

CONVEX HULLS

PETR FELKEL

FEL CTU PRAGUE

felkel@fel.cvut.cz

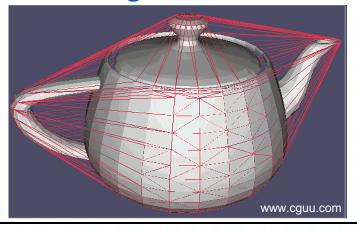
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg] and [Mount]

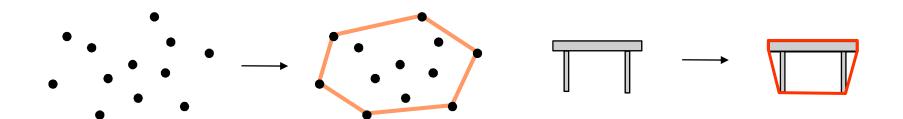
Version from 17.1.2016

Talk overview

- Motivation and Definitions
- Graham's scan incremental algorithm
- Divide & Conquer
- Quick hull
- Jarvis's March selection by gift wrapping
- Chan's algorithm optimal algorithm



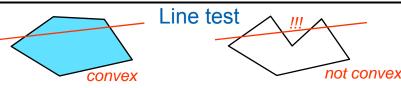
Convex hull (CH) – why to deal with it?



- Shape approximation of a point set or complex shapes (other common approximations include: minimal area enclosing rectangle, circle, and ellipse,...) – e.g., for collision detection
- Initial stage of many algorithms to filter out irrelevant points, e.g.:
 - diameter of a point set
 - minimum enclosing convex shapes (such as rectangle, circle, and ellipse) depend only on points on CH

Convexity

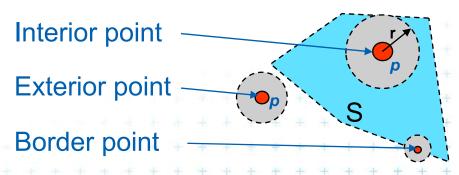
A set S is convex



- if for any points $p,q \in S$ the lines segment $\overline{pq} \subseteq S$, or
- if any convex combination of p and q is in S
- Convex combination of points p, q is any point that can be expressed as $(1-\alpha)p + \alpha q$, where $0 \le \alpha \le 1$
- Convex hull CH(S) of set S is (similar definitions)
 - the smallest set that contains S (convex)
 - or: intersection of all convex sets that contain S
 - Or in 2D for points: the smallest convex polygon containing all given points

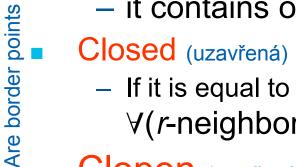
Definitions from topology in metric spaces

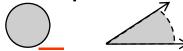
- Metric space each two of points have defined a distance ,
- r-neighborhood of a point p and radius r > 0
 set of points whose distance to p is strictly less than r
 (open ball of diameter r centered about p)
- Given set S, point p is
 - Interior point of S if $\exists r, r > 0$, (r-neighborhood about p) ⊂ S
 - Exterior point if it lies in interior of the complement of S
 - Border point is neither interior neither exterior



Definitions from topology in metric spaces

- \forall p ∈ S \exists (r-neighborhood about p of radius r) \subseteq S
- it contains only interior points, none of its border points





- If it is equal to its closure S (uzávěr = smallest closed set containing S in topol. space) $\forall (r\text{-neighborhood about } p \text{ of radius } r) \cap S \neq \emptyset)$
- Clopen (otevřená i uzavřená) Ex. Empty set ϕ , finite set of disjoint components
 - if it is both closed and open

space Q = rational numbers

(S= all positive rational numbers whose square is bigger than 2) $S = (\sqrt{2}, \infty)$ in $Q, \sqrt{2} \notin Q, S = S$

Bounded (ohraničená)

- if it can be enclosed in a ball of finite radius
- Compact (kompaktní)

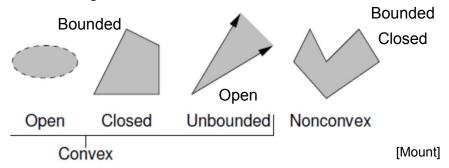
if it is both closed and bounded

Goes to infinity?

