CGl

DEPARTMENT OF COMPUTER GRAPHICS AND INTERACTION

CONVEX HULLS

PETR FELKEL

FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/adm39vq/start

Based on [Berg] and [Mount]

Version from 19.10.2014

Talk overview

= Motivation and Definitions
= Graham’s scan — incremental algorithm

= Divide & Conquer

= Quick hull

= Jarvis’'s March — selection by gift wrapping
= Chan’s algorithm — optimal algorithm

e WWW.CQUU.Com
+++++
-+ - - -
-~ DCGI Felkel: Computational geometry _ _
(2) | L - o 4 - 4 4 4=

Convex hull (CH) — why to deal with it?

A e

= Shape approximation of a point set or complex shapes
(other common approximations include: minimal area enclosing
rectangle, circle, and ellipse,...) — e.g., for collision detection

= [nitial stage of many algorithms to filter out irrelevant
points, e.g.:
— diameter of a point set 4/" ‘/

— minimum enclosing convex shapes (such as rectangle, circle,
and ellipse) depend only on points on CH

. J
— —/_—I_ -
K A =~ ==
+< -+~ -+
—~ DCGI Felkel: Computational geometry

@)

Convexity

Line test 1
= Aset Sis convex @ @

— if for any points p,gq € S the lines segment pg c S, or
— if any convex combination of pand gisin S

= Convex combination of points p, g is any point that
can be expressed as 9

(1—a)p+aqg,where0 <a <1 p~/;=1

a=0
= Convex hull CH(S) of set S —is (similar definitions)
— the smallest set that contains S (convex)
— or: intersection of all convex sets that contain S

— Or in 2D for points: the smallest convex polygon
containing all given points

- o~ —4—
+++++
+< -+~ -+
—/ DCGI Felkel: Computational geometry
(4)

Definitions from topology in metric spaces

= Metric space —each two of points have defined a distance ,

= r-neighborhood of a point p and radius r > 0 x-;‘/_
= set of points whose distance to p s strictly less than r
(open ball of diameter r centered about p)

= Givenset S, point pis
— Interior point of S —if (r-neighborhood about p of radius r) ¢ S
— Exterior point —if it lies in interior of the complement of S
— Border point — is neither interior neither exterior

Interior point \\H‘/]

Exterior point \r_.. S

Border point |

- —/_—I_ ——

S o o~ =

-+ - -
—-~ DCGI Felkel: Computational geometry _

(%)

Definitions from topology In metric spaces

7
/,\\

= SetSis Open (otevrena) 'S
—VpeS 3 (r—nelghborhood about pofradius r) ¢ S
— It contains only interior points, none of its border points

= Closed (uzaviena) Q 4

— Ifitis equal to its closure S (uzavér = smallest closed set containing S in topol. space)

V(r-neighborhood about p of radius) N'S =)

O Clopen (oteviena i uzaviend) — Ex. Empty set @, finite set of disjoint components

— if it is both closed and open space Q = rational numbers
(S= all positive rational numbers whose square is biggerthan2) S =(v/2,©)inQ,vV2¢Q,S=S

7
N BOUnded (ohranic¢ena) A Unbounded < b

— if it can be enclosed in a ball of finite radius

N CompaC’[(kompaktni) A Q

. ~—= Ifitis both closed and bounded
+—/-+ +DCGI FeIkeI:Compu:t)ionaI geometry %

Definitions from topology in metric spaces

= Convex set S may be bounded or unbounded

Bounded Bounded
P Closed
Open
Open Closed Unbounded| Nonconvex

[
Convex [Mount]

s Convex hull CH(S) of a finite set S of points in the
plane
= Bounded, closed, (= compact) convex polygon

. *. . * point
‘., f . «— segment
P e 4, . v polygon

— —/_—I_ -
+++++
-+~ o -
ot Felkel: Computational geometry
DCGI _

Convex hull representation

= CCW enumeration of vertices

= Contains only the extreme points _;W\ "N
(“endpoints” of collinear points) &+, °

= Simplification for this semester
Assume the input points are in general position,
— no two points have the same x-coordinates and
— no three points are collinear

-> We avoid problem with non-extreme points on x
_ (solution may be simple — e.g. lexicographic orderin%)

- o ——
> = o~ ==

—~ DCGI Felkel: Computational geometry
(8)

Online x offline algorithms

= Incremental algorithm
— Proceeds one element at a time (step-by-step)
= Online algorithm (must be incremental)

— Is started on a partial (or empty) input and

— continues its processing as additional input data
becomes available (comes online, thus the name).

