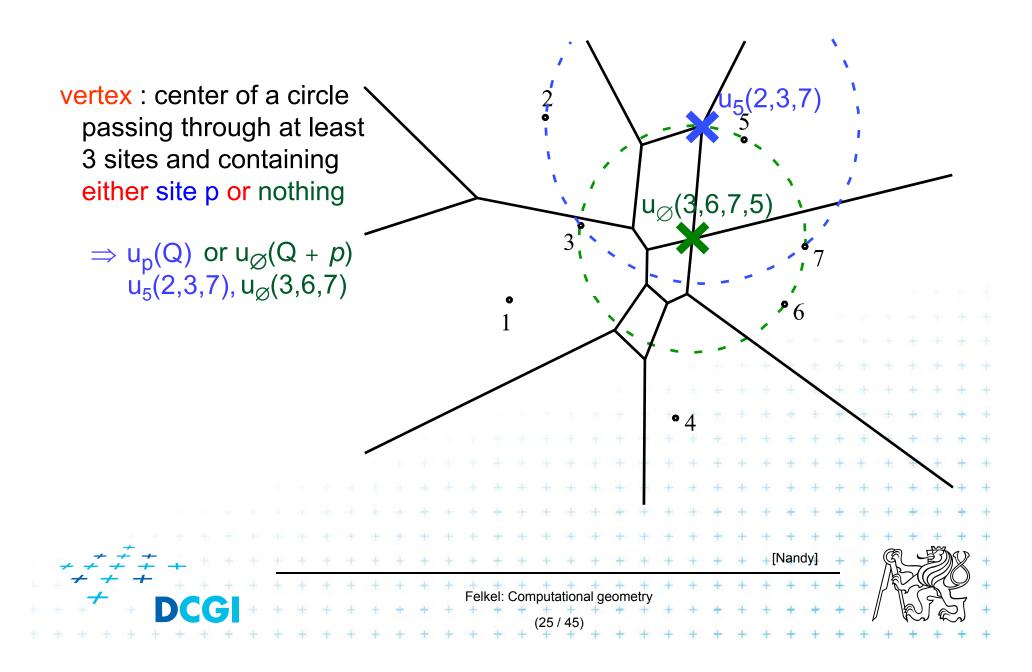




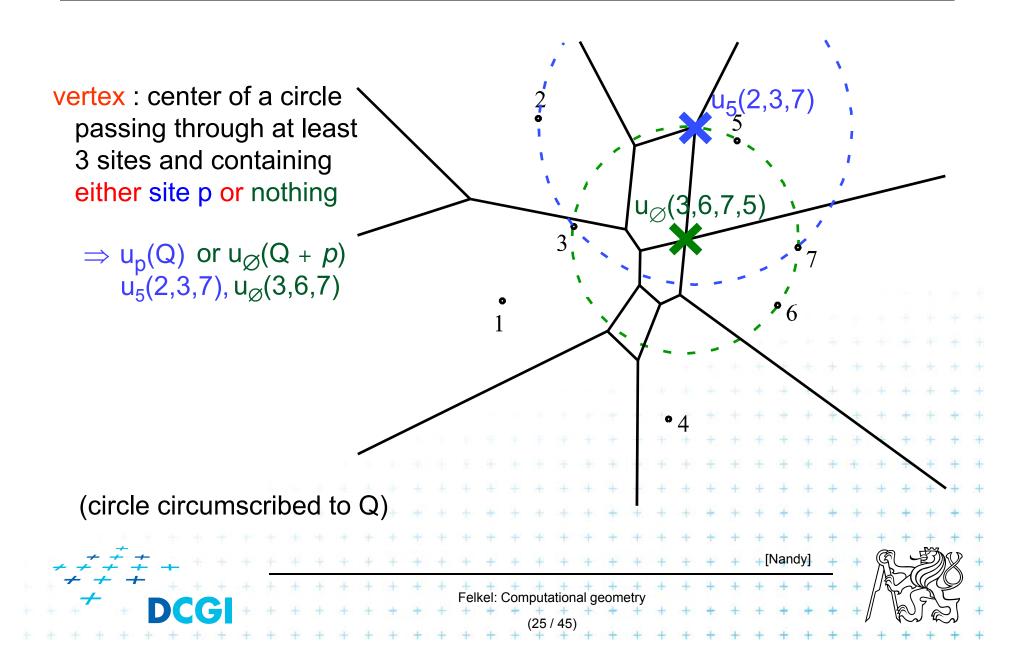


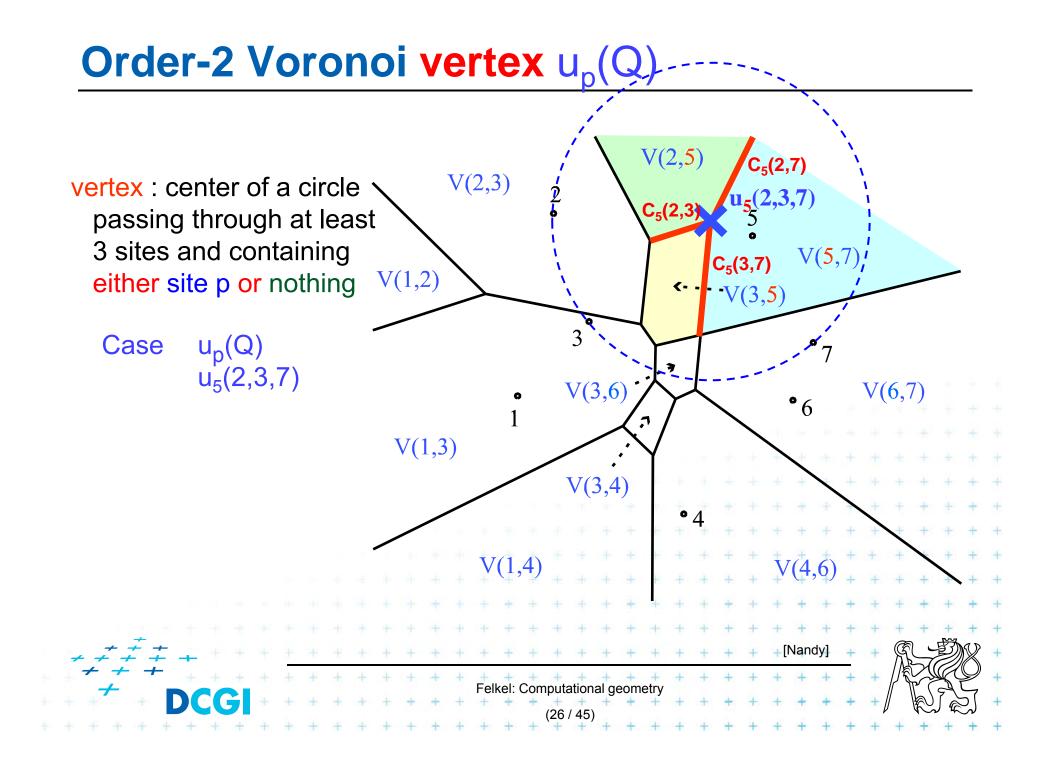




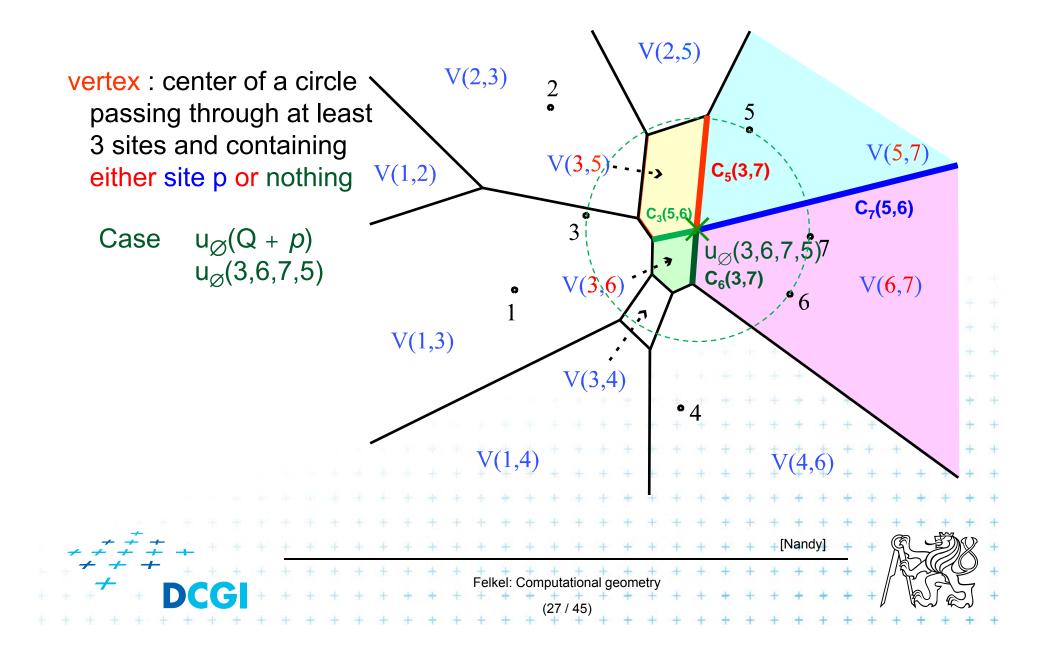


Order-2 Voronoi vertices

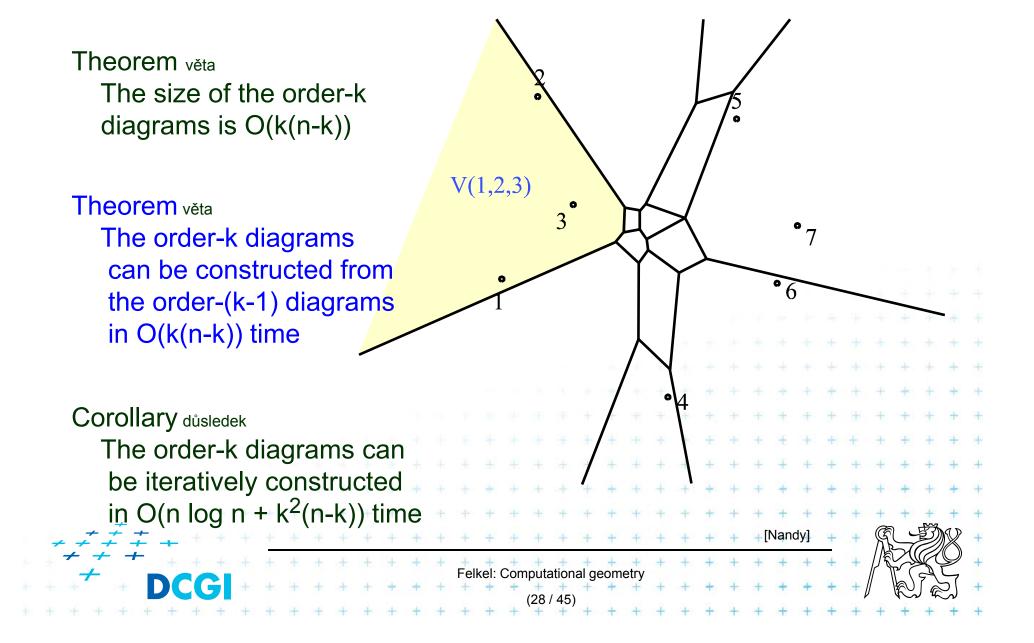




Order-2 Voronoi vertex $u_{\emptyset}(Q + p)$

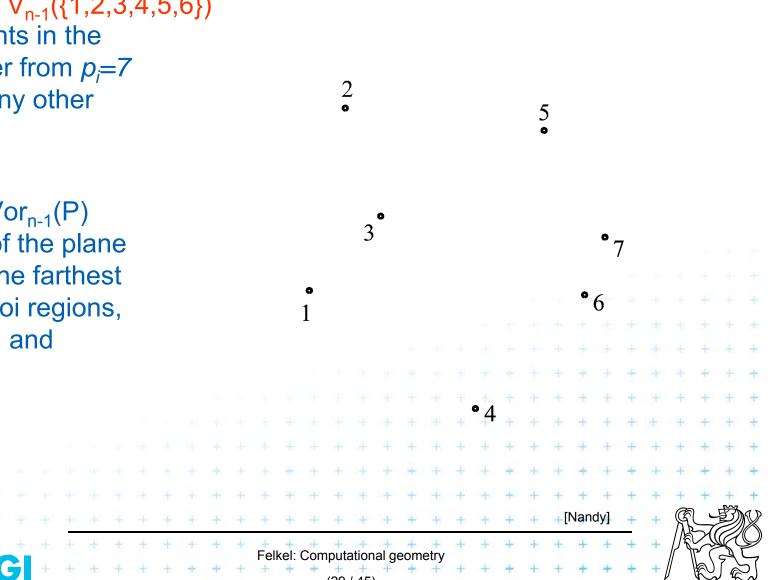


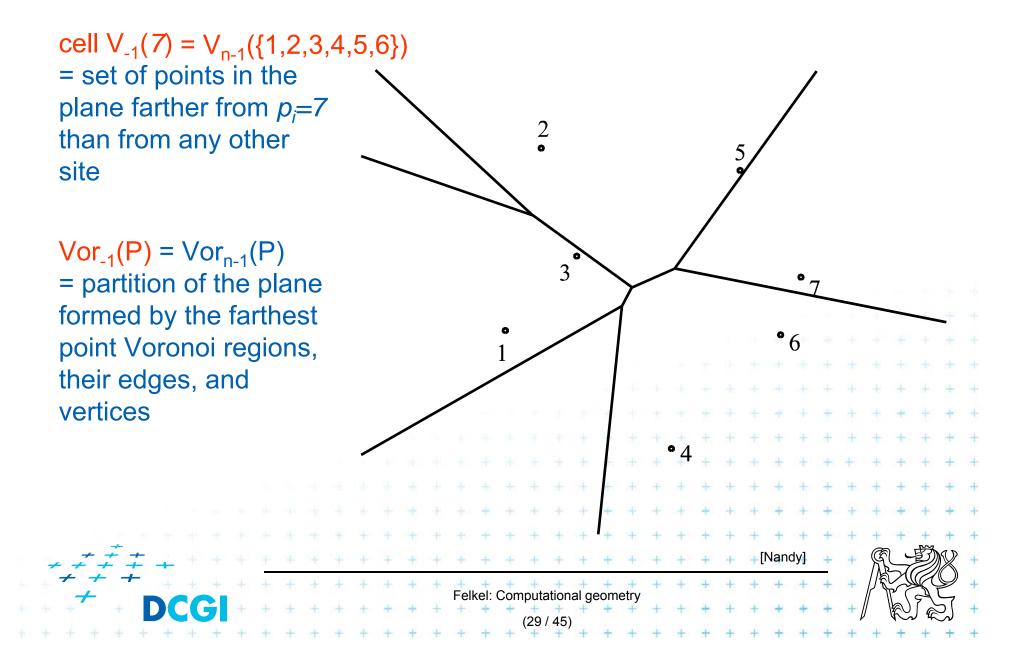
Order-k Voronoi Diagram



cell $V_{-1}(7) = V_{n-1}(\{1,2,3,4,5,6\})$ = set of points in the plane farther from $p_i=7$ than from any other site

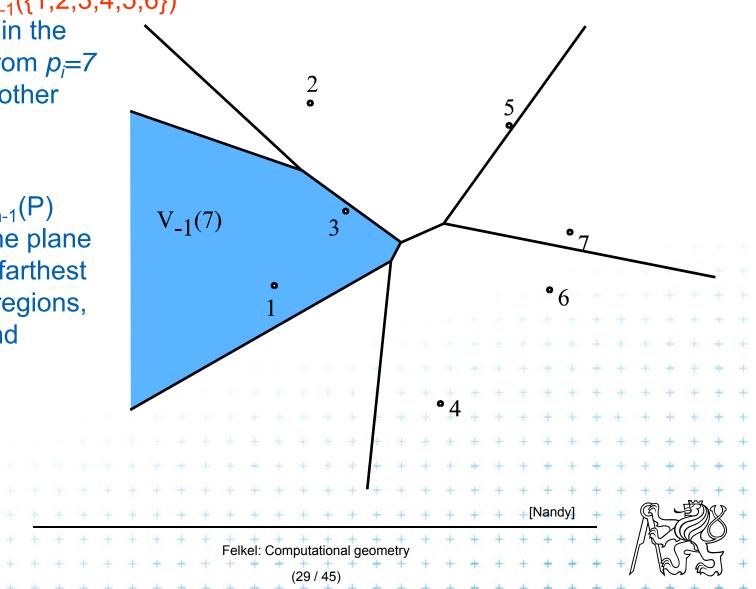
 $Vor_{-1}(P) = Vor_{n-1}(P)$ = partition of the plane formed by the farthest point Voronoi regions, their edges, and vertices