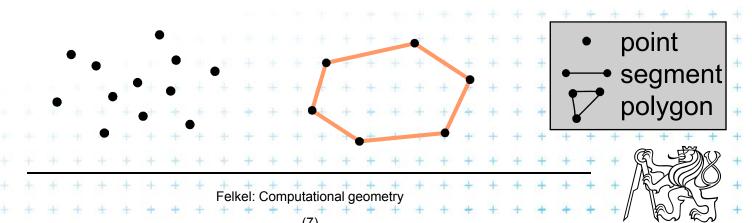
Felkel: Computational geometry

Definitions from topology in metric spaces

Convex set S may be bounded or unbounded

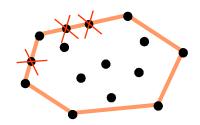


- Convex hull CH(S) of a finite set S of points in the plane
 - = Bounded, closed, (= compact) convex polygon



Convex hull representation

- CCW enumeration of vertices
- Contains only the extreme points ("endpoints" of collinear points)



- Simplification for this semester
 Assume the input points are in general position,
 - no two points have the same x-coordinates and
 - no three points are collinear
 - -> We avoid problem with non-extreme points on x
 (solution may be simple e.g. lexicographic ordering)

Online x offline algorithms

- Incremental algorithm
 - Proceeds one element at a time (step-by-step)
- Online algorithm (must be incremental)
 - is started on a partial (or empty) input and
 - continues its processing as additional input data becomes available (comes online, thus the name).
 - Ex.: insertion sort
- Offline algorithm (may be incremental)
 - requires the entire input data from the beginning
 - than it can start
 - Ex.: selection sort

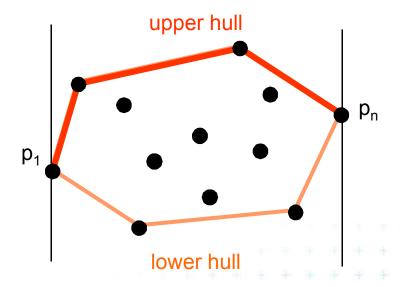
Graham's scan

- Incremental O(n log n) algorithm
- Objects (points) are added one at a time
- Order of insertion is important
 - Random insertion
 - —> we need to test: is-point-inside-the-hull(p)

- Ordered insertion
 Find the point p with the smallest y coordinate first
 Sort points p_i according to increasing angles around the point p (angle of pp_i and x axis)
- Andrew's modification: sort points p_i according to x and add them left to right (construct upper & lower hull)
 - Sorting x-coordinates is simpler to implement than sorting of angles

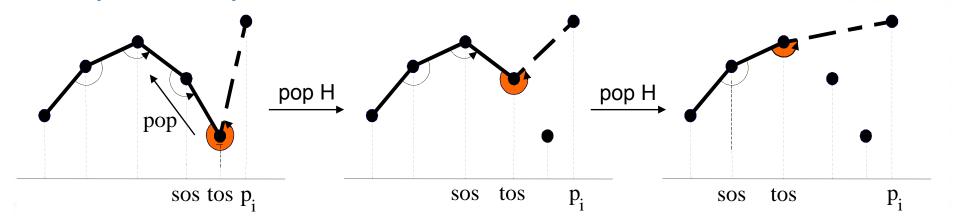
Graham's scan – modification by Andrew

- $O(n \log n)$ for unsorted points, O(n) for sorted pts.
- Upper hull, then lower hull. Merge.
- Minimum and maximum on x belong to CH



Graham's scan - incremental algorithm

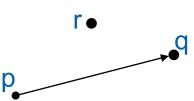
```
push
                                                                               pop
GrahamsScan(points p)
Input:
          points p
                                                                                tos
                                                                                SOS
Output: CCW points on the convex hull
    sort points according to increasing x-coord -> \{p_1, p_2, ..., p_n\}
                                                                          Stack H
   push(p_1, H), push(p_2, H)
                                                                    upper hull
   for i = 3 to n do
    : :while( size(H) \geq 2 and orient( sos, tos, p<sub>i</sub> ) \geq 0 ) // skip left turns
5.
    pop H
                                                              // (back-tracking)
    push(p<sub>i</sub>, H)
                                                 // store right turn
   store H to the output (in reverse order) // upper hull
   Symmetrically the lower hull
```



