CGl

DEPARTMENT OF COMPUTER GRAPHICS AND INTERACTION

CONVEX HULL IN 3 DIMENSIONS

PETR FELKEL

FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/adm39vqg/start

Based on [Berg], [Preparata], [Rourke] and [Boissonnat]

Version from 8.11.2012

Talk overview

= Lower bounds for convex hull in 2D and 3D
= Other criteria for CH algorithm classification
= Recapitulation of CH algorithms

= Terminology refresh

= Convex hullin 3D
— Terminology

— Algorithms
* Gift wrapping
» D&C Merge
* Randomized Incremental

WWW.cguu.com

-~ -
> A o~ —— —
—~ DCGI Felkel: Computational geometry
(2/35) :

Lower bounds for Convex hull

= O(nlogn)inE?% E?

= O(n h), where his number of CH facets
— output sensitive algs.

= O(n) for sorted points and for polygon
= O(log n) for new point insertion in online algs.

= —:_ -
+++++
-+~ -+~ -4 4
- DCGI Felkel: Computational geometry .
(3/35) a

Other criteria for CH algorithm classification

= Optimality — depends on data order (or distribution)
In worst case x In expected case

= Output sensitivity — depends on the result
= Extendable to higher dimensions?

s Off-line versus on-line

— Off-line — all points available, preprocessing for search speedup

— On-line — stream of points, new point p, on demand, just one new
point at a time, CH valid for {p,, p,,..., p, }

— Real-time — points come as they “want”
(not faster than optimal constant O(log n) inter-arrival delay)

= Parallelizable
= Dynamic — points can be deleted

—

- o —f—
e S =~ == ——
> -~ -+
—~ DCGI Felkel: Computational geometry
(4/35)

Why to search other convex hull algorithms?

= Graham scan H
O(n log n) time and O(n) space is ;}pp/

— optimal in worst case <0s tos
— not optimal in average case (not output sensitive)
—only 2D

— off-line

— serial (not parallel)

— not dynamic

O(n) for polygon (will be discussed in seminar [9])

= : -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(5/35)

Jarvis March — Gift wrapping

= O(hn) time and O(n) space is
— not optimal in worst case O(n?)
— may be optimal if h << n (output sensitive)
— 3D or higher dimensions (see later)
— off-line
— serial (not parallel)
— not dynamic

= : -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(6/35)

Divide & Conquer

= O(nlog n)time and O(n) space is
— optimal in worst case (in 2D or 3D)
— not optimal in average case (not output sensitive)
— 2D or 3D (circular ordering), in higher dims not optimal
— off-line
— Version with sorting (the presented one) — serial

— Parallel for overlapping merged hulls
(see Chapter 3.3.5 in Preparata for details)

— not dynamic

+++++ ! !
> -~ -+
—/= DCGI Felkel: Computational geometry
(7 /35)

Quick hull

= O(nlog n) expected time, O(n?) the worst case
and O(n) space in 2D is
— not optimal in worst case O(n?)

— optimal if uniform distribution
then h << n (output sensitive)

— 2D, or higher dimensions [see http://www.qghull.org/]
— off-line

— serial (not parallel)
— not dynamic

o A o~ ==

—~ DCGI Felkel: Computational geometry
(8/35)

Chan

= O(nlog h) time and O(n) space is
— optimal for h points on convex hull (output sensitive)
— 2D and 3D --- gift wrapping
— off-line
— Serial (not parallel)
— not dynamic

= : -
+++++
> -~ -+
—/= DCGI Felkel: Computational geometry
(9/35)

Preparata’s on-line algorithm

= New point p is tested
— Inside —> ignored

— Qutside —> added to hull

 Find left and right supporting lines (touch at supporting points)
* Remove points between supporting points
« Add p to CH between supporting lines

To be eliminoted

-
-

-

_ ,—*\ Right support line
Left support line

f
I
N
7
f\x !
\ !
L
%
! A\
/! \

- Points of support

DC GI Felkel: Computational geometry
(10/ 35)

[Preparata]

R

Overmars and van Leeuven

= Allow dynamic CH
(on-line insert & delete)

= Manage special tree with all intermediate CHs
= WiIll be discussed on seminar [7]