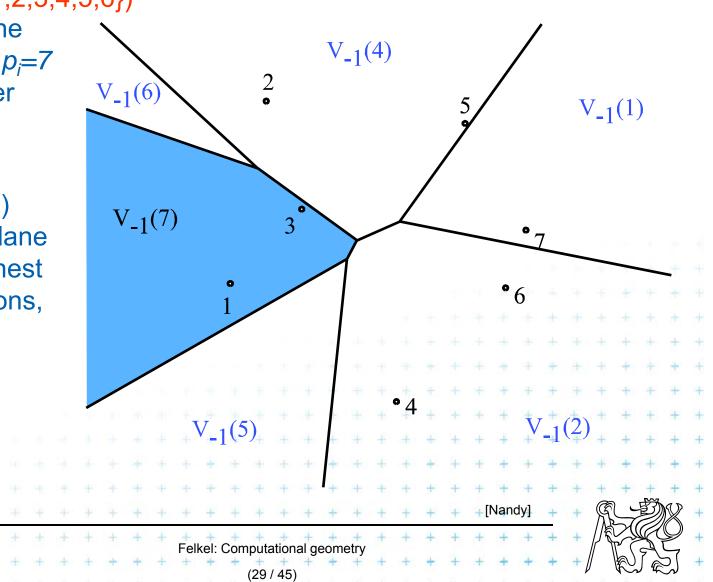
cell V₋₁(7) = V_{n-1}({1,2,3,4,5,6}) = set of points in the plane farther from $p_i=7$ than from any other site

Vor₋₁(P) = Vor_{n-1}(P) = partition of the plane formed by the farthest point Voronoi regions, their edges, and vertices



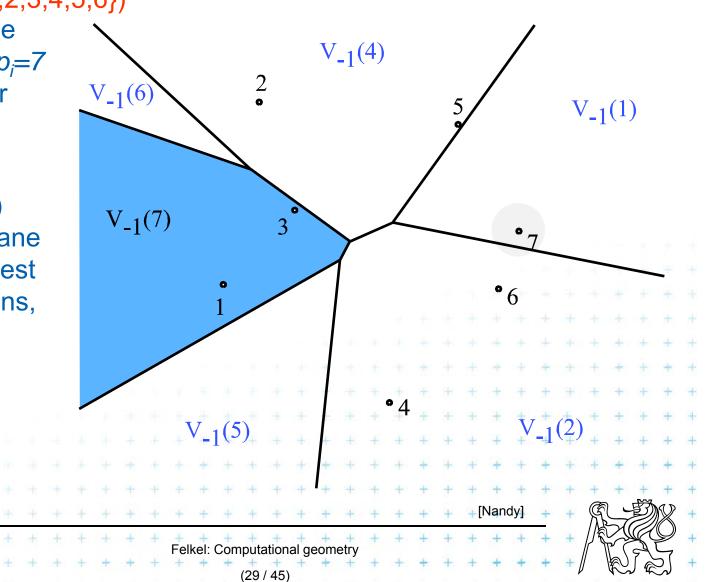
cell V₋₁(7) = V_{n-1}({1,2,3,4,5,6}) = set of points in the plane farther from $p_i=7$ than from any other V₋₁ site

Vor₋₁(P) = Vor_{n-1}(P) = partition of the plane formed by the farthest point Voronoi regions, their edges, and vertices



cell V₋₁(7) = V_{n-1}({1,2,3,4,5,6}) = set of points in the plane farther from $p_i=7$ than from any other V₋₁ site

Vor₋₁(P) = Vor_{n-1}(P) = partition of the plane formed by the farthest point Voronoi regions, their edges, and vertices

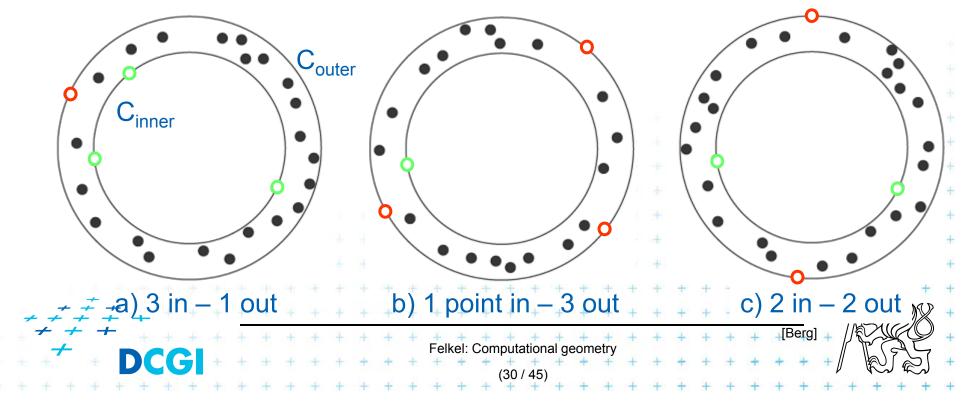


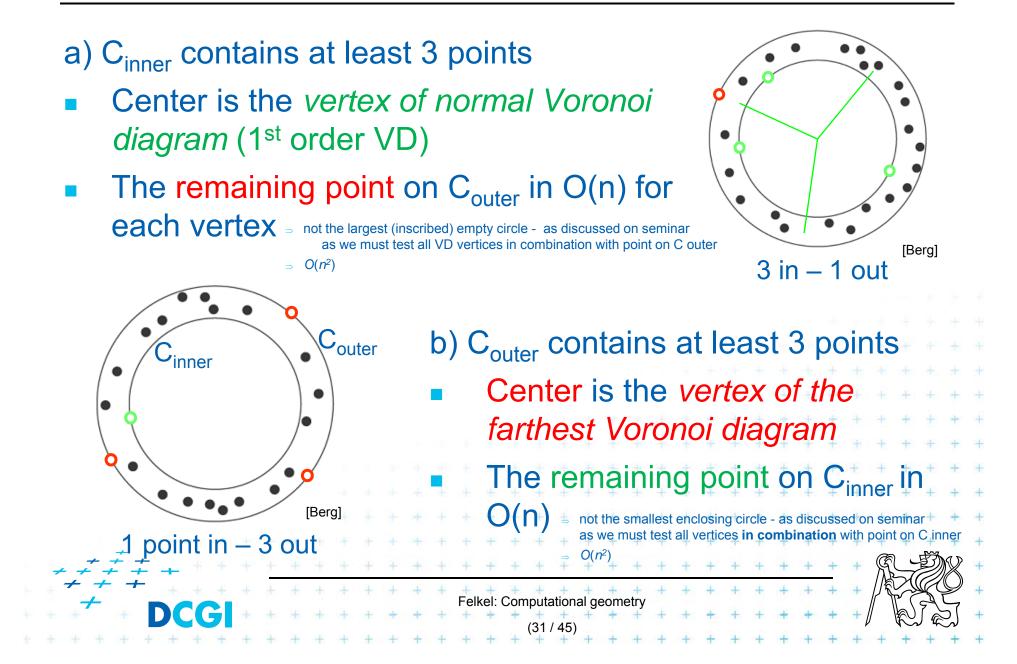
Farthest-point Voronoi diagrams example

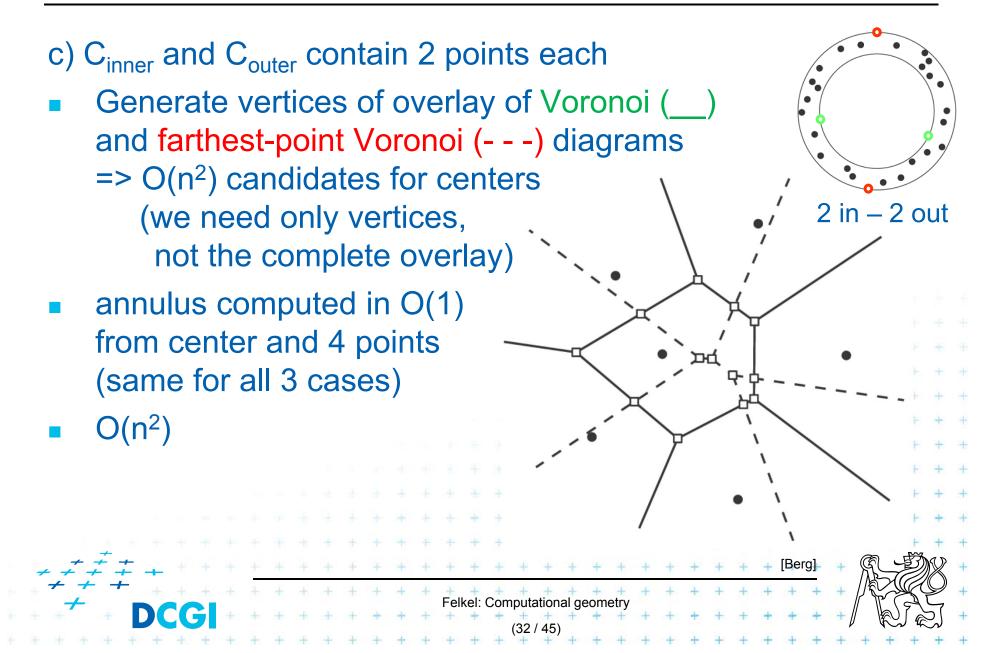
Roundness of manufactured objects

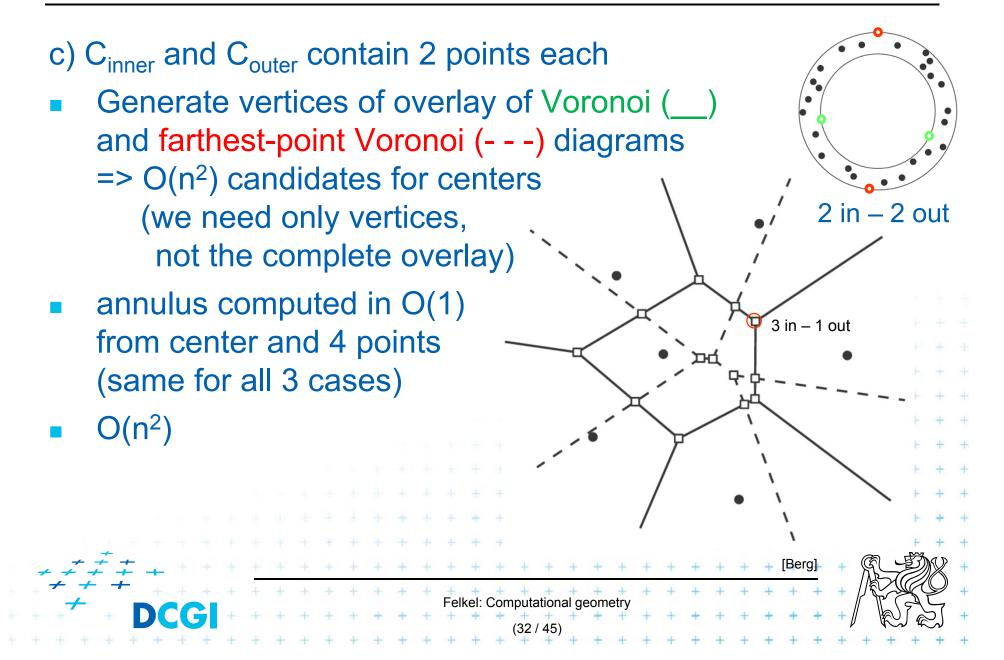
- Input: set of measured points in 2D
- Output: width of the smallest-width annulus mezikruží s nejmenší šířkou (region between two concentric circles C_{inner} and C_{outer})

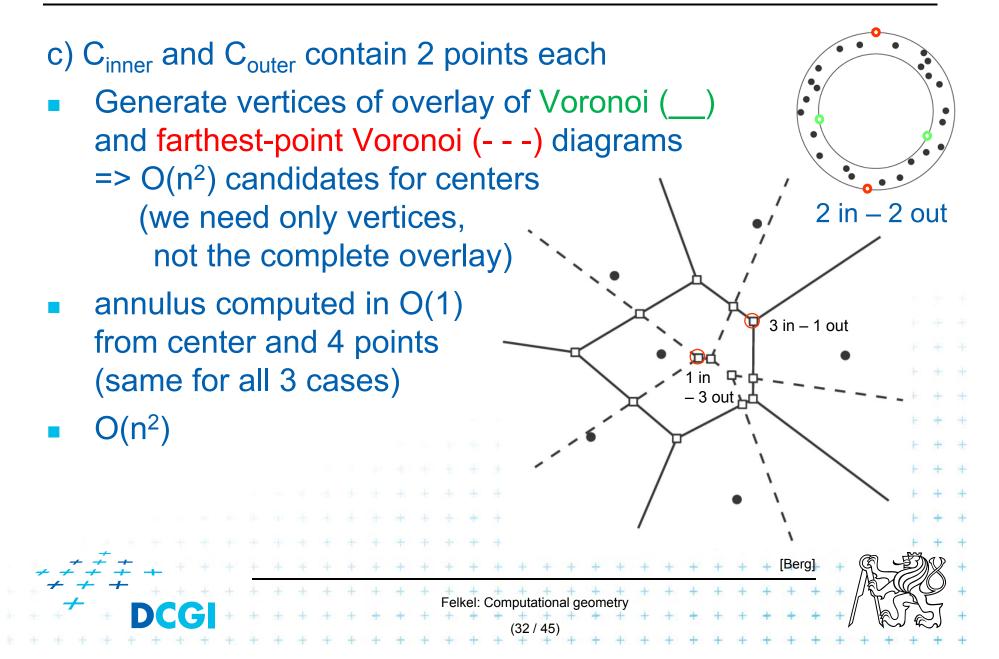
Three cases to test – one will win:

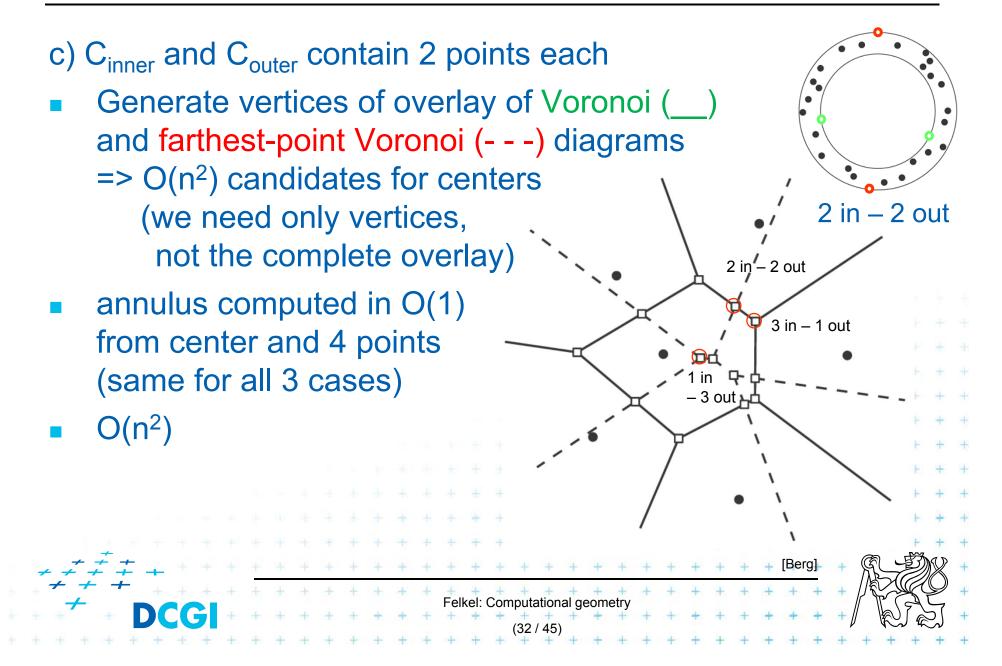










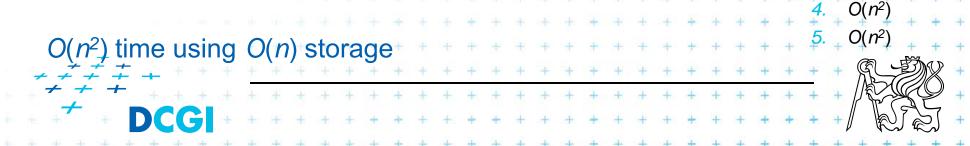


Smallest width annulus

Smallest-Width-Annulus

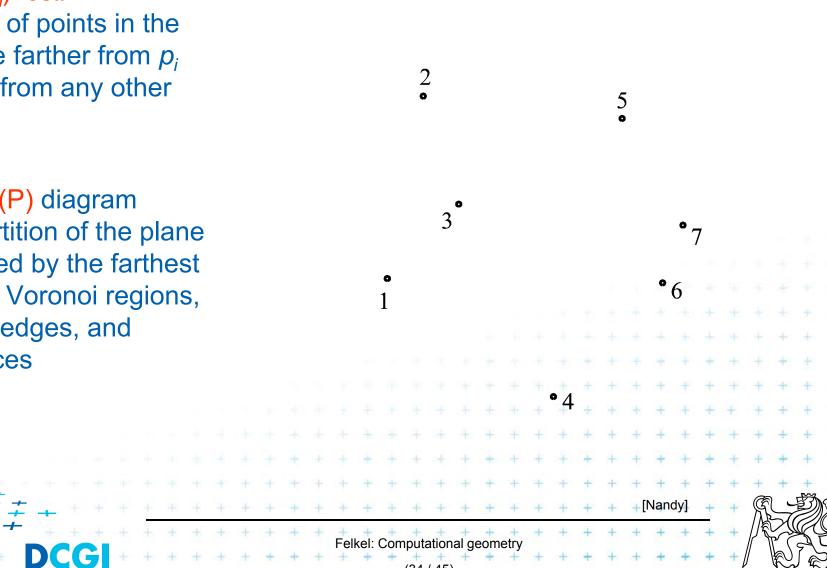
Input: Set *P* of *n* points in the plane *Output:* Smallest width annulus center and radii r and R (roundness)

