
CONVEX HULL IN 3 DIMENSIONS

PETR FELKEL
FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Preparata], [Rourke] and [Boissonnat]

Version from 8.11.2012

Felkel: Computational geometry

(2 / 35)

Talk overview

 Lower bounds for convex hull in 2D and 3D
 Other criteria for CH algorithm classification
 Recapitulation of CH algorithms
 Terminology refresh
 Convex hull in 3D

– Terminology
– Algorithms

• Gift wrapping
• D&C Merge
• Randomized Incremental

www.cguu.com

www.cguu.com

Felkel: Computational geometry

(3 / 35)

Lower bounds for Convex hull

 O(n log n) in E2, E3

 O(n h), where h is number of CH facets
– output sensitive algs.

 O(n) for sorted points and for polygon
 O(log n) for new point insertion in online algs.

Felkel: Computational geometry

(4 / 35)

Other criteria for CH algorithm classification

 Optimality – depends on data order (or distribution)
In worst case x In expected case

 Output sensitivity – depends on the result
 Extendable to higher dimensions?
 Off-line versus on-line

– Off-line – all points available, preprocessing for search speedup
– On-line – stream of points, new point pi on demand, just one new

point at a time, CH valid for {p1, p2 ,…, pr }
– Real-time – points come as they “want”

(not faster than optimal constant O(log n) inter-arrival delay)

 Parallelizable
 Dynamic – points can be deleted

Felkel: Computational geometry

(5 / 35)

Why to search other convex hull algorithms?

 Graham scan
O(n log n) time and O(n) space is

– optimal in worst case
– not optimal in average case (not output sensitive)
– only 2D
– off-line
– serial (not parallel)
– not dynamic

O(n) for polygon (will be discussed in seminar [9])

tos

p

sos

pop

Felkel: Computational geometry

(6 / 35)

Jarvis March – Gift wrapping

 O(hn) time and O(n) space is
– not optimal in worst case O(n2)
– may be optimal if h << n (output sensitive)
– 3D or higher dimensions (see later)
– off-line
– serial (not parallel)
– not dynamic

p1 p2

ph

Felkel: Computational geometry

(7 / 35)

Divide & Conquer

 O(n log n) time and O(n) space is
– optimal in worst case (in 2D or 3D)
– not optimal in average case (not output sensitive)
– 2D or 3D (circular ordering), in higher dims not optimal
– off-line
– Version with sorting (the presented one) – serial
– Parallel for overlapping merged hulls

(see Chapter 3.3.5 in Preparata for details)
– not dynamic

a
b

Felkel: Computational geometry

(8 / 35)

Quick hull

 O(n log n) expected time, O(n2) the worst case
and O(n) space in 2D is

– not optimal in worst case O(n2)
– optimal if uniform distribution

then h << n (output sensitive)
– 2D, or higher dimensions [see http://www.qhull.org/]
– off-line
– serial (not parallel)
– not dynamic

[Mount]

Felkel: Computational geometry

(9 / 35)

Chan

 O(n log h) time and O(n) space is
– optimal for h points on convex hull (output sensitive)
– 2D and 3D --- gift wrapping
– off-line
– Serial (not parallel)
– not dynamic

Felkel: Computational geometry

(10 / 35)

Preparata’s on-line algorithm

 New point p is tested
– Inside –> ignored
– Outside –> added to hull

• Find left and right supporting lines (touch at supporting points)
• Remove points between supporting points
• Add p to CH between supporting lines

[Preparata]

Felkel: Computational geometry

(11 / 35)

Overmars and van Leeuven

 Allow dynamic CH
(on-line insert & delete)

 Manage special tree with all intermediate CHs
 Will be discussed on seminar [7]

[Preparata]

Felkel: Computational geometry

(12 / 35)

Convex hull in 3D

 Terminology
 Algorithms

1. Gift wrapping
2. D&C Merge
3. Randomized Incremental

Felkel: Computational geometry

(13 / 35)