Position of point in relation to segment

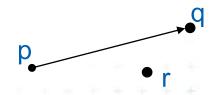
orient(p, q, r) $\begin{cases} > 0 & r \text{ is left from } pq, \text{ CCW orient} \\ = 0 & \text{if } (p, q, r) \text{ are collinear} \\ < 0 & r \text{ is right from } pq, \text{ CW orient} \end{cases}$

Point r is: left from pq



on segment pq

right from pq

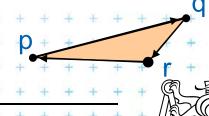


Convex polygon with edges pq and qr or

Triangle pqr: is CCW oriented de

degenerated to line

s CW oriented



Felkel: Computational geometry

Geometric meaning: Area of Triangle ABC

Position of point C in relation to segment AB is given by
 the sign of the triangle ABC area
 2x Oriented area

$$T = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$$

$$\mathbf{b} = \mathbf{C} - \mathbf{A}$$

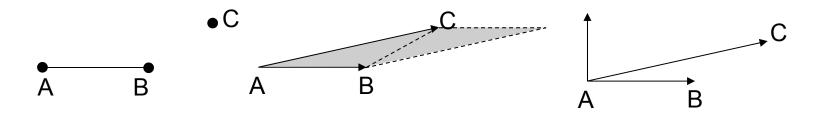
T - 1/ /a la a la

$$T = \frac{1}{2} (\mathbf{a}_{x} \mathbf{b}_{y} - \mathbf{a}_{y} \mathbf{b}_{x})$$

$$=> 2T = A_{x} B_{y} + B_{x} C_{y} + C_{x} A_{y} - A_{x} C_{y} - B_{x} A_{y} - C_{x} B_{y}$$

$$2T = \begin{bmatrix} A_x & A_y & 1 \\ B_x & B_y & 1 \\ C_x & C_y & 1 \end{bmatrix} = A_x B_y + B_x C_y + C_x A_y - A_x C_y - B_x A_y - C_x B_y$$

Geometric meaning: Area of Triangle ABC

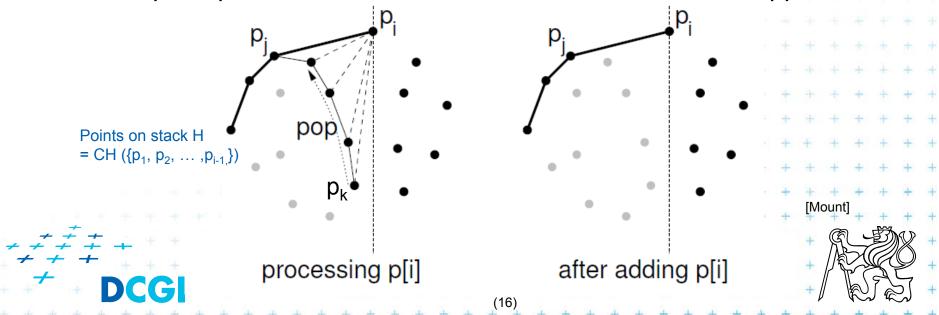


Equal to size of Vector product of vectors AB x AC

- = Vector perpendicular to both vectors AB and AC
- If vectors in plane
 - it is perpendicular to the plane (normal vector of the plane)
 - only z-coordinate is non-zero
- $|\overrightarrow{AB} \times \overrightarrow{AC}|$ = z-coordinate of the normal vector
 - = area of parallelopid
 - = 2x area T of triangle ABC

Is Graham's scan correct?

- Stack H at any stage contains upper hull of the points {p₁,...,p_i, p_i}, processed so far
 - For induction basis $H=\{p_1, p_2\} \dots$ true
 - p_i = last added point to CH, p_i = its predecessor on CH
 - Each point p_k that lies between p_j and p_i lies below p_jp_i and should not be part of UH after addition of p_i => is removed before push p_i.
 [orient(p_i, p_k, p_i) > 0, p_i is left from p_ip_k => p_k is removed from UH]
 - Stop if 2 points in the stack or after construction of the upper hull



Complexity of Graham's scan

- Sorting according $x O(n \log n)$
- Each point pushed once -O(n)
- Some (d_i ≤ n) points deleted while processing p_i
 - -O(n)
- The same for lower hull -O(n)
- Total $O(n \log n)$ for unsorted points O(n) for sorted points

Divide & Conquer

- ullet $\Theta(n \log(n))$ algorithm
- Extension of mergesort
- Principle
 - Sort points according to x-coordinate,
 - recursively partition the points and solve CH.