- Compute Voronoi diagram Vor(*P*) and farthest-point Voronoi diagram Vor₋₁(*P*) of *P*
- 2. For each vertex of Vor(P)(r) determine the *farthest point* (*R*) from *P* => O(n) sets of four points defining candidate annuli case a)
- 3. For each vertex of $Vor_{-1}(P)(R)$ determine the *closest point* (*r*) from *P* => O(n) sets of four points defining candidate annuli case b)
- 4. For every pair of edges Vor(P) and $Vor_{-1}(P)$ test if they intersect => another set of four points defining candidate annulus - c) $\int_{1}^{1} O(n \log n)$
- 5. For all candidates of all three types chose the smallest-width annulus
 2. O(n²)
 3. O(n²)



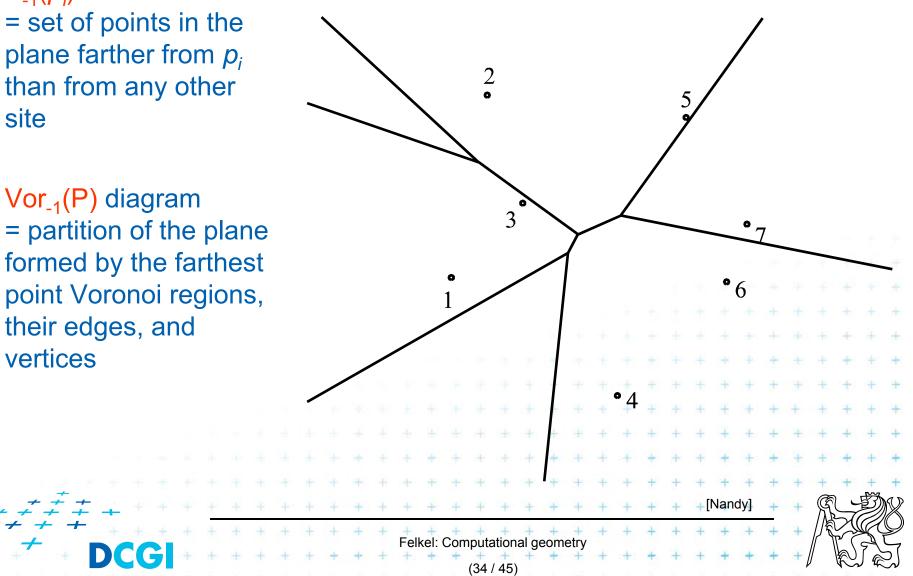
 $V_{-1}(p_i)$ cell = set of points in the plane farther from p_i than from any other site

Vor₋₁(P) diagram = partition of the plane formed by the farthest point Voronoi regions, their edges, and vertices



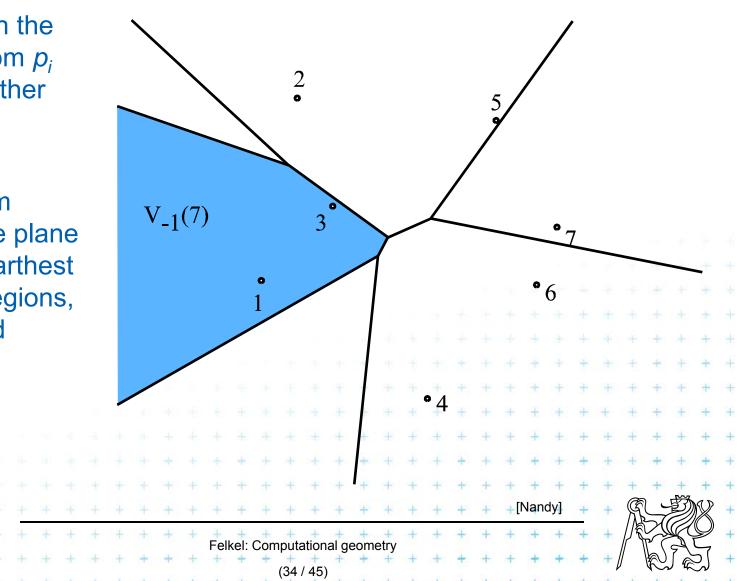
 $V_{-1}(p_i)$ cell = set of points in the plane farther from p_i than from any other site

= partition of the plane formed by the farthest point Voronoi regions, their edges, and vertices



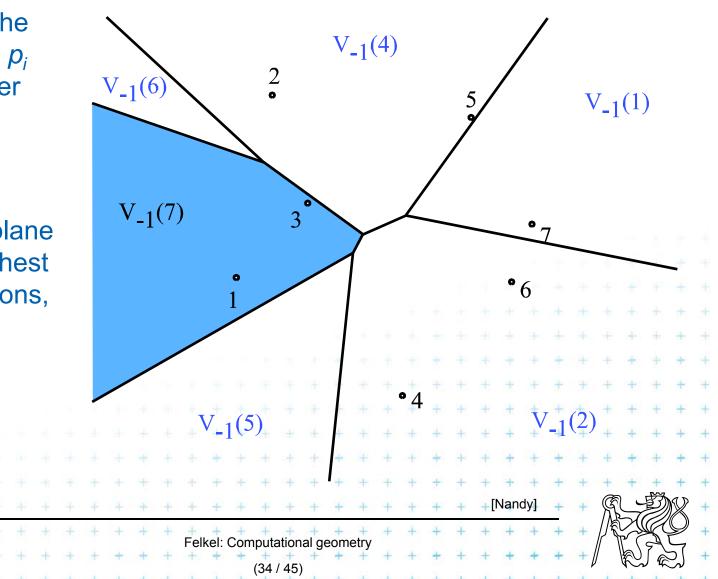
 $V_{-1}(p_i)$ cell = set of points in the plane farther from p_i than from any other site

Vor₋₁(P) diagram = partition of the plane formed by the farthest point Voronoi regions, their edges, and vertices

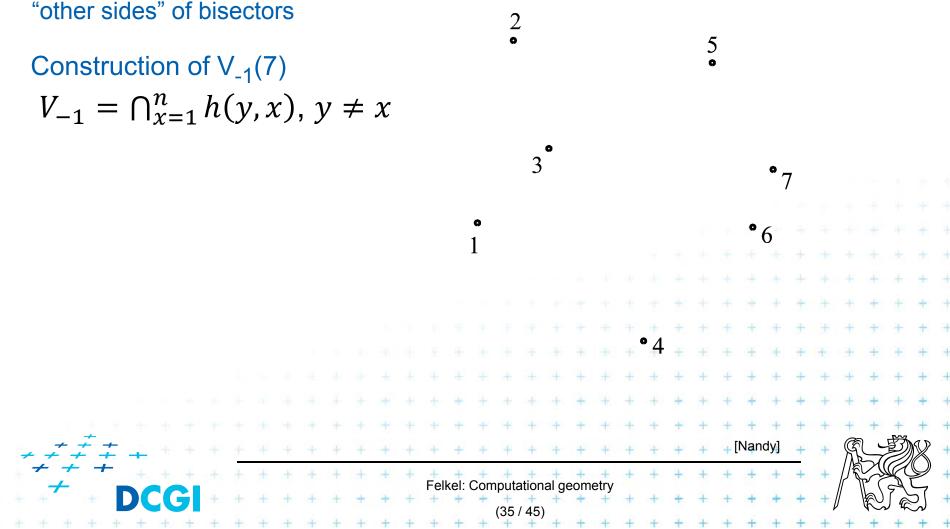


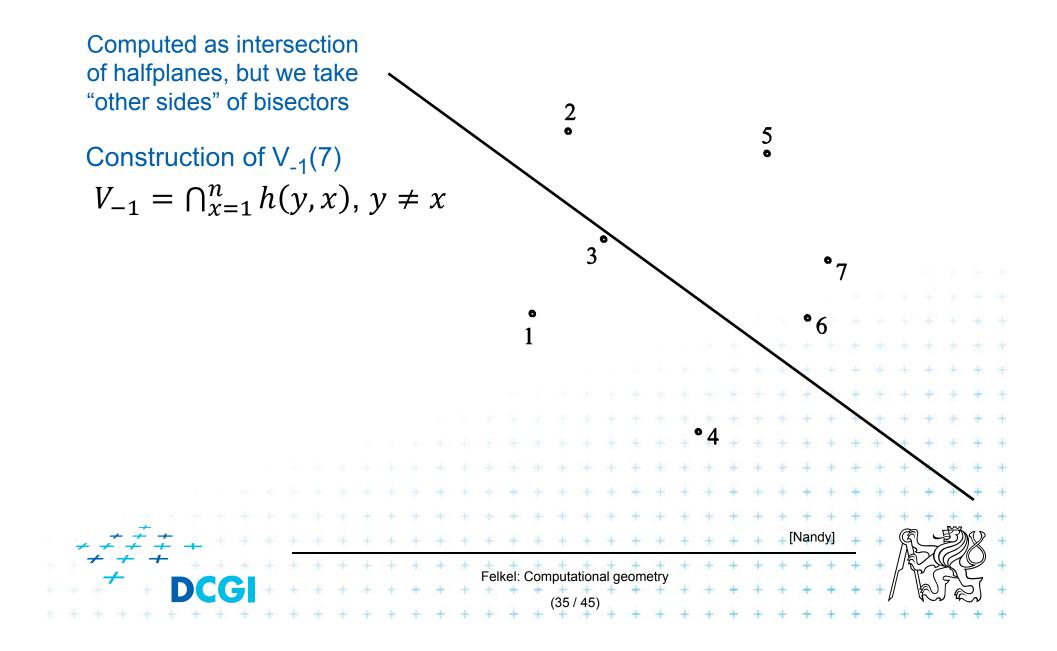
 $V_{-1}(p_i)$ cell = set of points in the plane farther from p_i than from any other site

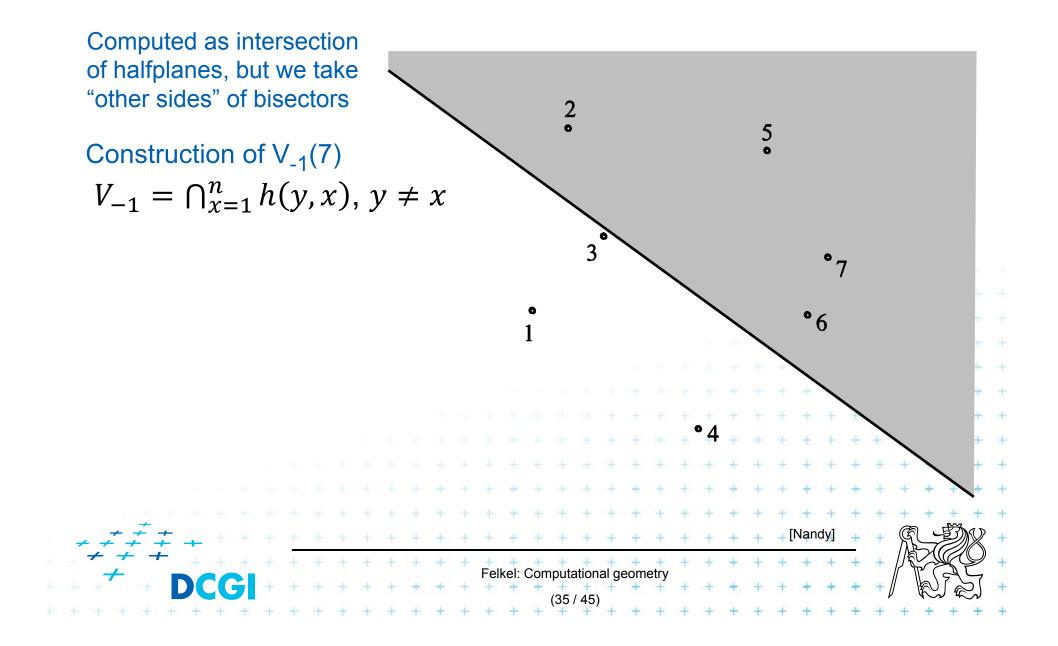
Vor₋₁(P) diagram = partition of the plane formed by the farthest point Voronoi regions, their edges, and vertices