— EX.: Insertion sort

n Offline algorithm (may be incremental)

— requires the entire input data from the beginning
— than it can start
— Ex.: selection sort

- o~ —4—
+++++
>~ -~ =4
- DCGI Felkel: Computational geometry
(9)

Graham’s scan

= Incremental O(n log n) algorithm
= Objects (points) are added one at a time

= Order of insertion is important

— Random insertion
—> we need to test: is-point-inside-the-hull(p) Q)

— Ordered insertion
Sort points according to x and add them left to right - it
guarantees, that just added point is outside current hull

« Original algorithm sorted the angles around the point with minimal y
 Sorting x-coordinates is simpler to implement than sorting of angles

- o~ —4—
K A =~ ==
+< -+~ -+
—/ DCGI Felkel: Computational geometry
(10) .

Graham’s scan

= O(nlog n) for unsorted points, O(n) for sorted pts.
= Upper hull, then lower hull. Merge.

= Minimum and maximum on x belong to CH
upper hull

lower hull

- o —f—
+++++
+< -+~ -+
- DCGI Felkel: Computational geometry _
(11) |

Graham’s scan — incremental algorithm

push pop
GrahamsScan(points p) /\' f\
Input: points p s
Output: CCW points on the convex hull

1. sort points according to increasing x-coord -> {p4, P5, ..., Py} Stack H

store H to the output (in reverse order) // upper hull

2. |push(ps, H), push(p,, H) upper hull
3. |fori=3tondo

4. |z :while(size(H) = 2 and orient(sos, tos, p,) = 0) // skip left turns
5 |== popH // (back-tracking]
6. [= push(p;, H) // store right turn

/.

8.

Symmetrically the lower hull

SOS tos P, SOS tos 2 Sos tos p

Position of point in relation to segment

(>0 ris left from pqg, CCW orient
orient(p,qg,r)y =0 if(p, q, r)are collinear
_<0 risright from pg, CW orient

Point ris: left from pqg on segment pqg right from pq
e (

p/q p/q e

Convex polygon with edges pq and gr or
Triangle pqgr: is CCW oriented degenerated is CW oriented

r to line 9
. pﬁ
>~ -~ =4
—~ Felkel: Computational geometry %
DCGI (13) : ; :

Geometric meaning: Area of Triangle ABC

= Position of point C in relation to segment AB is given by

the sign of the triangle ABC area 2x Oriented area
s [=% |A_|§ X A_(§| o
= a=B-A
. b-0-4 e e

= T=Y(ab, -a/b,)
=> 2T =A,B,+B,C,+ C,A,-AC,-BA,-C,B,

A, A1 Or directly as determinant
2T - Bx By 1 - AX By + BXCy + CX Ay oy AX Cy = BXAy = CX By
C, C, 1

- —/_—I_ ——
+++++
-+ - -
e DCGI Felkel: Computational geometry _
(14) |

Geometric meaning: Area of Triangle ABC

oC

o ol
A B A B

Equal to size of Vector product of vectors AB x AC
= Vector perpendicular to both vectors AB and AC

= If vectors in plane
— It is perpendicular to the plane (normal vector of the plane)
— only z-coordinate is non-zero

= |ATI§ X A_(5| = z-coordinate of the normal vector
= area of parallelopid
= 2x area T of triangle ABC

- —/_—I_ ——
+++++
+< -+~ -+
- DCGI Felkel: Computational geometry _
(15) |

Is Graham’s scan correct?

= Stack H at any stage contains upper hull of the points
{P1,---,0; Pi}; processed so far
— For induction basis H={p,, p,} ... true
— p;= last added point to CH, p; = its predecessor on CH

— Each point p, that lies between p; and p; lies below p;p; and should
not be part of UH after addition of p, => is removed before push p..
[orient(p;, Pk, p;) > 0, p; is left from p,p, => p is removed from UH]

— Stop if 2 points in the stack or after construction of the upper hull
| ipi p.

Points on stack H o !
= CH ({py, Pz -+ Pi1) 17 Bl .

[Mount]

- - + processiné pIi] after addiﬁg p[i] %
7 DCGI (16)

Complexity of Graham’s scan

= Sorting according x — O(nlog n)

= Each point pushed once — O(n)

= Some (d. < n) points deleted while processing p.
— O(n)

= [he same for lower hull — O(n)

= [otal O(nlog n) for unsorted points
O(n) for sorted points

- o —f—
+++++
+< -+~ -+ _
- DCGI Felkel: Computational geometry _
(17) R i

Divide & Conquer

= ®(nlog(n)) algorithm
= Extension of mergesort

= Principle
— Sort points according to x-coordinate,
— recursively partition the points and solve CH.