Convex hull by D&C

Upper tangent ConvexHullD&C(points P) Input: points p Output: CCW points on the convex hull Sort points P according to x 2. return hull(P) hull(points P) if $|P| \le 3$ then Lower tangent 5. compute CH by brute force, 6. return Partition P into two sets L and R (with lower & higher coords x) Recursively compute $H_1 = hull(L)$, $H_R = hull(R)$ 8. $H = Merge hulls(H_I, H_R)$ by computing 10. Upper_tangent(H_L, H_R) // find nearest points, H_L CCW, H_R CV Lower_tangent(H_I , H_R) // (H_I CW, H_R CCW) 11. discard points between these two tangents 12. return H

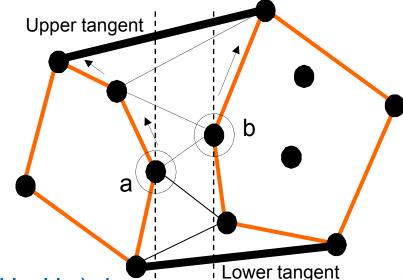
Search for upper tangent (lower is symmetrical)

Upper_tangent(H_L, H_R)

Input: two non-overlapping CH's

Output: upper tangent ab

- 1. $a = rightmost H_L$
- 2. $b = leftmost H_R$



- 3. while (ab is not the upper tangent for H_1 , H_R) do
- 4. while (ab is not the upper tangent for H_L) a = a.succ // move CCW
- 5. while (ab is not the upper tangent for H_R) b = b.pred // move CW
- 6. Return ab

Where: (ab is not the upper tangent for H_L) => orient(a, b, a.succ) ≥ 0 which means a.succ is left from line ab

$$m = |H_L| + |H_R| \le |L| + |R| =$$
 Upper Tangent: $O(m) = O(n)$

Convex hull by D&C complexity

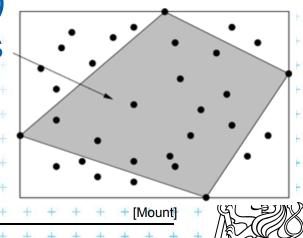
- Initial sort O(n log(n))
- Function hull()
 - Upper and lower tangent
 Merge hulls
 Discard points between tangents O(n)
- Overall complexity

- Recursion
$$T(n) = \begin{cases} 1 & \dots \text{ if } n \leq 3 \\ 2T(n/2) + O(n) & \dots \text{ otherwise} \end{cases}$$

- Overall complexity of CH by D&C: \Rightarrow O($n \log(n)$)

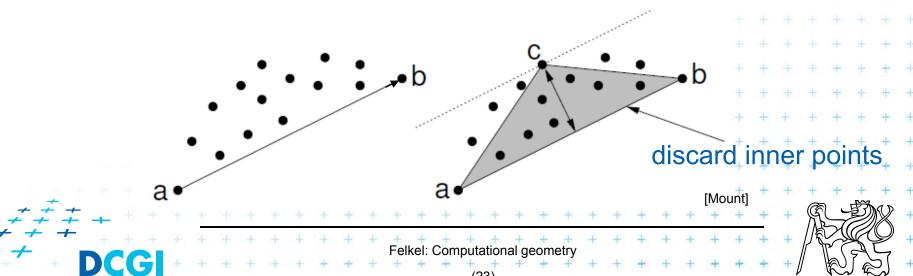
Quick hull

- A variant of Quick Sort
- $O(n \log n)$ expected time, max $O(n^2)$
- Principle
 - in praxis, most of the points lie in the interior of CH
 - E.g., for uniformly distributed points in unit square, we expect only O(log n) points on CH
- Find extreme points (parts of CH) quadrilateral, discard inner points
 - Add 4 edges to temp hull T
 - Process points outside 4 edges



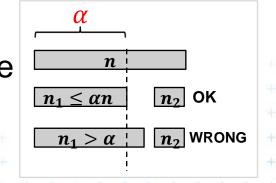
Process each of four groups of points outside

- For points outside ab (left from ab for clockwise CH)
 - Find point c on the hull max. perpend. distance to ab
 - Discard points inside triangle abc (right from the edges)
 - Split points into two subsets
 - outside ac (left from ac) and outside cb (left from cb)
 - Process points outside ac and cb recursively
 - Replace edge ab in T by edges ac and cb