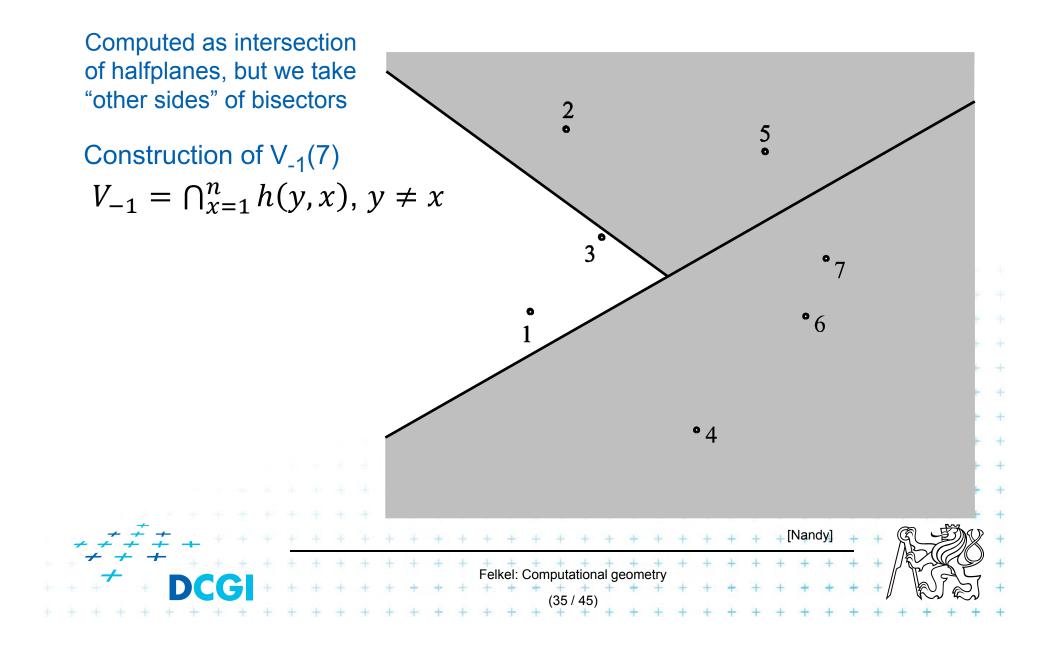


Computed as intersection of halfplanes, but we take "other sides" of bisectors

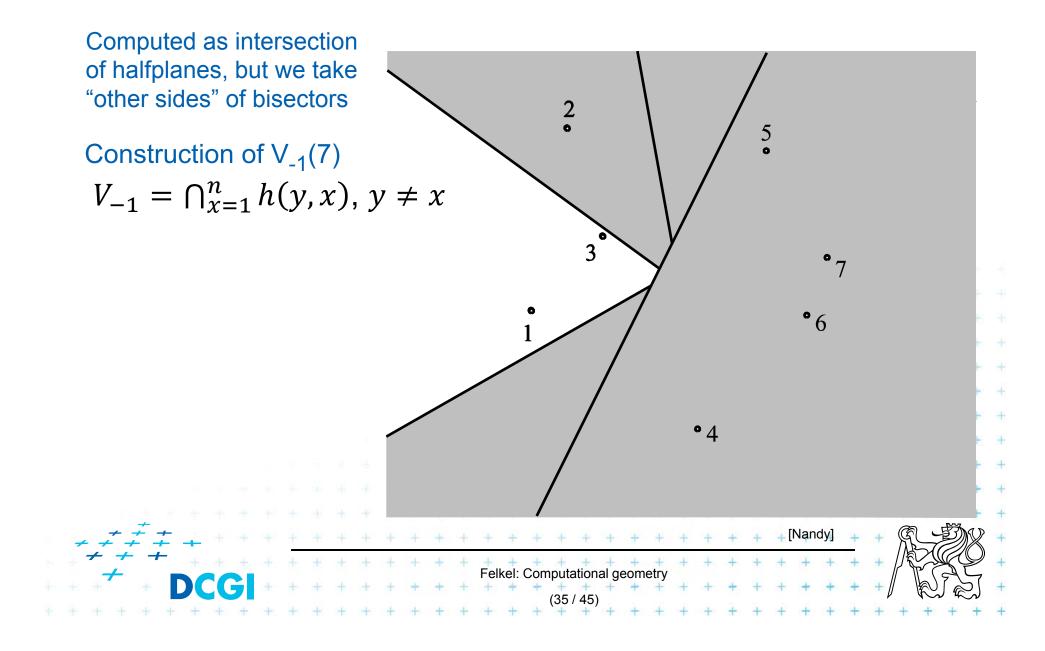


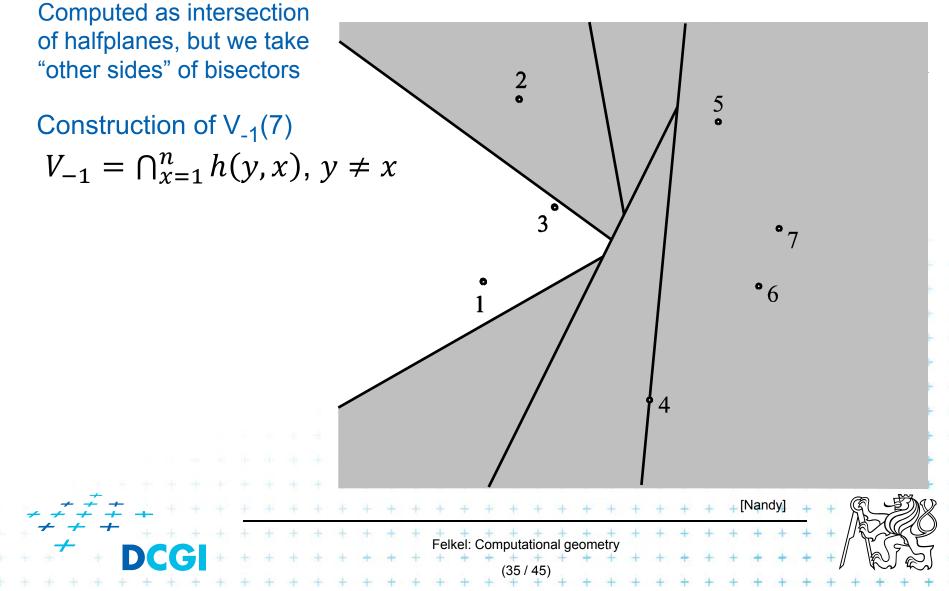


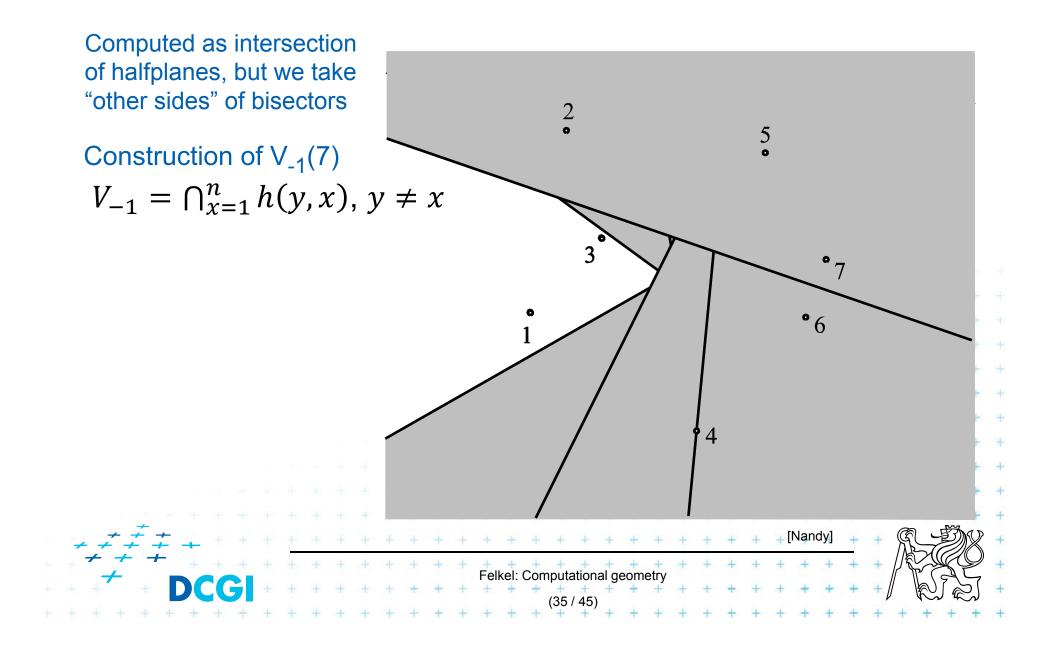


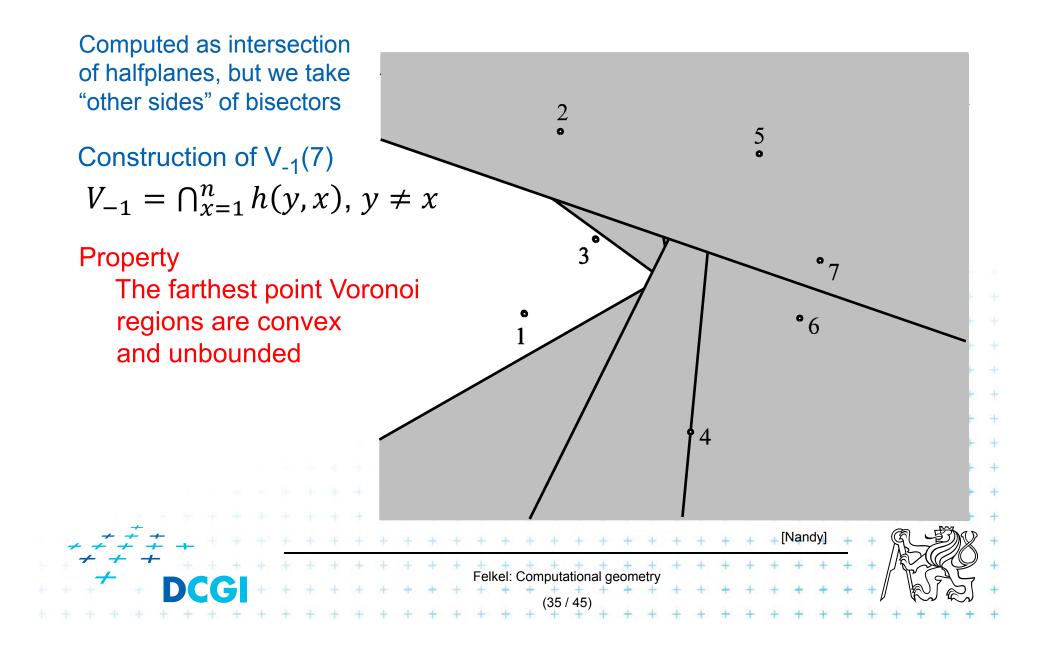


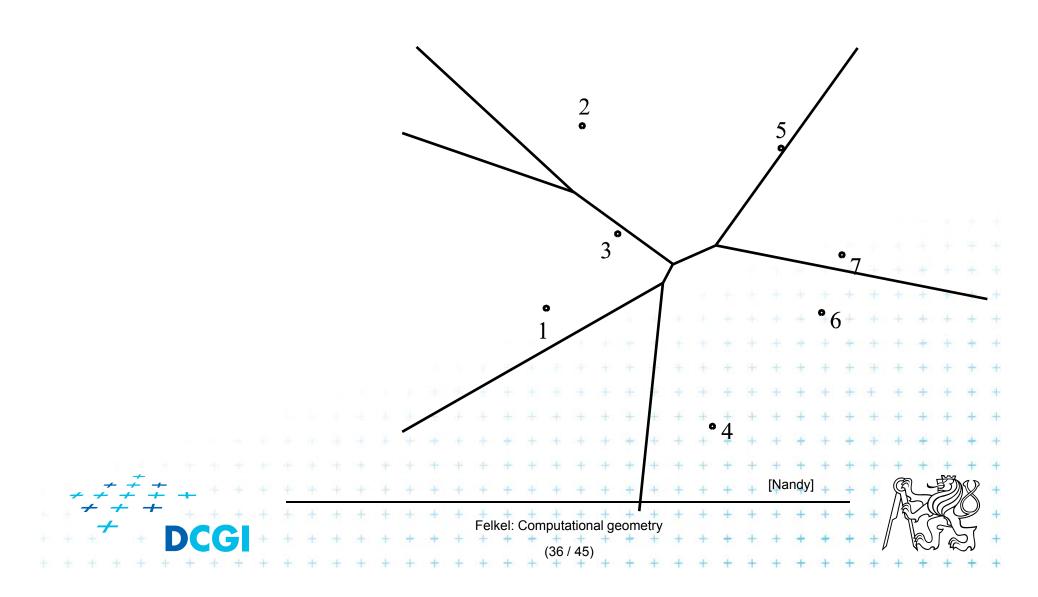






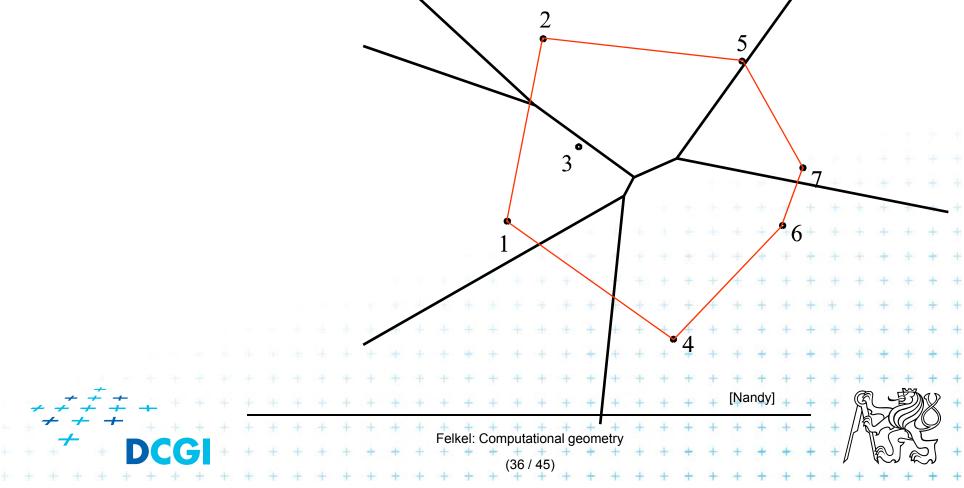


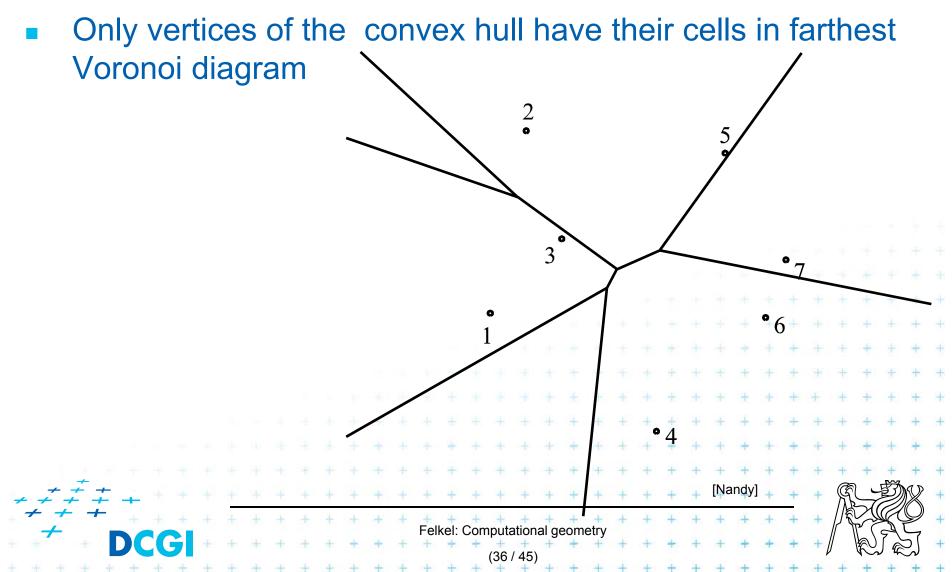


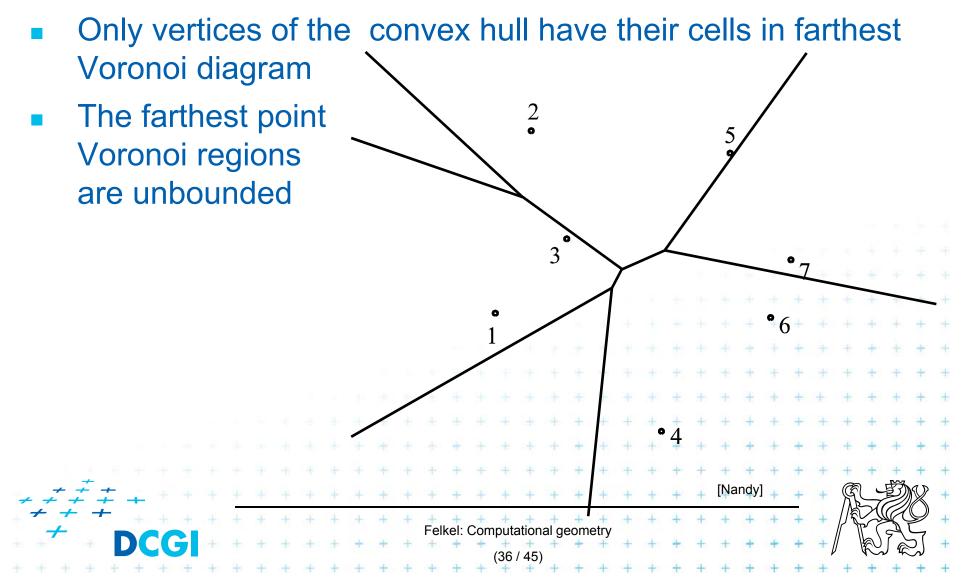


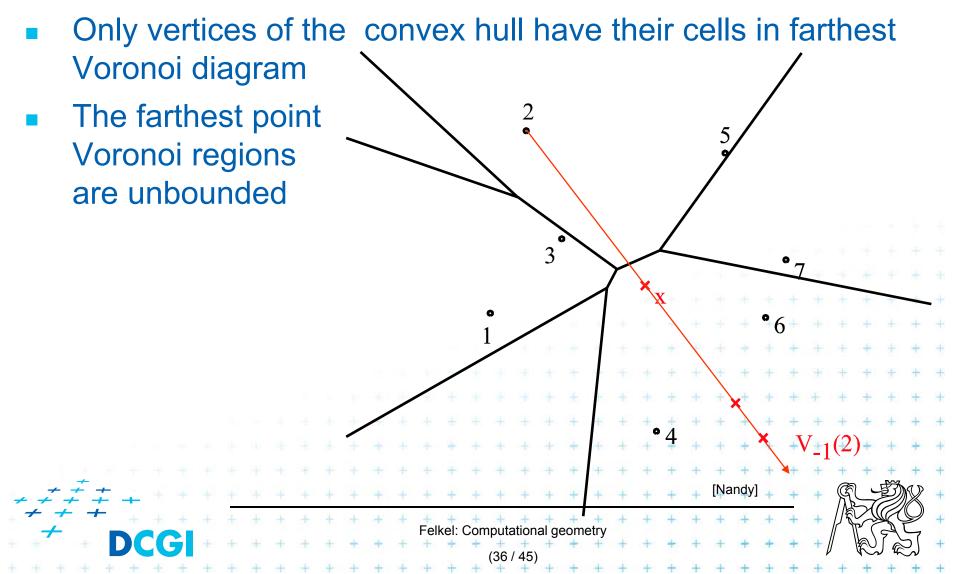
Properties:

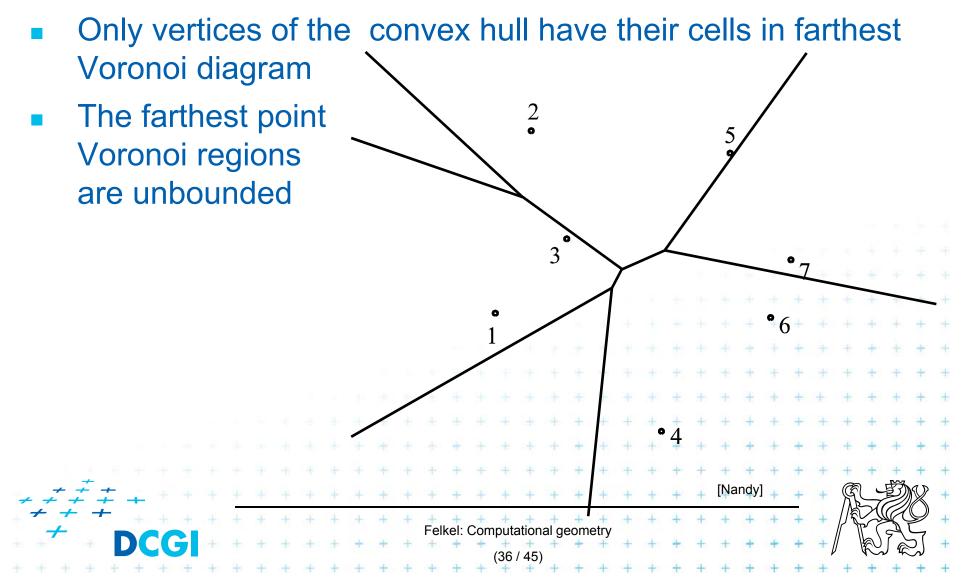
 Only vertices of the convex hull have their cells in farthest Voronoi diagram