 Polytope (d-polytope)
= convex hull of finite set of points in Ed

 Simplex (k-simplex, d-simplex)
= CH of k + 1 affine independent points

= “Special” Polytope with all the points are on the CH

Terminology

1-simplex 2-simplex 3-simplex

2-polytop 3-polytop

Felkel: Computational geometry

(14 / 35)

Terminology (2)
 Affine combination

= linear combination of the points {p1, p2, …, pn}
whose coefficients {l1, l2, …, ln} sum to 1, and li œ R

 Affine independent points
= no one point can be expressed as affine combination of
the others

 Convex combination
= linear combination of the points {p1, p2, …, pn}

whose coefficients {l1, l2, …, ln} sum to 1, and li œ R+
0

(i.e., "i œ {1,…,k}, li ¥ 0)

p1
p2

p

p1

p2

p
=

n

i
ii p

1
λ

Felkel: Computational geometry

(15 / 35)

Terminology (3)
 Any (d-1)-dimensional hyperplane h divides the space into

(open) halfspaces h+ and h–,
so that En = h+ (h (h–

 Def: h+ = h+ (h, h– = h– (h (closed halfspaces)

 Hyperplane supports a polytope P
(Supporting hyperplane)

– if h ' P is not empty and
– if P is entirely contained within either h+ or h–

hP h+

h–

h+

h
h–

P P h
h+

h–
In 2D:

P’

Felkel: Computational geometry

(16 / 35)

Faces and facets

 Face of the polytope
= Intersection of polytope P with a supporting
hyperplane h

– Faces are convex polytops of dimension d ranging
from 0 to d – 1

– 0-face = vertex
– 1-face = edge
– (d – 1)-face = facet

In 3D we often say face, but it means correctly a facet

Proper faces:
Vertices: a,b,c,d
Edges: ab, ac, ad, bc, bd, cd
Facets: abc, abd, bcd

Felkel: Computational geometry

(17 / 35)

Proper faces

 Proper faces
= Faces of dimension d ranging from 0 to d – 1

 Improper faces
= proper faces + two additional faces:

– {} = Empty set = face of dimension -1
– Entire polytope = face of dimension d

Improper faces:
Empty set {}
Vertices: a,b,c,d
Edges: ab, ac, ad, bc, bd, cd
Facets: abc, abd, bcd
Entire polytope: abcd

Felkel: Computational geometry

(18 / 35)

Incident graph

 Stores topology of the polytope
 Ex: 3-simplex:

 D-simplex is very regular face structure:
– 1-face for each pair of vertices
– 2-face for each triple of vertices

Dimension

-1

0

1

2

3
[Boissonnat]

Felkel: Computational geometry

(19 / 35)

Facts about polytopes

 Boundary o polytope is union of its proper faces
 Polytope has finite number of faces (next slide).

Each face is a polytope
 Polytope is convex hull of its vertices (the def)

(its bounded)
 Polytope is the intersection of finite number of

closed halfspaces h+

(conversely not: intersection of closed halfspaces
may be unbounded => called polyhedron or
unbounded polytope)

Felkel: Computational geometry

(20 / 35)

Number of faces on a d-simplex

 Number of j-dimensional faces on a d-simplex
= number of (j+1)-element subsets from domain of
size (d+1)

 Ex.: Tetrahedron = 3-simplex:
– facets (2-dim. faces)

– edges (1-dim. faces)

– vertices (0-dim faces)

4
!1!3
!4

12
13

==







+
+

6
!2!2

!4
11
13

==







+
+

4
!3!1
!4

10
13

==







+
+

Felkel: Computational geometry

(21 / 35)

Complexity of 3D convex hull is O(n)

 The worst case complexity if all n points on CH
=> use 3-simplex for complexity derivation