Quick hull complexity

- n points remain outside the hull
- T(n) = running time for such n points outside
 - O(n) selection of splitting point c
 - O(n) point classification to inside & (n_1+n_2) outside
 - $-n_1+n_2 \le n$
 - The running time is given by recurrence $T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n_1) + T(n_2) & \text{where } n_1 + n_2 \le n \end{cases}$



- If evenly distributed that $\max(n_1, n_2) \le \alpha n$, $0 < \alpha < 1$ then solves as QuickSort to $O(cn \log n)$ where $c=f(\alpha)$ else $O(n^2)$ for unbalanced splits

Jarvis's March – selection by gift wrapping

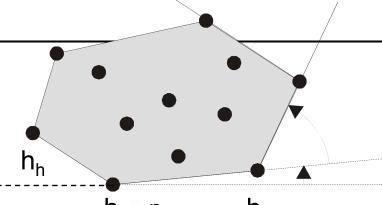
- Variant of O(n²) selection sort
- Output sensitive algorithm
- O(nh) ... h = number of points on convex hull

Jarvis's March

JarvisCH(points P)

Input: points p

Output: CCW points on the convex hull



- 1. Take point p_{min} with minimum y-coordinate, $h_1 = p_{min}$ h_2 // p_{min} will be the first point in the hull append it to the hull as h_1
- 2. Take a horizontal line, i.e., create temporary point $p_0 = (-\infty, h_1.y)$
- 3. j = 1
- 4. repeat
- 5. Rotate the line around h_j until it bounces to the nearest point $q = p_q$ // compute the smallest angle by the "smallest orient(h_{j-1} , h_j , q)"
- 6. j++ append the bounced nearest point q to the hull as next h_j
- 7. until $(q \neq p_{min})$

Output sensitive algorithm

Complexity: $O(n) + O(n) * h \Rightarrow O(h*n)$

good for low number of points on convex hull

Output sensitive algorithm

- Worst case complexity analysis analyzes the worst case data
 - Presumes, that all (const fraction of) points lie on the CH
 - The points are ordered along CH
 - => We need sorting => $\Omega(n \log n)$ of CH algorithm
- Such assumption is rare
 - usually only much less of points are on CH
- Output sensitive algorithms
 - Depend on: input size n and the size of the output h
 - Are more efficient for small output sizes
 - Reasonable time for CH is $O(n \log h)$, h = Number of points on the CH

Chan's algorithm

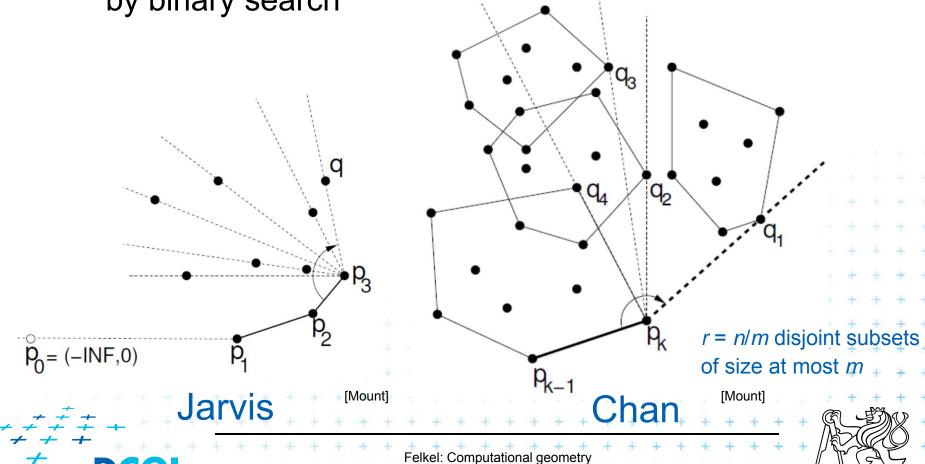
- Cleverly combines Graham's scan and Jarvis's march algorithms
- Goal is O(n log h) running time
 - We cannot afford sorting of all points $\Omega(n \log n)$
 - => Idea: work on parts, limit the part sizes to polynomial h^c the complexity does not change => log h^c = log h
 - h is unknown we get the estimation later
 - Use estimation m, better not too high => $h \le m \le h^2$
- 1. Partition points P into r-groups of size m, r = n/m
 - Each group take O(m log m) time
 sort + Graham
 - r-groups take $O(r m \log m) = O(n \log m)$ Jarvis