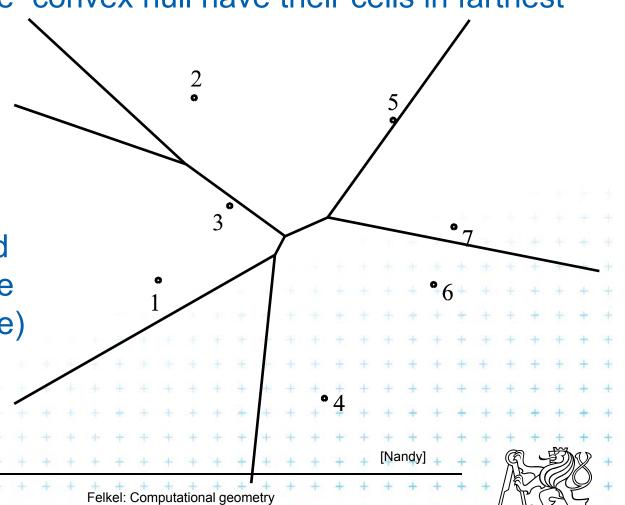


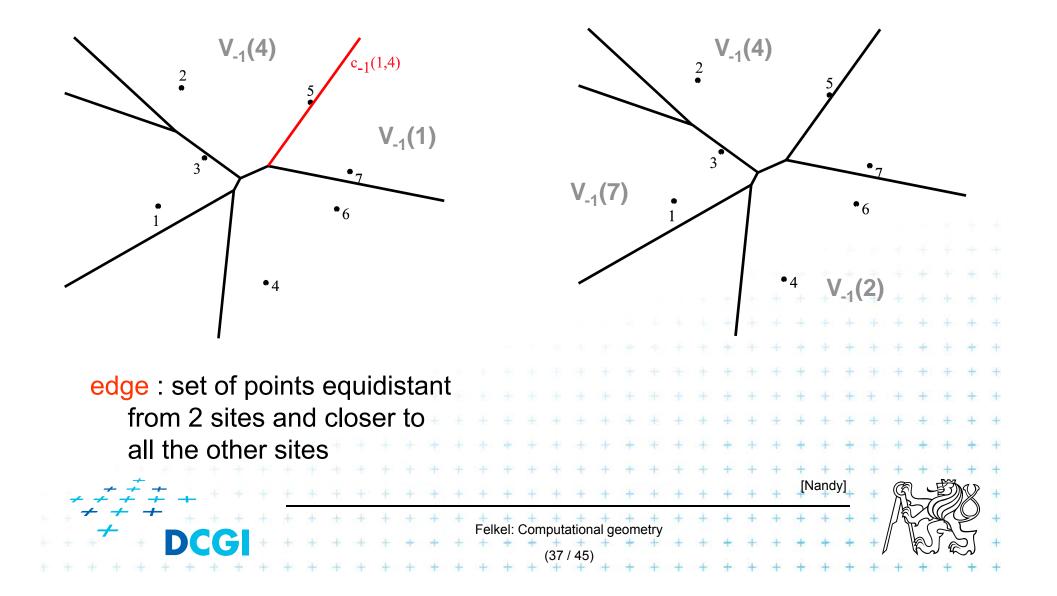


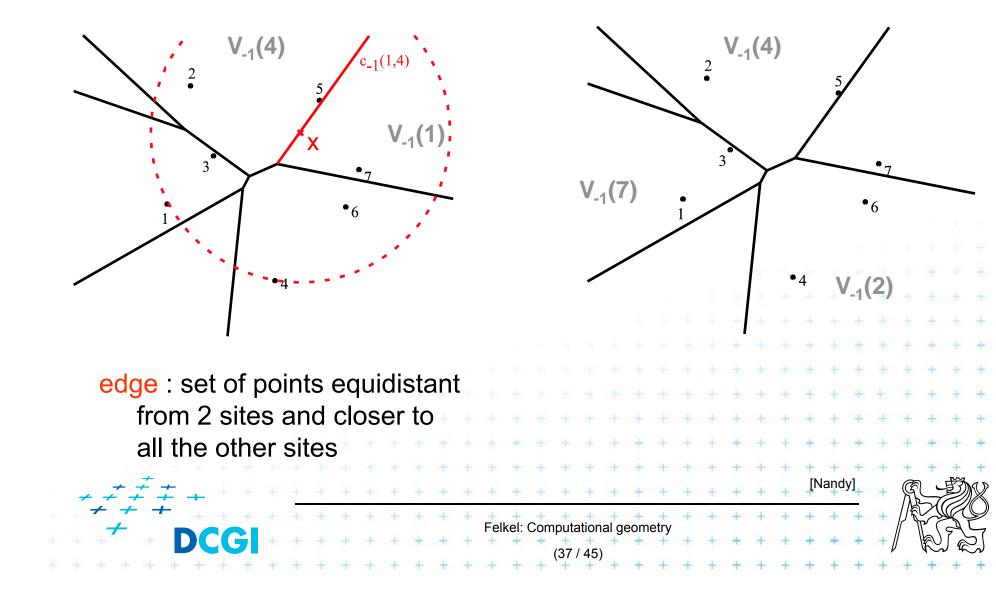


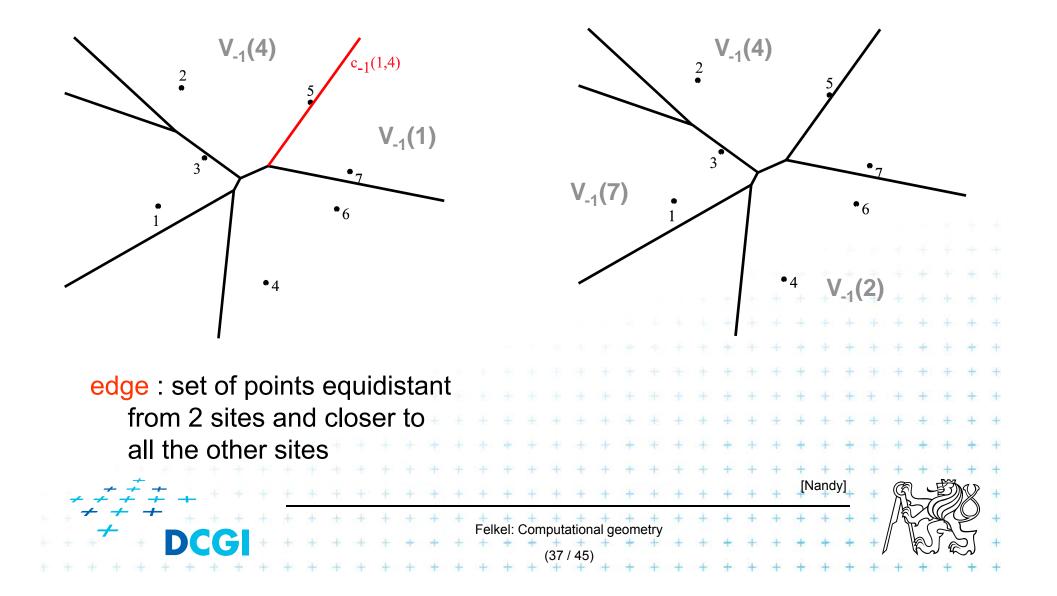


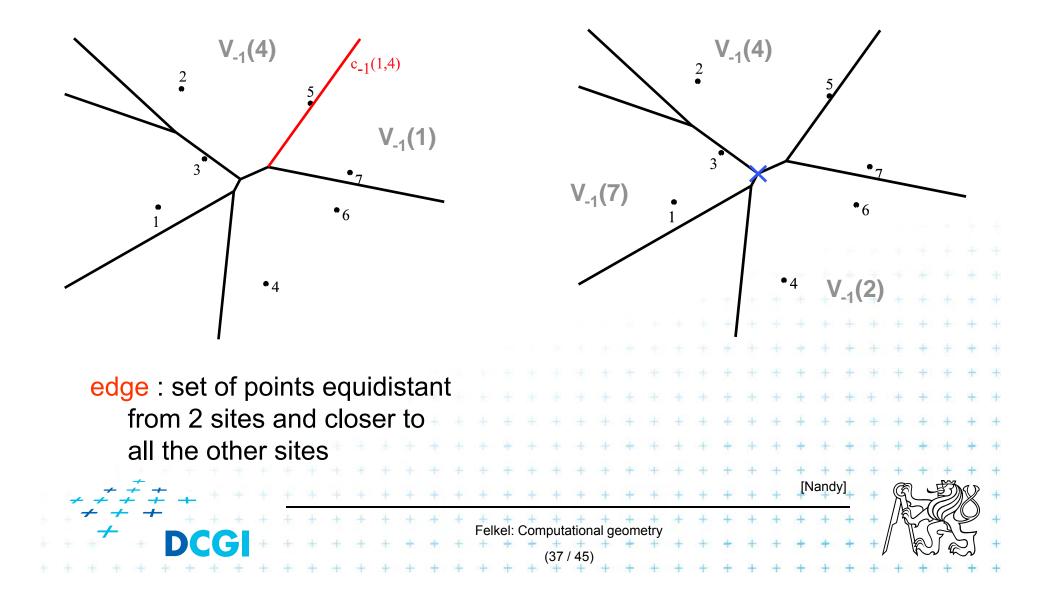
- Only vertices of the convex hull have their cells in farthest Voronoi diagram
- The farthest point Voronoi regions are unbounded
- The farthest point
 Voronoi edges and vertices form a tree (in the graph sense)

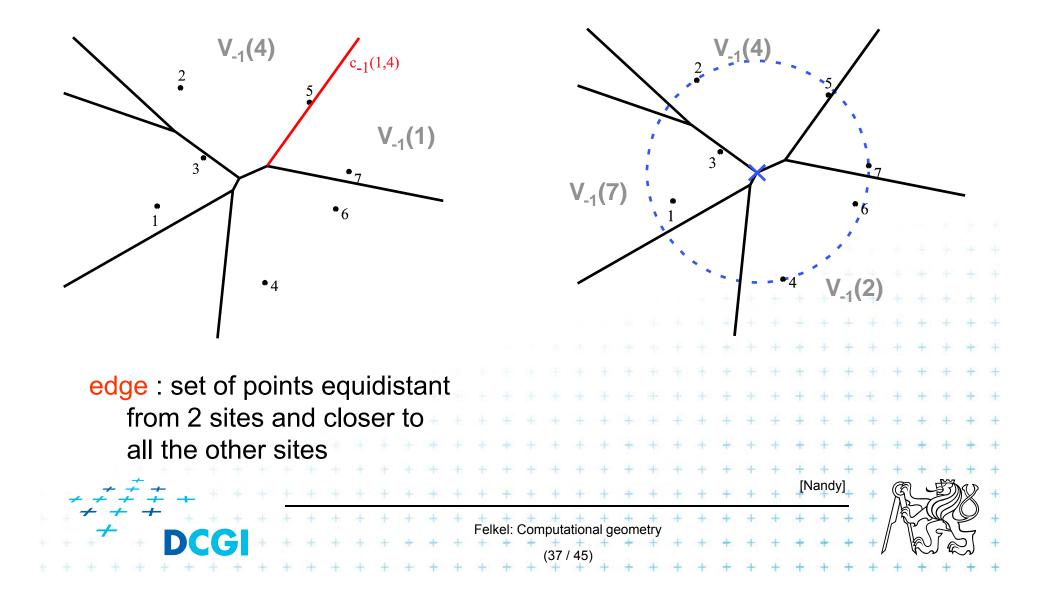


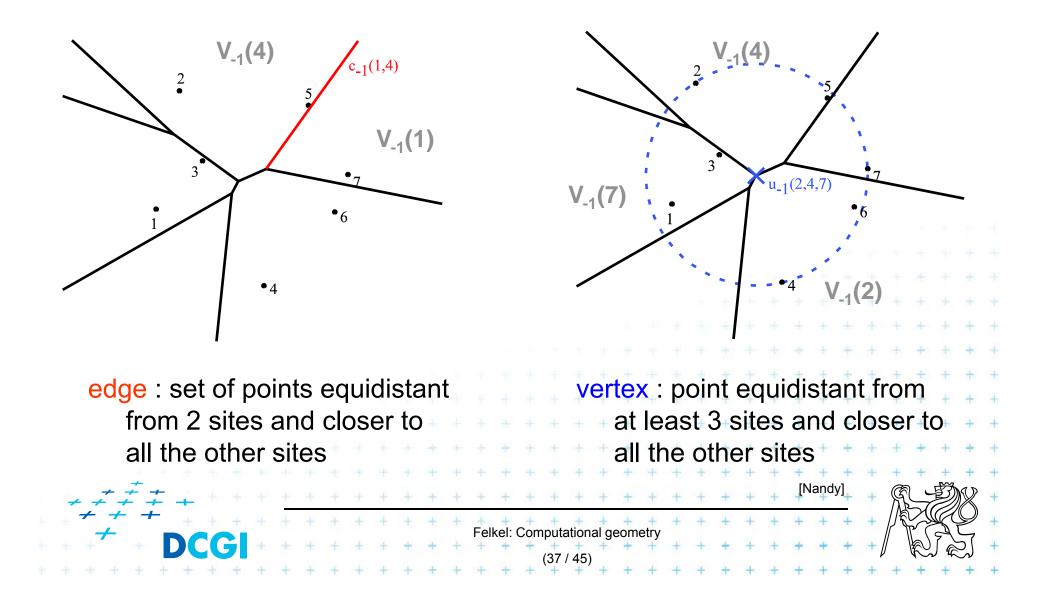






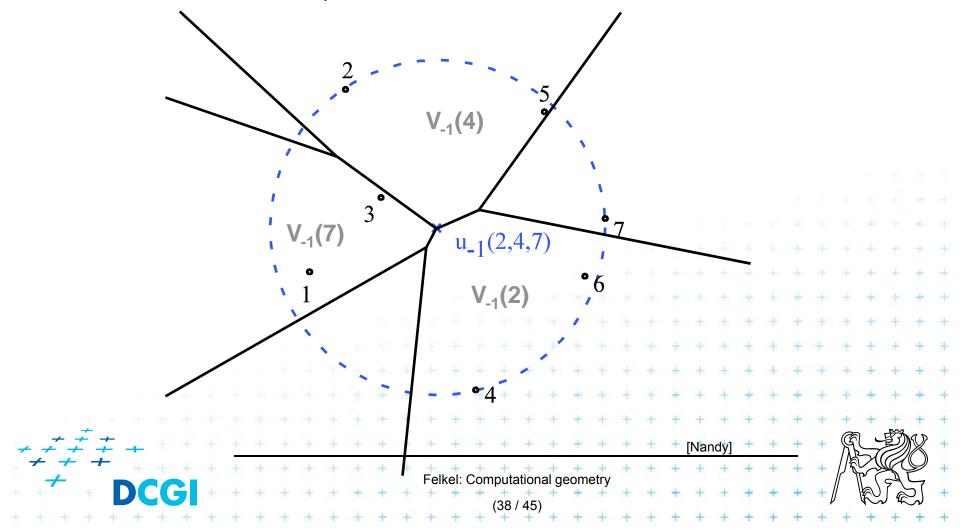






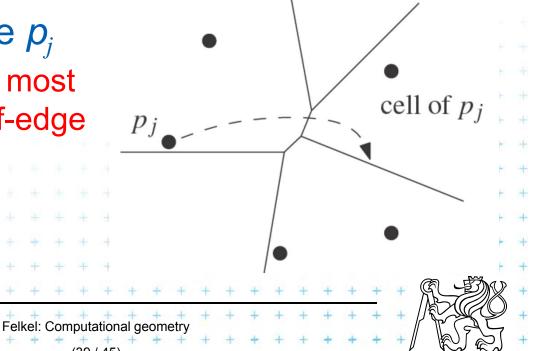
Application of Vor₋₁(**P**) : **Smallest enclosing circle**

 Construct Vor₋₁(P) and find minimal circle with center in Vor₋₁(P) vertices or on edges



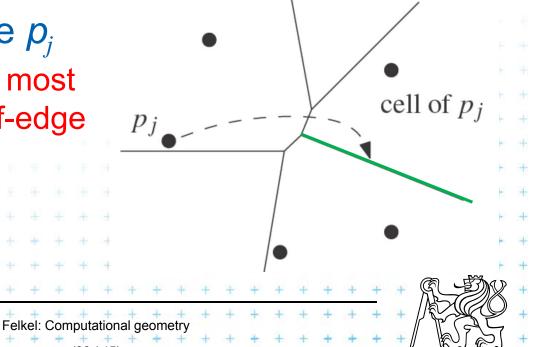
Modified DCEL for farthest-point Voronoi d

- Half-infinite edges -> we adapt DCEL
- Half-edges with origin in infinity
 - Special vertex-like record for origin in infinity
 - Store direction instead of coordinates
 - Next(e) or Prev(e) pointers undefined
- For each inserted site p_i
 - store a pointer to the most
 CCW half-infinite half-edge
 of its cell in DCEL



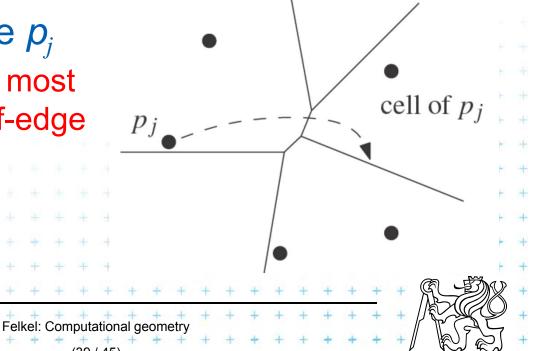
Modified DCEL for farthest-point Voronoi d