1. has all points on its surface – on the Convex Hull
2. has usually more edges E and faces F than 3-polytope
3. has triangular facets, each generates 3 edges,

shared by 2 triangles => 3F = 2E 2-manifold

 V – E + F = 2 … Euler formula for V = n points
V – E + 2E/3 = 2 F = 2E / 3

V – 2 = E / 3 F = 2V – 4
E = 3V – 6, V = n F = O(n)
E = O(n)

–

Felkel: Computational geometry

(22 / 35)

1. Gift wrapping in higher dimensions

 First known algorithm for n-dimensions (1970)
 Direct extension of 2D alg.
 Complexity O(nF)

– F is number of CH facets
– Algorithm is output sensitive

– Details on seminar,
assignment [10]

[Preparata]

Felkel: Computational geometry

(23 / 35)

The angle comparison [Preparata 3.4.1]

[Preparata]

Cotangent of the agle φk between halfplanes F and epk
= – |UP2| / |UV| , where |UP2|= vk.a and |UV| = vk.n

For each Pk compute φk = arcctan(– vk.a / vk.n),
The angle is max φk

φk

Felkel: Computational geometry

(24 / 35)

2. Divide & conquer 3D convex hull [Preparata, Hong77]

 Sort points in x-coord
 Recursively split, construct CH, merge
 Merge takes O(n) => O(n log n) total time

[Rourke]

Felkel: Computational geometry

(25 / 35)

Divide & conquer 3D convex hull [Preparata, Hong 77]

 Merge(C1 with C2) uses gift wrapping
– Gift wrap plane around edge e – find new point p on C1 or on C2

(neighbor of a or b)
– Search just the CW or CCW neighbors around a, b

C1

C2

[Rourke]

Felkel: Computational geometry

(26 / 35)

Divide & conquer 3D convex hull [Preparata, Hong 77]

 Performance O(n log n) rely on circular ordering
– In 2D: Ordering of points around CH
– In 3D: Ordering of vertices around 2-polytop C0

(vertices on intersection of new CH edges with
separating plane H0)
[ordering around
horizon of C1 and C2
does not exist,
both horizons may
be non-convex and
even not simple
polygons]

– In ¥ 4D: Such ordering does not exist
[Boissonnat]

Felkel: Computational geometry

(27 / 35)

Divide & conquer 3D convex hull [Preparata, Hong 77]

Merge(C1 with C2)
 Find the first CH edge L connecting C1 with C2

 e = L
 While not back at L do

– store e to C
– Gift wrap plane around edge e – find new point P on C1 or on C2

(neighbor of a or b)
– e = new edge to just found end-point P
– Store new triangle eP to C

 Discard hidden faces inside CH from C
 Report merged convex hull C

Felkel: Computational geometry

(28 / 35)

Divide & conquer 3D convex hull [Preparata, Hong 77]

 Problem of gift wrapping [Edelsbrunner 88]

– The edges on horizon do not form simple circle but a
“barbell” 0,2,4,0,1,3,5,1

Do not stop here!

[Berg]

Left horizon
barbell (činka)

Felkel: Computational geometry

(29 /35)

3. Randomized incremental alg. principle
1. Create tetrahedron (smallest CH in 3D)

– Take 2 points p1 and p2

– Search the 3rd point not lying on line p1p2

– Search the 4th point not lying in plane p1p2 p3 …if not found, use 2D CH

2. Perform random permutation of remaining points {p5,…, pn}
3. For pr in {p5,…, pn} do add point pr to CH(Pr-1)

Notation: for r ¥ 1 let Pr = {p1,…, pr} is set of already processed pts
– If pr lies inside or on the boundary of CH(Pr-1) then do nothing
– If pr lies outside of CH(Pr-1) then

• find and remove visible faces
• create new faces (triangles) connecting pr with lines of horizon

[Berg]

Felkel: Computational geometry

(30 / 35)