Merging of *m* parts in Chan's algorithm

2. Merge r-group CHs as "fat points"

Tangents to convex m-gon can be found in O(log m)

by binary search



Chan's algorithm complexity

h points on the final convex hull

- => at most *h* steps in the Jarvis march algorithm
- each step computes r-tangents, O(log m) each
- merging together O(hr log m)

r-groups of size m, r = n/m

Complete algorithm O(n log h)

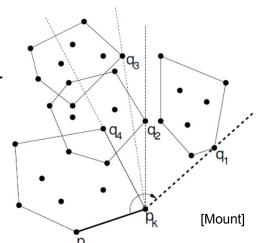
- Graham's scan on partitions $O(r.m \log m) = O(n \log m)$
- Jarvis Merging: $O(hr \log m) = O(h n/m \log m), \dots 4a)$ $h \le m \le h^2 = O(n \log m)$
- Altogether
 O(n log m)
- How to guess m? Wait!
 - 1) use m as an estimation of h 2) if it fails, increase m

Chan's algorithm for known m

PartialHull(P, m)

Input: points P

Output: group of size m



 $O(\log m)$

- 1. Partition *P* into $r = \lceil n/m \rceil$ disjoint subsets $\{p_1, p_2, ..., p_r\}$ of size at most *m*
- 2. for i=1 to r do
 - a) Convex hull by GrahamsScan(P_i), store vertices in ordered array
- 3. let p_1 = the bottom most point of P and p_0 = $(-\infty, p_1.y)$
- 4. for k = 1 to m do // compute merged hull points
 - a) for i = 1 to r do // angle to all r subsets => points $q_i \not$ Compute the point $q_i \in P$ that maximizes the angle $\angle p_{k-1}, p_k, q_i$
 - b) let p_{k+1} be the point $q \in \{q_1, q_2, ..., q_r\}$ that maximizes $\angle p_{k-1}, p_k, q$ (p_{k+1} is the new point in CH)
 - c) if $p_{k+1} = p_1$ then return $\{p_1, p_2, ..., p_k\}$
- 5. return "Fail, m was too small"

Chan's algorithm – estimation of m

```
ChansHull
Input:
          points P
Output: convex hull p<sub>1</sub>...p<sub>k</sub>
1. for t = 1, 2, ..., \lceil \lg \lg h \rceil do {
      a) let m = \min(2^{2^{1}}, n)
      b) L = PartialHull(P, m)
      c) if L \neq "Fail, m was too small" then return L
Sequence of choices of m are \{4, 16, 256, \dots, 2^{2^{n_t}}, \dots, n\} ... squares
Example: for h = 23 points on convex hull of n = 57 points, the algorithm
    will try this sequence of choices of m \{ 4, 16, 57 \}
      1. 4 and 16 will fail
      2. 256 will be replaced by n=57
                                   Felkel: Computational geometry
```

Complexity of Chan's Convex Hull?

- The worst case: Compute all iterations
- t^{th} iteration takes O($n \log 2^{2^{t}}$) = O($n 2^{t}$)
- Algorithm stops when $2^{2^{t}} \ge h => t = \llbracket g \lg h \rrbracket$
- All $t = [\lg \lg h]$ iterations take:

Using the fact that
$$\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1$$

$$\sum_{t=1}^{\lg \lg h} n 2^t = n \sum_{t=1}^{\lg \lg h} 2^t \le n 2^{1 + \lg \lg h} = 2n \lg h = O(n \log h)$$

2x more work in the worst case

Conclusion in 2D

• Graham's scan: $O(n \log n)$, O(n) for sorted pts

Divide & Conquer: O(n log n)

• Quick hull: $O(n \log n)$, max $O(n^2)$ ~ distrib.

Jarvis's march: O(hn), max $O(n^2) \sim pts$ on CH

Chan's alg.: O(n log h) ~ pts on CH

asymptotically optimal

but

constants are too high to be useful

References

- [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapter 5, http://www.cs.uu.nl/geobook/
- [Mount] David Mount, CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lectures 3 and 4. http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml
- [Chan] Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions., *Discrete and Computational Geometry*, 16, 1996, 361-368.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.389