- Half-infinite edges -> we adapt DCEL
- Half-edges with origin in infinity
 - Special vertex-like record for origin in infinity
 - Store direction instead of coordinates
 - Next(e) or Prev(e) pointers undefined
- For each inserted site p_i
 - store a pointer to the most
 CCW half-infinite half-edge
 of its cell in DCEL



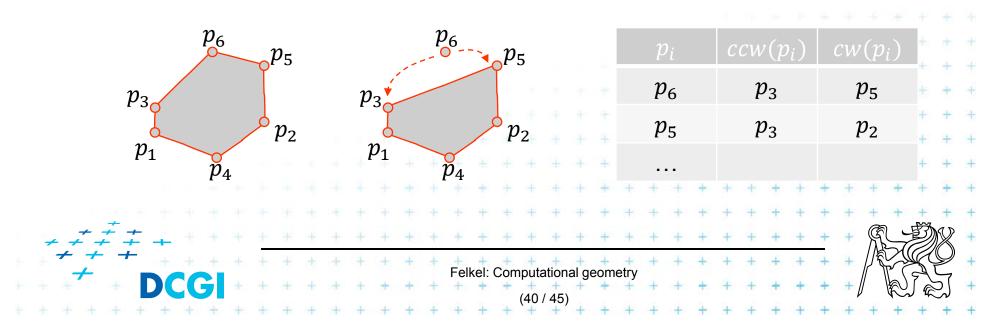
Modified DCEL for farthest-point Voronoi d

- Half-infinite edges -> we adapt DCEL
- Half-edges with origin in infinity
 - Special vertex-like record for origin in infinity
 - Store direction instead of coordinates
 - Next(e) or Prev(e) pointers undefined
- For each inserted site p_i
 - store a pointer to the most
 CCW half-infinite half-edge
 of its cell in DCEL



Idea of the algorithm

- 1. Create the convex hull and number the CH points randomly
- 2. Remove the points starting in the last of this random order and store $cw(p_i)$ and $ccw(p_i)$ points at the time of removal.
- 3. Include the points back and compute V₋₁



Farthest-pointVoronoi

O(nlog n) time in O(n) storage

Input: Set of points P in plane

Output: Farthest-point VD Vor₋₁(*P*)

- 1. Compute convex hull of P
- 2. Put points in CH(*P*) of *P* in random order p_1, \ldots, p_h
- 3. Remove p_h, \ldots, p_4 from the cyclic order (around the CH). When removing p_i , store the neighbors: $cw(p_i)$ and $ccw(p_i)$ at the time of removal. (This is done to know the neighbors needed in step 6.)
- 4. Compute $Vor_{-1}(\{p_1, p_2, p_3\})$ as init
- **5.** for i = 4 to h do

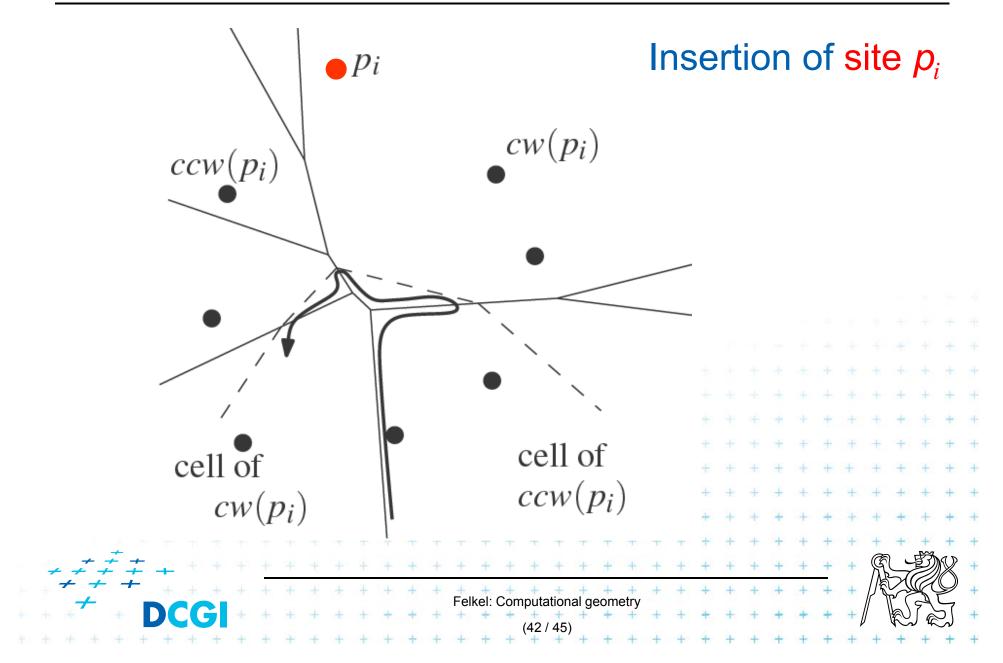
7.

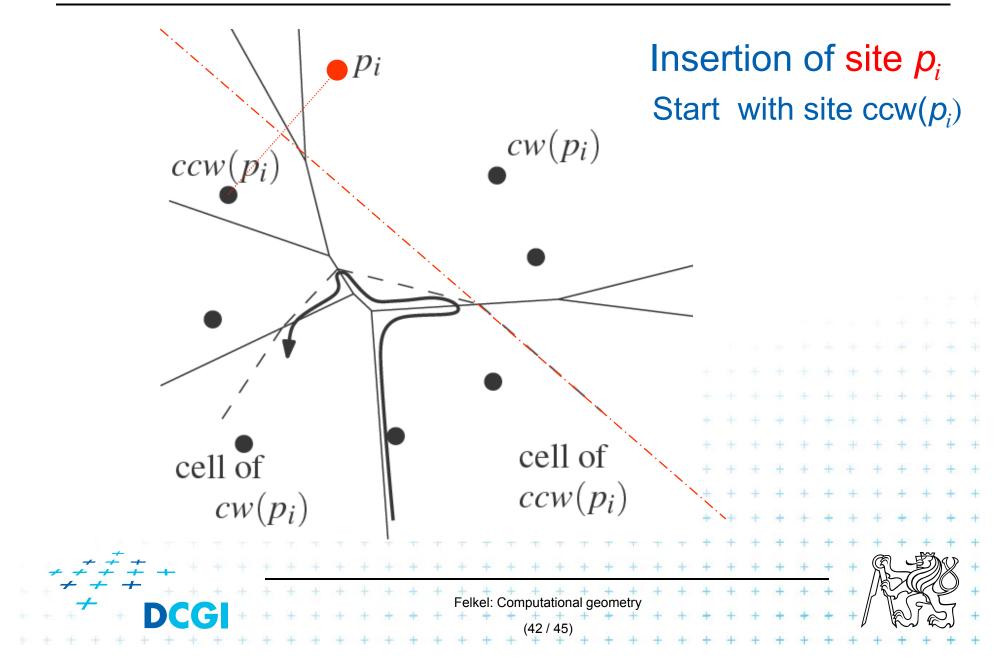
8.

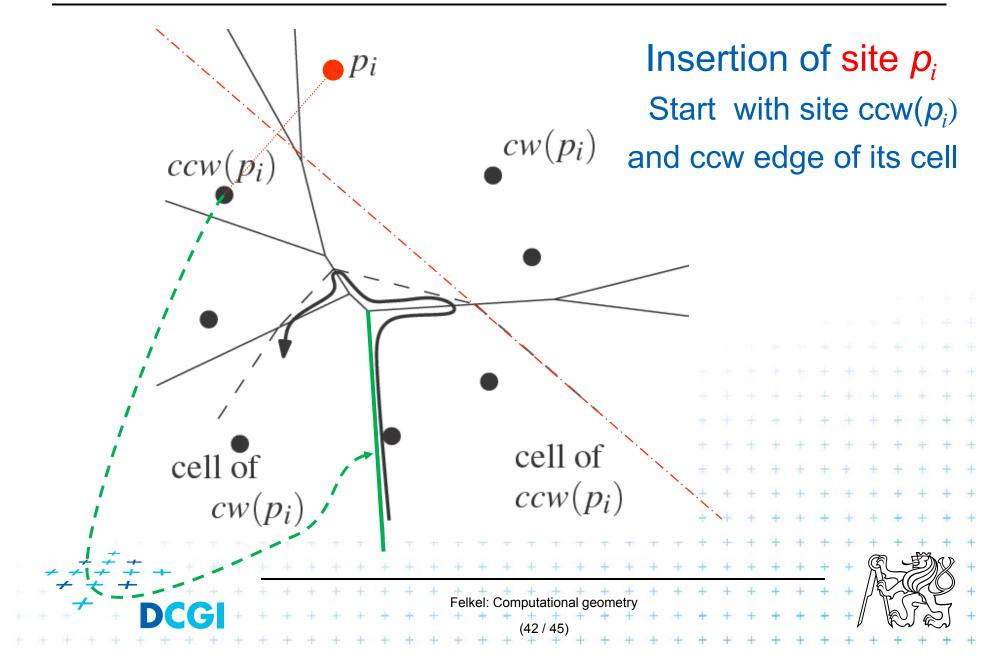
9.

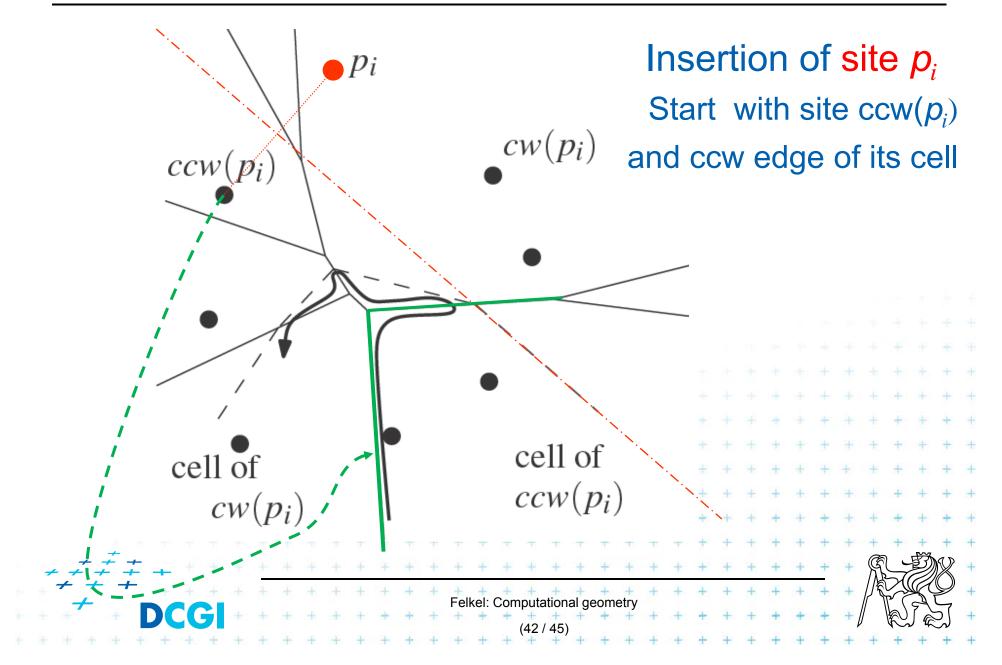
10.

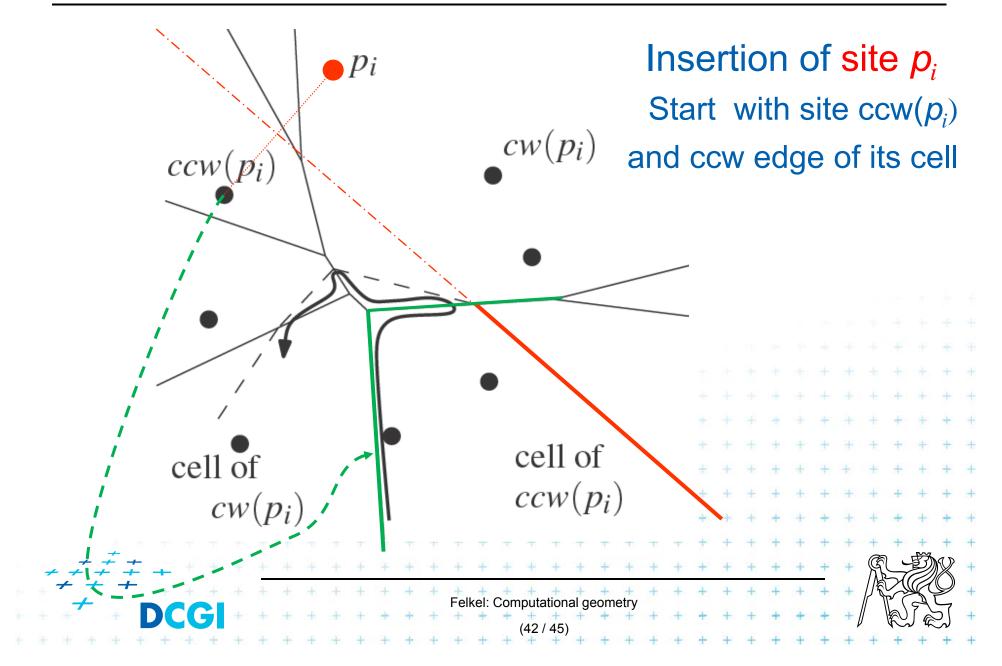
- 6. Add site p_i to Vor₋₁({ $p_1, p_2, ..., p_{i-1}$ }) between site $cw(p_i)$ and $ccw(p_i)$
 - start at most CCW edge of the cell ccw(p_i)
 - continue CW to find intersection with bisector($ccw(p_i), p_i$)
 - trace borders of Voronoi cell p_i in CCW order, add edges
 - remove invalid edges inside of Voronoi cell p_i +