[Preparata]

+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(11/35) T

Convex hull in 3D

= Terminology

= Algorithms

1. Gift wrapping
2. D&C Merge
3. Randomized Incremental

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(12/35)

Terminology

= Polytope (d-polytope)
= convex hull of finite set of points in E°

° o 2-polytop 3-polytop

. oy
[A
¢ ° ‘b

= Simplex (k-simplex, d-simplex)
= CH of k + 1 affine independent points

n/l-simplex : 2-simplex 3-simplex

= -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(13/35) T

Terminology (2)

= Affine combination
= linear combination of the points {p, p,, ..., Pn}
whose coefficients {1, A,, ..., A,} sumto 1,and A, € R

.Z:‘/l' P, / N e

P2
= Affine independent points

= no one point can be expressed as affine combination of

the others
P+
= Convex combination pz./;)/. -
= linear combination of the points {p,, Py, ..., P}

whose coefficients {14, A,, ..., A, } sum to 1, and A; € R*,
(i.,e., Vie {1,...,k}, L, = 0)

-~ -
> A o~ == =
—~ DCGI Felkel: Computational geometry
(14 / 35) a

Terminology (3)

= Any (d-1)-dimensional hyperplane h divides the space into
(open) halfspaces h*™ and h-,
sothat E" =h*U hu h-

= Defh*=h*Uh, h-=h-Uh (closed halfspaces)

= Hyperplane supports a polytope P
(Supporting hyperplane)
— if hn Pis not empty and
— if P is entirely contained within either h*or h-

o A o~ == =

—~ DCGI Felkel: Computational geometry

(15/35)

Faces and facets

= Face of the polytope
= Intersection of polytope P with a supporting
hyperplane h

— Faces are convex polytops of dimension d ranging

fromOtod—1 a
Proper faces:
— O-face = vertex Vertices: a,b,c,d
1f = ed Edges: ab, ac, ad, bc, bd, cd
— 1-1ace = edge b Facets: abc, abd, bcd
— (d — 1)-face = facet =

In 3D we often say face, but it means correctly a facet

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(167 35)

Proper faces

= Proper faces

= Faces of dimension d ranging from 0 to d — 1

= Improper faces

= proper faces + two additional faces:
— {} = Empty set = face of dimension -1
— Entire polytope = face of dimension d

d

Improper faces:
Empty set {}
d Vertices: a,b,c,d
Edges: ab, ac, ad, bc, bd, cd
Facets: abc, abd, bcd
Entire polytope: abcd

o A o~ == =

Felkel: Computational geometry

(17 / 35)

Incident graph

= Stores topology of the polytope Dimension

= D-simplex is very regular face structure:
— 1-face for each pair of vertices
_— 2-face for each triple of vertices

- o —f—
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(187 35)

Facts about polytopes

= Boundary o polytope is union of its proper faces

= Polytope has finite number of faces (next slide).
Each face is a polytope

= Polytope is convex hull of its vertices (the def)
(its bounded)

= Polytope is the intersection of finite number of
closed halfspaces h*
(conversely not: intersection of closed halfspaces
may be unbounded => called polyhedron or
unbounded polytope)

= —:_ -
+++++
-+~ -+~ -4 4
- DCGI Felkel: Computational geometry .
(19/35) a

Number of faces on a d-simplex

= Number of j-dimensional faces on a d-simplex
= number of (j+1)-element subsets from domain of

size (d+1)
(d——l)_ (d+1)!
j+1) (G+DNd)

= EX.: Tetrahedron = 3-simplex:
. 3+1) 4
s — facets (2-dim. faces) (2+1j:ﬂ:

| _ 3+1) 4 _5
i — edges (1-dim. faces) (HJ—ﬁ‘
0 3+1 |

Al
— vertices (0-dim faces) (oﬂj:ﬁ:“

= —:_ -
e S =~ == ——
> -~ -+
—~ DCGI Felkel: Computational geometry

(20 / 35)

Complexity of 3D convex hull is O(n)

= The worst case complexity = if all n points on CH

=> use 3-simplex for complexity derivation
1. has all points on its surface — on the Convex Hull
2. has usually more edges E and faces F than 3-polytope