Conflict graph
 Stores unprocessed points with facets of CH they see

 Bipartite graph
points pt, t > r … unprocessed points
facets of CH(Pr)… facets of convex hull
conflict arcs … conflict, as visible

facets cannot be
in CH

 Maintains sets:
Pconflict(f) … points, that see f
Fconflict(pr)… facets visible from pr

(visible region – deleted after insertion of pr)
[Berg]

Felkel: Computational geometry

(31 / 35)

Visibility between point and face
 Face f is visible from a point p if that point lies in the open

half-space on the other side of hf than the polytope

f

p

q

f is visible from p (p is above the plane)

f is not visible from q

f is not visible from r lying in the plane of f
(this case will be discussed next)

rhf

p ϵ Pconflict(f), p is among the points that see the face f
f ϵ Fconflict(p) f is among the faces that visible from point p

Felkel: Computational geometry

(32 / 35)

New triangles to horizon
 Horizon = edges e incident to visible and invisible facets

 New triangle f connects edge e on horizon and point pr and
– creates new node for facet f

– add arcs to points visible f (subset from Pcoflict(f1) (Pcoflict(f2))
 Coplanar triangles on the plane epr are

merged with new triangle.
Conflicts are copied from the deleted triangle (same plane)

[Berg]

[Berg]

updates the conflict graph

Input:
Output:

Felkel: Computational geometry

(33 /35)

Incremental Convex hull algorithm
IncrementalConvexHull(P)

Set of n points in general position in 3D space
The convex hull C=CH(P) of P

1. Find four points that form an initial tetrahedron, C = CH({p1,p2 ,p3 ,p4 })
2. Compute random permutation {p5, p6,…, pn} of the remaining points
3. Initialize the conflict graph with all visible pairs (pt,f),

where f is facet of C and pt, t > 4, are non-processed points
4. for r = 5 to n do …insert pr, into C
5. if(Fconflict(pr) is not empty) then …pr is outside, any facet is visible
6. Delete all facets Fconflict(pr) from C … only from hull C, not from G
7. Walk around visible region boundary, create list L of horizon edges
8. for all e œ L do
9. connect e to pr by a new triangular facet f
10. if f is coplanar with its neighbor facet f’ along e
11. then merge f and f’, take conflict list from f’
12. else … determine conflicts for new face f

… [continue on the next slide]

Input:
Output:

Felkel: Computational geometry

(34 /35)

Incremental Convex hull algorithm (cont…)
12. else … not coplanar => determine conflicts for new face f
13. Create node for f in G //… new face in conflict graph G
14. Let f1 and f2 be the facets incident to e in the old CH(Pr-1)
15. P(e) = Pcoflict(f1) (Pcoflict(f2)
16. for all points p œ P(e) do
17. if f is visible from p, then add(p, f) to G … new edges
18. Delete the node corresponding to pr and the nodes corresponding

to facets in Fcoflict(pr) from G, together with their incident arcs
19. return C

Complexity: Convex hull of a set of points in E3 can be computed
in O(n log n) randomized expected time

For proof see: [Berg, Section11.3]

Felkel: Computational geometry

(35 / 35)

Conclusion

 Recapitulation of 2D algorithms
 3D algorithms

– Gift wrapping
– D&C
– Randomized incremental

Felkel: Computational geometry

(36 / 35)

References
[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:

Computational Geometry: Algorithms and Applications, Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapter 11, http://www.cs.uu.nl/geobook/

[Boissonnat] J.-D. Boissonnat and M. Yvinec, Algorithmic Geometry,
Cambridge University Press, UK, 1998. Chapter 9 – Convex hulls

[Preparata] Preperata, F.P., Shamos, M.I.: Computational Geometry. An
Introduction. Berlin, Springer-Verlag,1985.

[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture
Notes for Spring 2007, University of Maryland, Lecture 3.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

[Chan] Timothy M. Chan. Optimal output-sensitive convex hull
algorithms in two and three dimensions., Discrete and
Computational Geometry, 16, 1996, 361-368.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.389