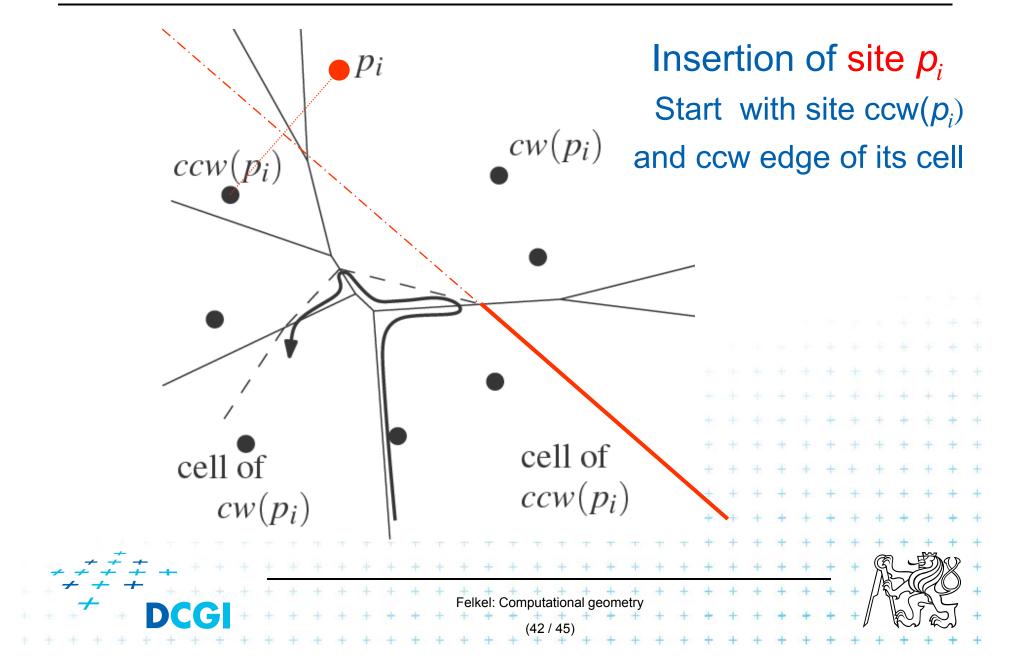


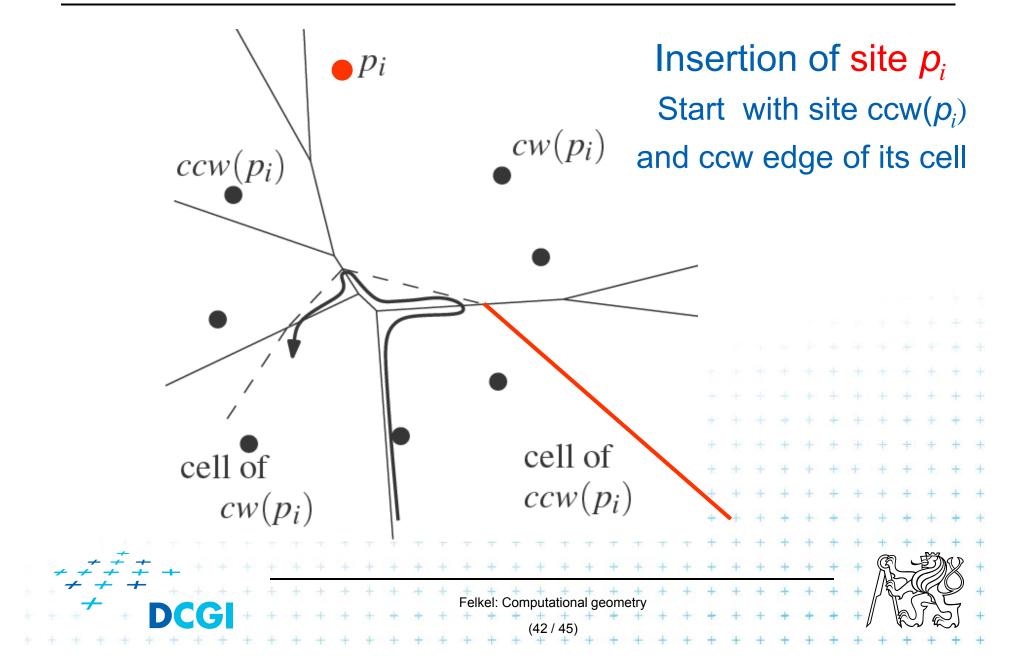


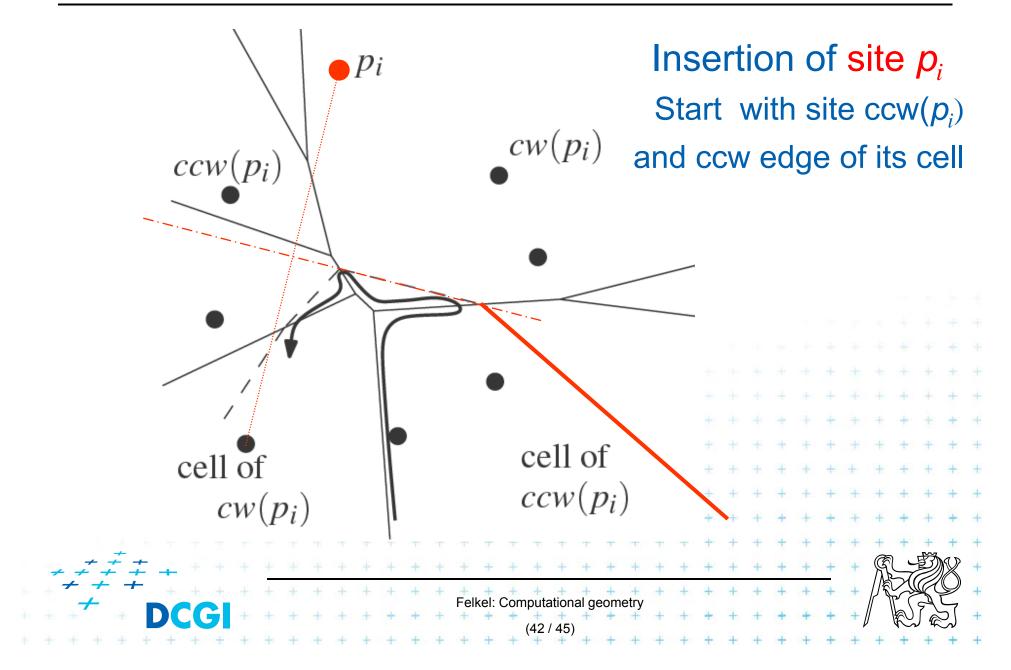


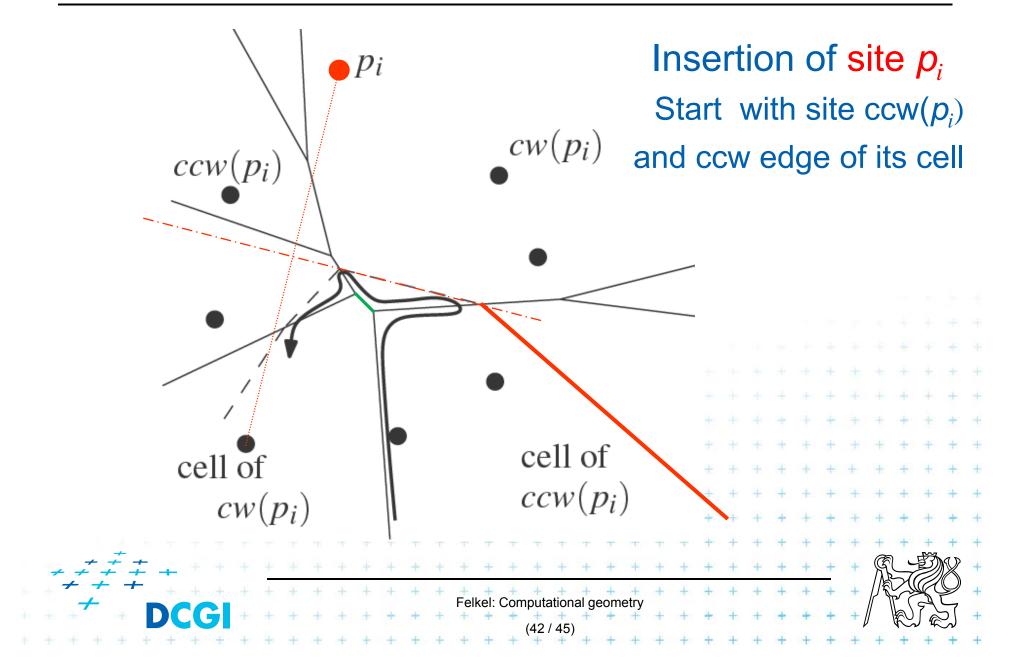


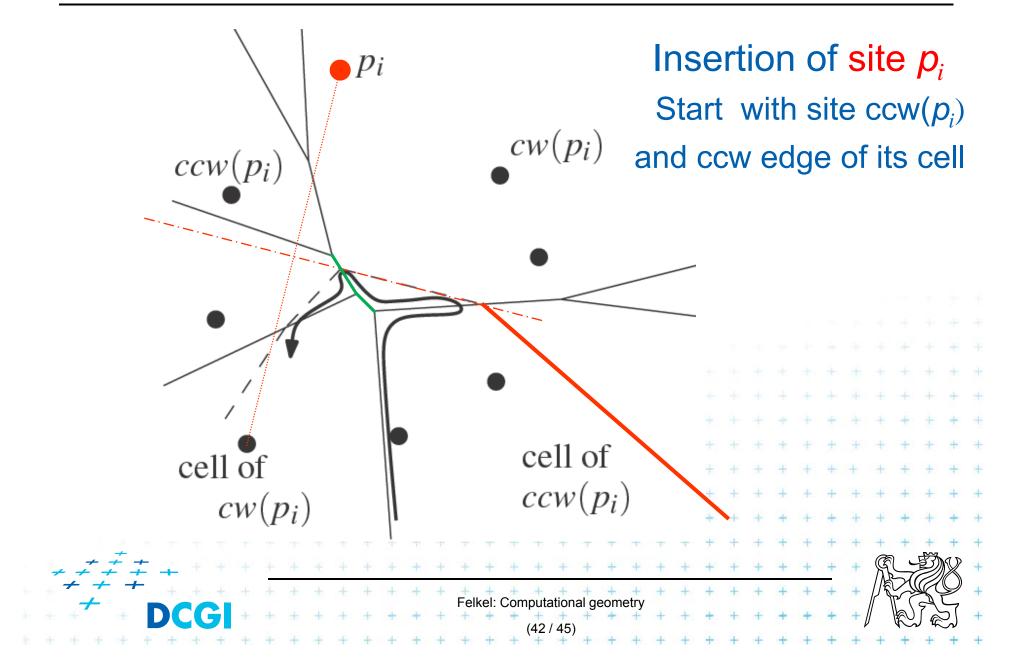


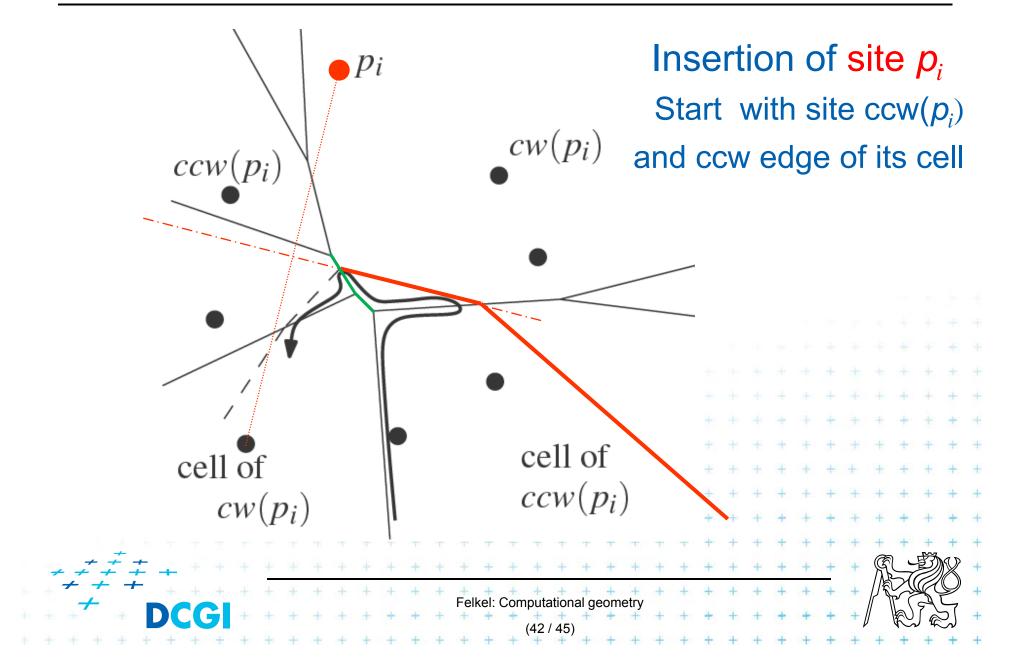


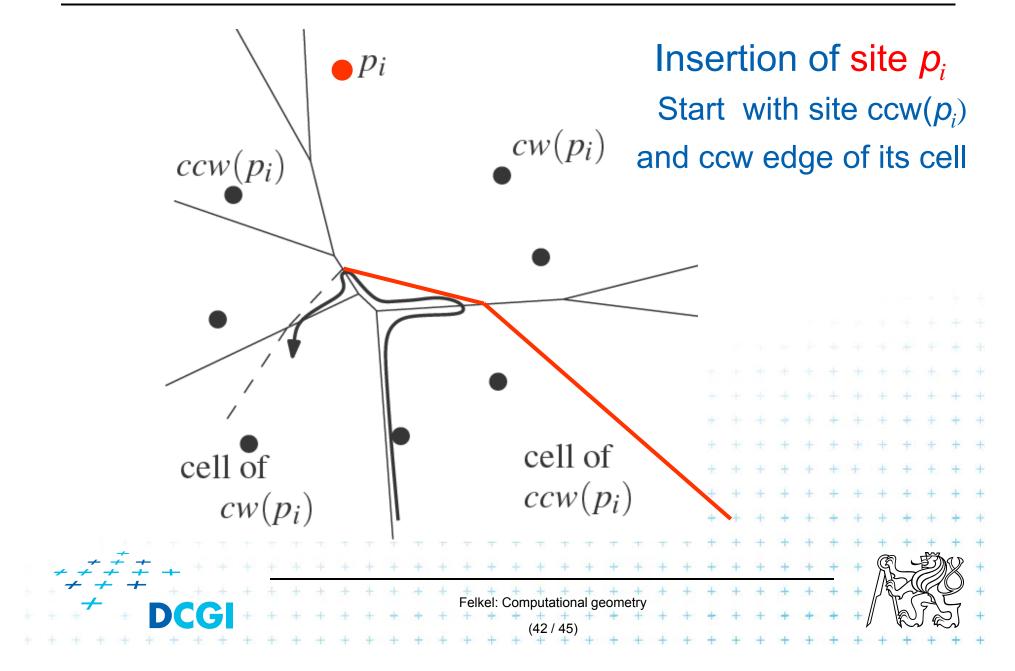


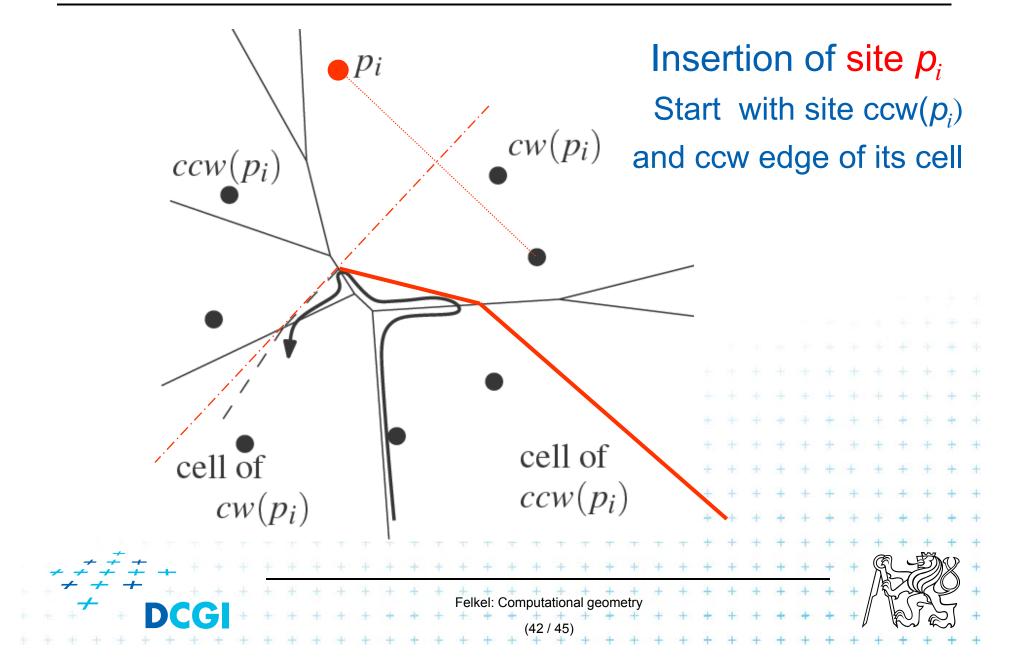


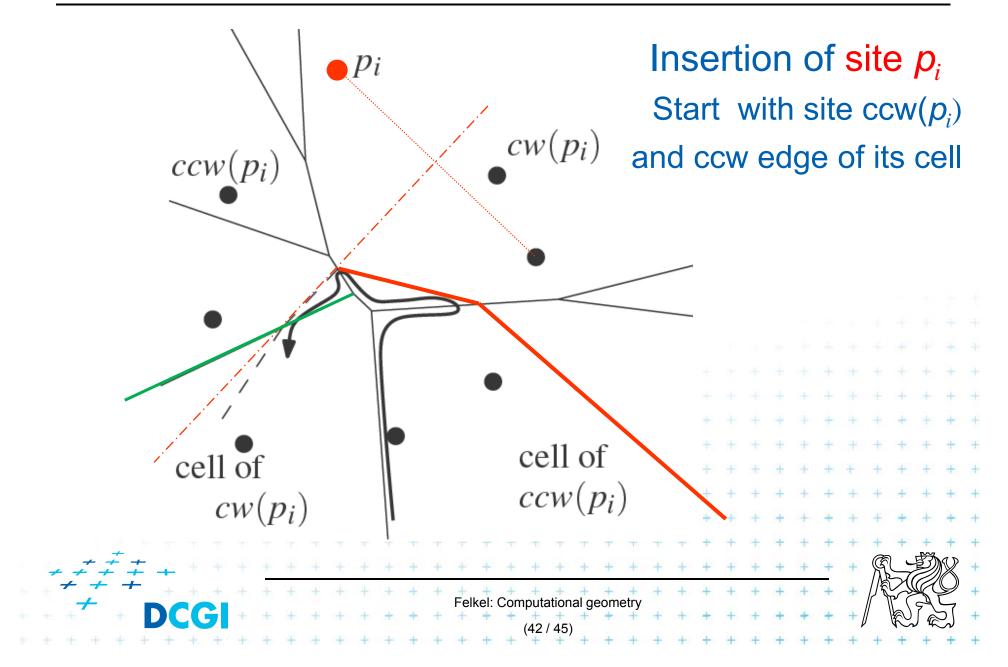


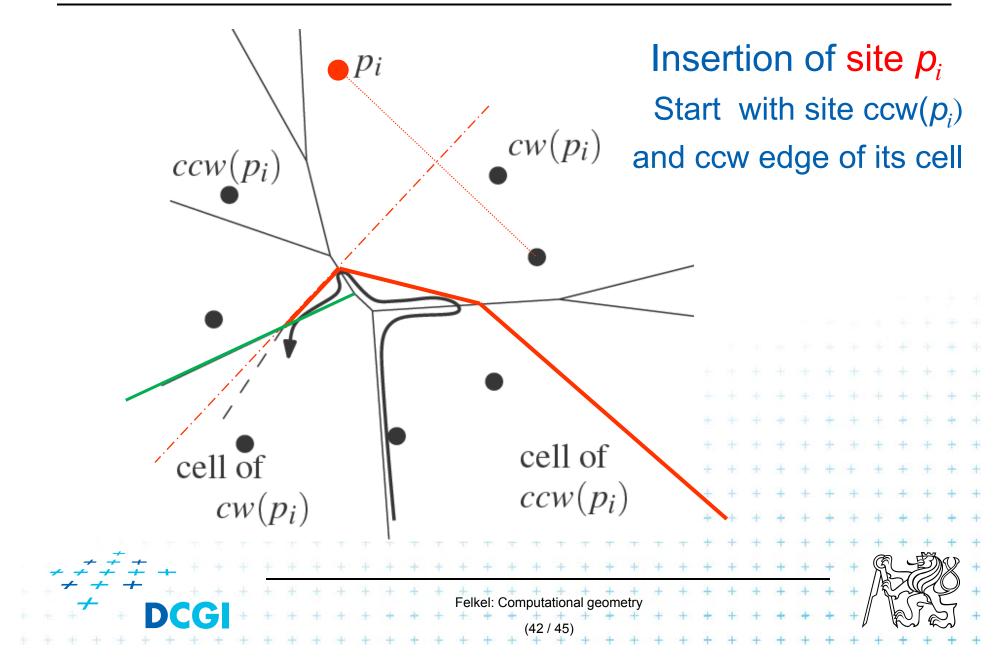


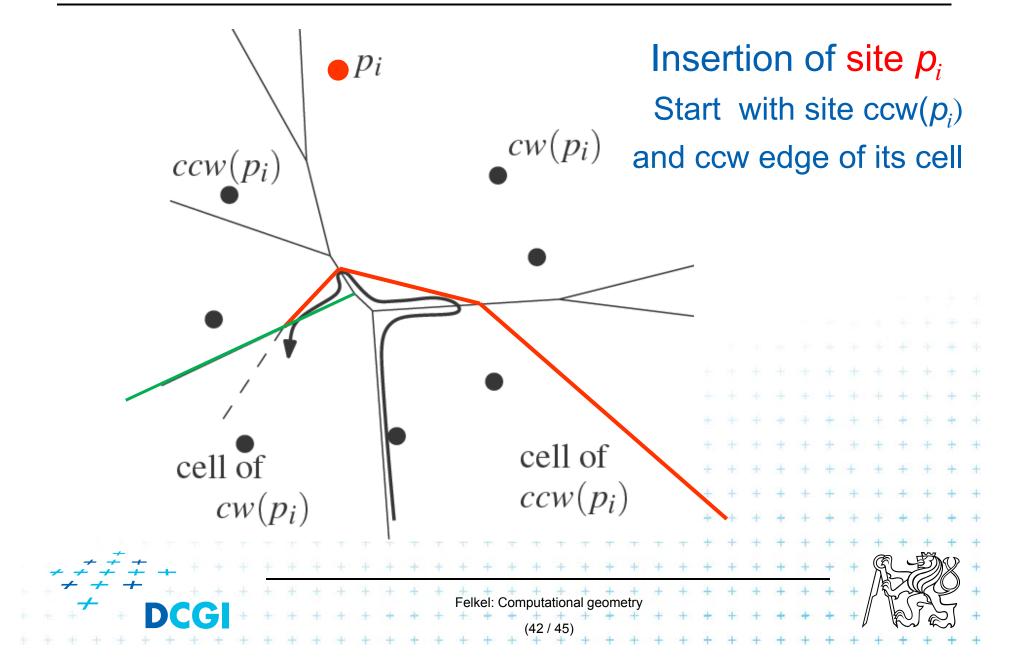


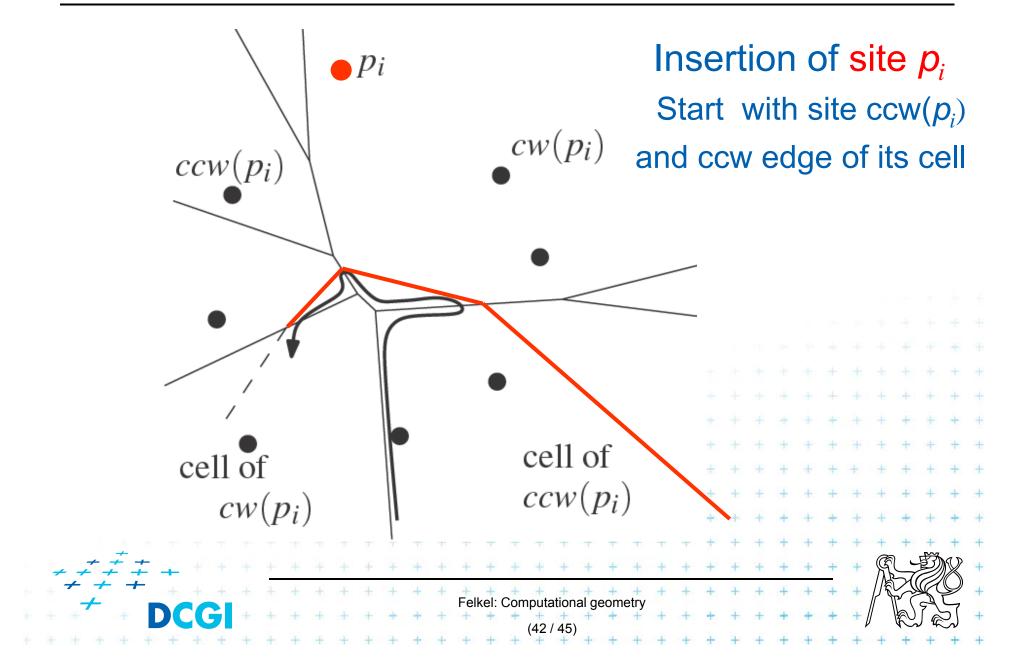


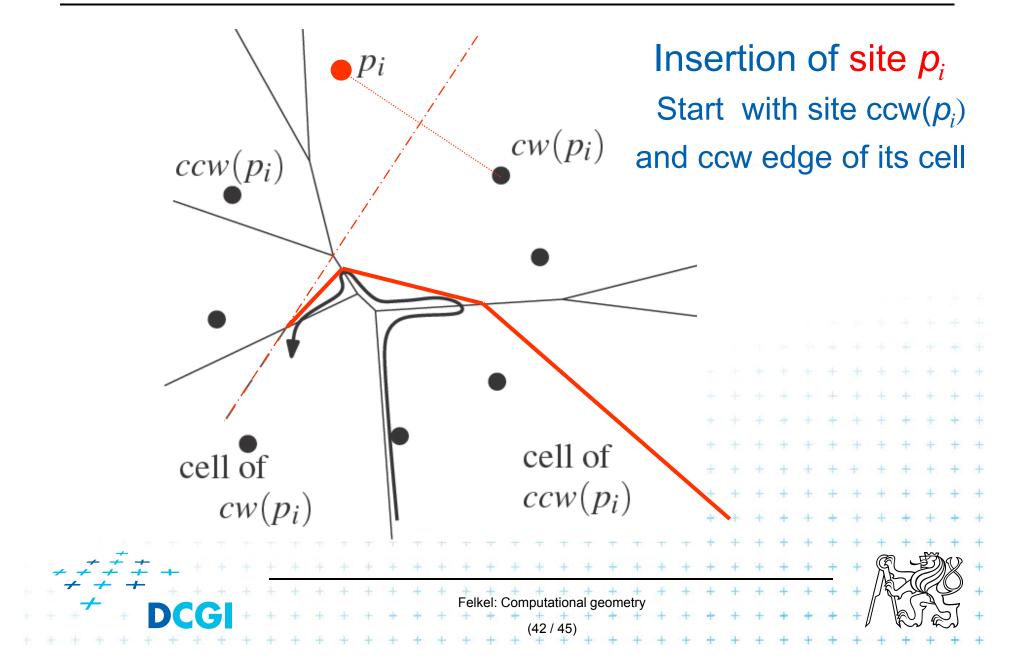


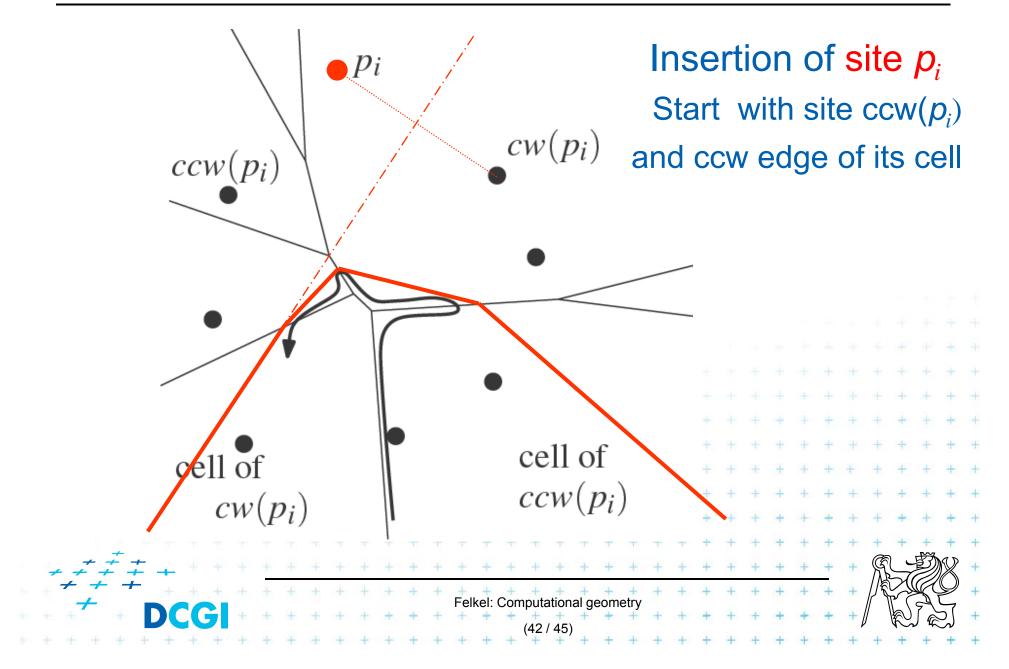


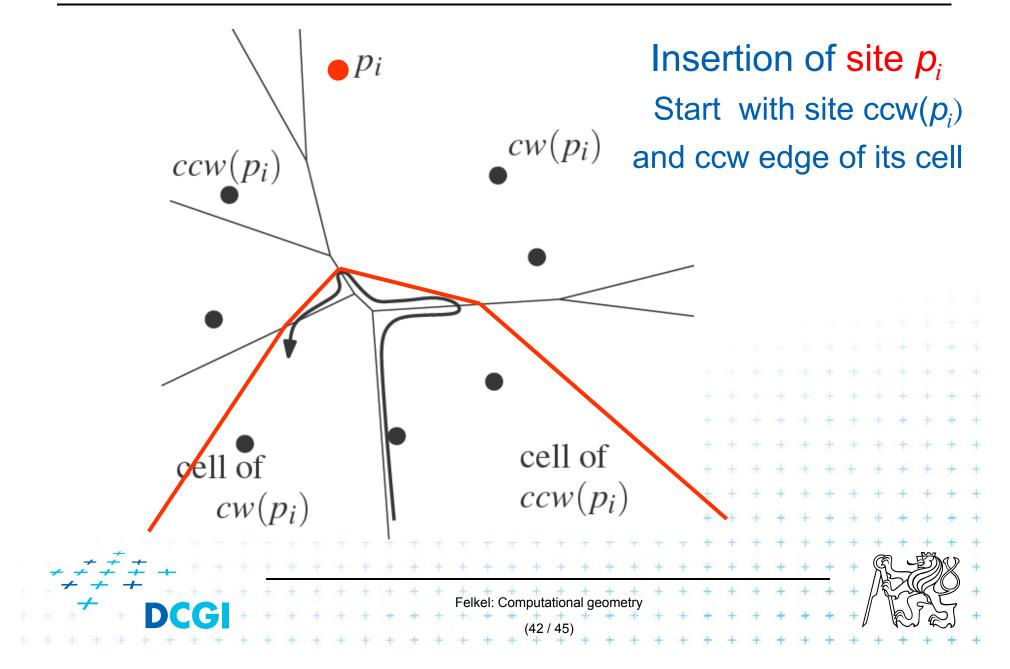


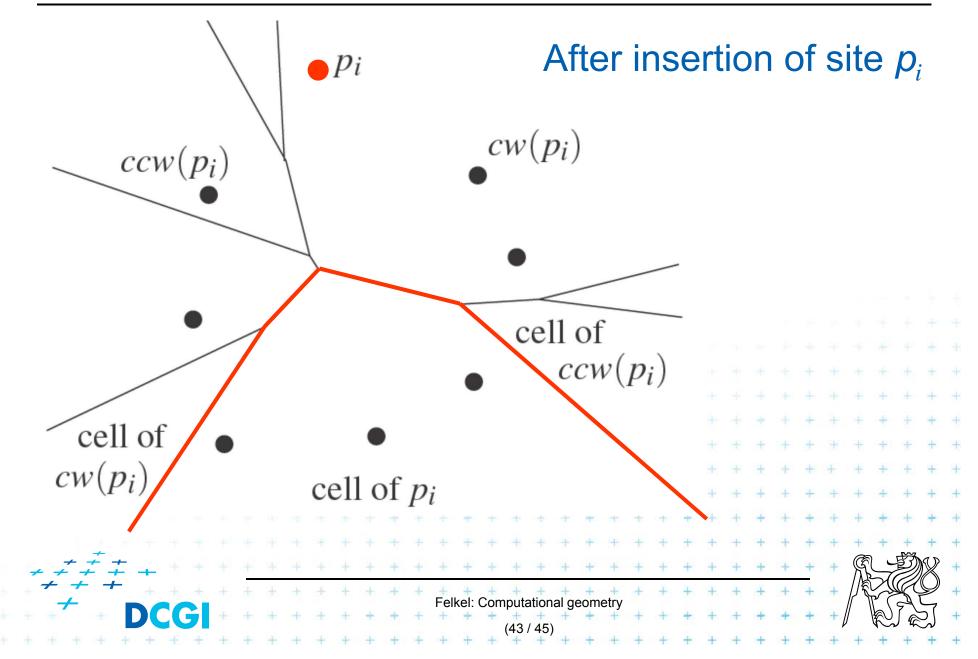


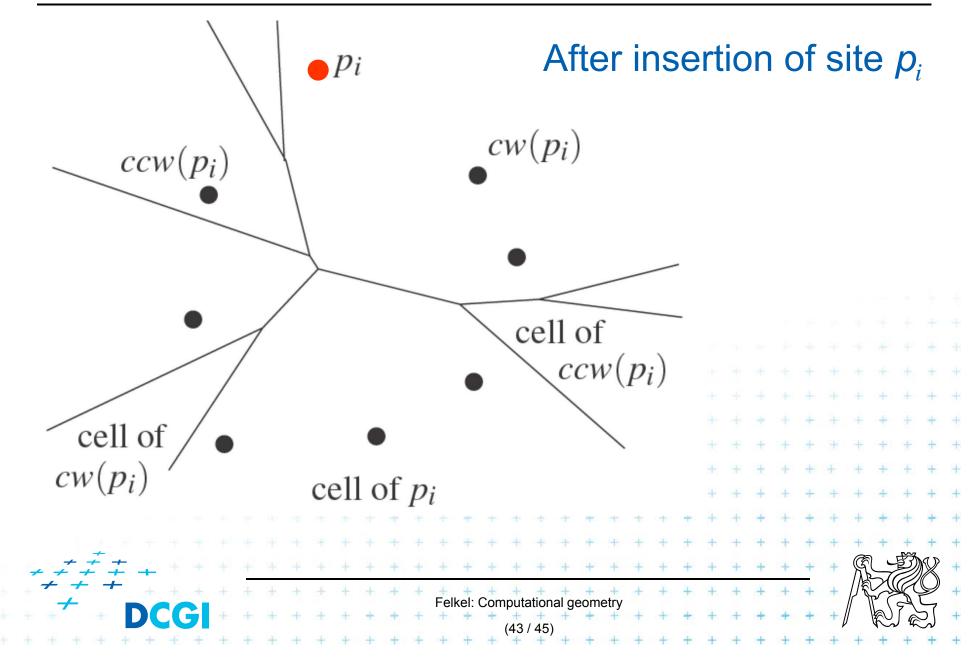












References

[Berg]	Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
	Computational Geometry: Algorithms and Applications, Springer-
	Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
	77973-5, Chapter 7, http://www.cs.uu.nl/geobook/

- [Preparata] Preperata, F.P., Shamos, M.I.: *Computational Geometry. An Introduction.* Berlin, Springer-Verlag, 1985. Chapters 5 and 6
- [Reiberg] Reiberg, J: Implementierung Geometrischer Algoritmen. Berechnung von Voronoi Diagrammen fuer Liniensegmente. http://www.reiberg.net/project/voronoi/avortrag.ps.gz
- [Nandy] Subhas C. Nandy: Voronoi Diagram presentation. Advanced Computing and Microelectronics Unit. Indian Statistical Institute. Kolkata 700108 <u>http://www.tcs.tifr.res.in/~igga/lectureslides/vor-July-08-2009.ppt</u>
- [applets] <u>http://www.personal.kent.edu/~rmuhamma/Compgeometry/</u> <u>MyCG/Voronoi/Fortune/fortune.htm</u> a <u>http://www.liefke.com/hartmut/cis677/</u> + + + + + + + +