— —/_—I_ -
+++++
+< -+~ -+
—/ DCGI Felkel: Computational geometry
(18)

Convex hull by D&C

ConvexHullD&C(points P)
Input: points p
Output: CCW points on the convex hull

1. Sort points P according to x
2. return hull(P)

Upper tangent :

3. hull(points P)

4. if |P| < 3 then

5. compute CH by brute force, , Lower tangent
6. return

7. Partition P into two sets L and R (with lower & higher coords x)
8. Recursively compute H, = hull(L), Hg = hull(R)

9. H = Merge hulls(H,, Hg) by computing

10. Upper_tangent(H,, Hg) // find nearest points, H. CCW, H;z CW
11. Lower_tangent(H,, Hg) // (H. CW, Hgz CCW)

12. discard points between these two tangents

13. _ returnH

- o —f—
I S o~ —— —
-+ - - _
-~ DCGI Felkel: Computational geometry _
(19) O |

Search for upper tangent (lower is symmetrical)

Upper tangen '/I

;!
.

Upper_tangent(H,, Hy)
Input: two non-overlapping CH’s
Output: upper tangent ab

"
-®-

1. a=rightmost H_
b = leftmost Hy

¥

L t
while(ab is not the upper tangent for H,, Hg) do , Fower tangen

while(ab is not the upper tangent for H,) a= a.succ // move CCW
while(ab is not the upper tangent for Hy) b= b.pred // move CW
Return ab

o 01~ W

Where: (ab is not the upper tangent for H,) => orient(a, b, a.succ) =0
which means a.succ is left from line ab

m= [H [+ [Hg/ =[L]+ |[R] =>Upper Tangent. O(m) = O(n

- o ——
> = o~ ==

—~ DCGI Felkel: Computational geometry
(20)

Convex hull by D&C complexity

= Initial sort O(nlog(n))
= Function hull()

— Upper and lower tangent O(n)
— Merge hulls O(1) » O(n)
— Discard points between tangents O(n)

—/

= Overall complexity

— Recursion
1 .. 1fn<3

2T(n/2) + O(n) ... otherwise
— Overall complexity of CH by D&C: => O(nlog(n))

- o~ —4—
K A =~ ==
+< -+~ -+
—~ DCGI Felkel: Computational geometry
(21) _

Quick hull

= A variant of Quick Sort
= O(nlog n) expected time, max O(n?)
= Principle

— in praxis, most of the points lie in the interior of CH

— E.qg., for uniformly distributed points in unit square, we
expect only O(log n) points on CH

= Find extreme points (parts of CH)
quadrilateral, discard inner points |

— Add 4 edges to temp hull T
— Process points outside 4 edges

.
o * *
* .
= ++: :—_ — [Mount]
+< -+~ -+
—/ DCGI Felkel: Computational geometry
(22)

Process each of four groups of points outside

= For points outside ab (left from ab for clockwise CH)
— Find point ¢ on the hull — max. perpend. distance to ab
— Discard points inside triangle abc (right from the edges)

— Split points into two subsets
- outside ac (left from ac) and outside cb (left from cb)

— Process points outside ac and cb recursively
— Replace edge abin T by edges ac and cb

o [Mount]
- o~ —4—
K A =~ ==
>~ -~ =4
—/ DCGI Felkel: Computational geometry
(23)

Quick hull complexity

= npoints remain outside the hull

= [(n) = running time for such n points outside
— O(n) - selection of splitting point ¢
— O(n) - point classification to inside & (n,+n,) outside
— Ny+N,<n
— The running time is given by recurrence
1 ifn=1
Tn) = {T(n1) + T(n,) where n,+n,<n
— If evenly distributed that max(n,, n,) <an, 0 < a < 1

then solves as QuickSort to O(cn log n) where c=f(a)
else O(n?) for unbalanced splits

— : -
+++++
+< -+~ -+
—/ DCGI Felkel: Computational geometry
(24)

Jarvis’s March - selection by gift wrapping

= Variant of O(n?) selection sort
= Output sensitive algorithm

= O(nh) ... h=number of points on convex hull

- o —f—
+++++
-+ - - _
e DCGI Felkel: Computational geometry _
(25) i ol ke B

Jarvis’s March >&

JarvisCH(points P)
Input: points p
Output: CCW points on the convex hull o

P
1. Take point p, with minimumoy—coordinate, P P2
/I p, will be the first point in the hull