3. has triangular facets, each generates 3 edges,
shared by 2 triangles => 3F = 2E 2-manifold

o V-E + 2 ... Euler formula for V = n points

V—E+2E/3=2 F=2B/3
V—2=E/%2V—4
E=3V-6, V=n F = O(n)
E =0O(n)

= —:_ -
S S =~ == ——
> -~ -+
—~ DCGI Felkel: Computational geometry
(21/35)

1. Gift wrapping in higher dimensions

= First known algorithm for n-dimensions (1970)
= Direct extension of 2D alg.
= Complexity O(nF)

— F is number of CH facets

— Algorithm is output sensitive

— Details on seminar,
assignment [10]

[Preparata]

- o —f—
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(22/35)

The angle comparison [preparata3.4.1]

Cotangent of the agle ¢, between halfplanes F and ep,
=—|UP,| I'|UV|, where |UP,|=v,a and |UV|=v,.n

For each P, compute ¢, = arcctan(—V,.a / v,.n),
The angle is max @,

[Preparata]

- o —f—
+++++
-+ -+ -+
-~ DCGI Felkel: Computational geometry
(23/35)

2. Divide & conqguer 3D convex hull ipreparata, Hong77,

= Sort points in x-coord
= Recursively split, construct CH, merge
= Merge takes O(n) => O(n log n) total time

[Rourke]

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(24 /1 35)

Divide & conquer 3D convex hull (ereparata, Hong 77

= Merge(C, with C,) uses qift wrapping
— Gift wrap plane around edge e — find new point p on C, or on C,
(neighbor of a or b)

— Search just the CW or CCW neighbors around a, b

[Rourke]

-+ = L
e S =~ == ——
e
DC GI Felkel: Computational geometry
(2517 35)

Divide & conquer 3D convex hull (ereparata, Hong 77

= Performance O(n log n) rely on circular ordering
— In 2D: Ordering of points around CH

— In 3D: Ordering of vertices around 2-polytop C,
(vertices on intersection of new CH edges with
separating plane H,)
[ordering around
horizon of C, and C,
does not exist,
both horizons may
be non-convex and
even not simple

polygons] E ° polsariell

I

o A o~ == =

—~ DCGI Felkel: Computational geometry
(26 / 35)

Divide & conquer 3D convex hull (ereparata, Hong 77

Merge(C, with C,)

= Find the first CH edge L connecting C, with C,
= e=L

= While not back at L do

— storeeto C

— Gift wrap plane around edge e — find new point P on C, or on C,
(neighbor of a or b)

— € = new edge to just found end-point P
— Store new triangle ePto C

s Discard hidden faces inside CH from C
= Report merged convex hull C

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(27 /1 35) _

Divide & conquer 3D convex hull (ereparata, Hong 77

= Problem of gift wrapping deisbrunner ss;

— The edges on horizon do ngt form simple circle bsut a
“barbell” 0,2,4,0,1,3,5,1 Left horizon

Do not stop here!! barbell (Cinka)

[Berg]

Felkel: Computational geometry %
(2817 35)

3. Randomized incremental alg. principle

1. Create tetrahedron (smallest CH in 3D)
— Take 2 points p, and p,
— Search the 3 point not lying on line p,p,
— Search the 4" point not lying in plane p,p,p; ...ifnot found, use 2D CH

2. Perform random permutation of remaining points {ps,..., p,}
3. Forp,in{ps,..., p,} do add point p,to CH(P,_,)

Notation: forr =1 let P, = {p,,..., p,} is set of already processed pts
— If p, lies inside or on the boundary of CH(P,.,) then do nothing
— If p, lies outside of CH(P,_,) then

« find and remove visible faces
* create new faces (triangles) connecting p, with lines of horizon

Lo i " [Berg]
by Dr
CH(P) 1
Felkel: Computational geometry
(29 /35)

Conflict graph

= Stores unprocessed points with facets of CH they see
conflicts

= Bipartite graph
points p, t>r ... unprocessed points
facets of CH(P,)... facets of convex hull O~

conflict arcs ... conflict, as visible
facets cannot be

in CH

poInts l facets

= Maintains sets:
P.onsiict(f) ... points, that see f

Feonrici(P,)... facets visible from p, Peonfict(f) .
(visible region — deleted after insertion of p,) i

= —:_ -
e S =~ == ——
> -~ -+
DC GI Felkel: Computational geometry

(30/ 35)

F conﬂict(Pr)

Visibility between point and face

= Face fis visible from a point p if that point lies in the open
half-space on the other side of h,than the polytope
p fis visible from p (p is above the plane)

*I' fis not visible from rlying in the plane of f
]/ & (this case will be discussed next)

fis not visible from q

p € Poomict(), P is among the points that see the face f

fe Foomict(p) T is among the faces that visible from point p

= —:_ -
e A =~ =
> -~ -+
DC GI Felkel: Computational geometry
(31/735)

New triangles to horizon

= Horizon = edges e incident to visible and invisible facets

horizon

[Berg]

= New triangle f connects edge e on horizon and point p,and
— creates new node for facet f updates the conflict graph

— add arcs to points visible f (subset from P_q(f;) U Posict(f))

= Coplanar triangles on the plane ep, are
merged with new triangle.
Conflicts are copied from the deleted triangle (same plane)

T £ 4 O
-~ DCGI Felkel: Computational geometry _
(32/35) _

Incremental Convex hull algorithm

IncrementalConvexHull(P)
Input: Set of n points in general position in 3D space
Output: The convex hull C=CH(P) of P
1. Find four points that form an initial tetrahedron, C = CH({p.,p,.,p3,p,})
2. Compute random permutation {p;, ps, ..., p,} Of the remaining points
3. Initialize the conflict graph with all visible pairs (p,1),
where fis facet of C and p,, t > 4, are non-processed points

4. forr=5tondo ...insert p,, into C

5. 1 if(Feomict(P,) is not empty) then ...p, is outside, any facet is visible
6. : i Delete all facets F , q(p,) from C ... only from hull C, not from G

7. ¢ : Walk around visible region boundary, create list L of horizon edges

8. : i for alleeLdo

9. : i i connecte top,byanew triangular facet f

10.: & i if f is coplanar with its neighbor facet f’ along e

11.: & i then merge fand f, take conflict list from f’

12.+ & F else ... determine conflicts for new face f

L E ... [continue on the next slide] %
Felkel: Computational geometry .
DCGI o o) wyel

Incremental Convex hull algorithm (cont...)

12. % & ¢ else ... not coplanar => determine conflicts for new face f

13. % & ¢ : Create node for fin G //... new face in conflict graph G
14. % & : Let f, andf, be the facets incident to e in the old CH(P, ;)
19. P(e) — F)c:oflict(f)u PCOf|ICt(f)

16. & & : for all points p € P(e) do

17. % & i : if fis visible from p, then add(p, f)to G ... new edges
18. i i Delete the node corresponding to p, and the nodes corresponding

: : to facets in Fqq(p;) from G, together with their incident arcs
19. return C

Complexity: Convex hull of a set of points in E3 can be computed
in O(n log n) randomized expected time

For proof see: [Berg, Section11.3]

= —:_ -
e A =~ =
> -~ -+
DC GI Felkel: Computational geometry
(34 /35) T

Conclusion

= Recapitulation of 2D algorithms
= 3D algorithms

— Gift wrapping

— D&C

— Randomized incremental

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(35/35)

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
Computational Geometry: Algorithms and Applications, Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapter 11, http://www.cs.uu.nl/geocbook/

[Boissonnat] J.-D. Boissonnat and M. Yvinec, Algorithmic Geometry,
Cambridge University Press, UK, 1998. Chapter 9 — Convex hulls

[Preparata] Preperata, F.P., Shamos, M.l.: Computational Geometry. An
Introduction. Berlin, Springer-Verlag,1985.

[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture
Notes for Spring 2007, University of Maryland, Lecture 3.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

[Chan] Timothy M. Chan. Optimal output-sensitive convex hull
algorithms in two and three dimensions., Discrete and
Computational Geometry, 16, 1996, 361-368.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10:1.1.44:.389

- —:— - !

e A o —— = b t
D C GI Felkel: Computational geometry

4 { - 4 4 } .] L - o - _:, _!_

sy

+