2. Take a horizontal line, i.e., create temporary point p, = (=0, p;.y)

3. i=1

4. repeat

. Rotate the line around p; until bounces to the nearest point g
// compute the smallest angle by the smallest orient(p,,, p;, Q)

6. I++

o, = the bounced nearest point q
7. until (q # py4)

Output sensitive algorithm

Complexity: O(n)+ O(n)*h =>0(h"n)

o good for low number of points on convex hull %
-~ + =4
—- Felkel: Computational geometry '
DCGI

Output sensitive algorithm

= Worst case complexity analysis analyzes the worst
case data
— Presumes, that all (const fraction of) points lie on the CH
— The points are ordered along CH
=> We need sorting => Q(n log n) of CH algorithm

= Such assumption is rare
— usually only much less of points are on CH

= Output sensitive algorithms

— Depend on: input size n and the size of the output h
— Are more efficient for small output sizes
_— Reasonable time for CH is O(n |Og h), h = Number of points on the CH

- o ——
> = o~ ==

—/ DCGI Felkel: Computational geometry

(27)

Chan’s algorithm

= Cleverly combines Graham’s scan and Jarvis’s
march algorithms

= Goalis O(nlog h) running time
— We cannot afford sorting of all points - (2(n log n)

=> |dea: work on parts, limit the part sizes to polynomial h¢
the complexity does not change => log h¢ =log h

— his unknown — we get the estimation later
— Use estimation m, better not too high => h < m < h?

= 1. Partition points P into r-groups of size m, r= n/m
— Each group take O(m log m) time - sort + Graham
— r-groups take O(rmlog m) = O(nlog m) - Jarvis

- o~ —4—
+++++
+< -+~ -+
—/ DCGI Felkel: Computational geometry
(28)

Merging of m parts in Chan’s algorithm

= 2. Merge r-group CHs as “fat points”

— Tangents to convex m-gon can be found in O(log m)
by binary search

r= n/m disjoint subsets
of size at most m

-1
: [Mount] [Mount]
-+~ o -
ot Felkel: Computational geometry
DCGI]

Chan’s algorithm complexity

= hpoints on the final convex hull
=> at most h steps in the Jarvis march algorithm
— each step computes r-tangents, O(log m) each
— merging together O(hrlog m)
r-groups of size m, r= n/m
= Complete algorithm O(n log h)
— Graham’s scan on partitions O(r.mlog m)=0(nlog m)

— Jarvis Merging: O(hrlogm) =0O(hn/mlog m), ...4a)
h<m=<Hh? = 0O(nlog m)

— Altogether O(nlog m)
— How to guess m? Wait!
e 1) use m as an estimation of h 2) if it fails, increase m
+++ +DCGI Felkel: Computational geometry %

(30)

Chan’s algorithm for known m

PartialHull(P, m)
Input: points P
Output: group of size m

1. Partition Pinto r=[n/mldisjoint subsets {p;, P, ..., p.} of siz& at most m
2. fori=1tordo

a) Convex hull by GrahamsScan(P,), store vertices in ordered array
3. let p; = the bottom most point of P and p, = (—oo, p,.y)
4, fork=1tomdo // compute merged hull points O(log m)

a) fori=1tordo // angle to all r subsets => points g;
n Compute the point g; € P that maximizes the angle . p, 4, Pk, G
- b) let p,,, be the point g € {q;, q,, ..., g} that maximizes L p,_, Px; 9
© (D, is the new point in CH)

c) if p.4 =Py thenreturn {p,, p,, ..., P}
5. return “Fail, mwas too small”

- o~ —4—
o o e =
-+~ o -
S Felkel: Computational geometry
DCGI

(31)

Chan’s algorithm — estimation of m

ChansHull
Input: points P
Output: convex hull p;...p,

1. fort=1,2, ..., [lglgh] do {
a) let m=min(22", n)
b) L = PartialHull(P, m)
c) if L # “Fail, mwas too small” then return L

}

Sequence of choices of mare { 4, 16, 256,...,2%" ..., n} ... squares

Example: for h = 23 points on convex hull of n = 57 points, the algorithm
will try this sequence of choices of m { 4, 16,57}
1. 4 and 16 will fail
2. 256 will be replaced by n

—

- o~ —4—
K A =~ ==
+< -+~ -+
—~ DCGI Felkel: Computational geometry
(32) .

Complexity of Chan’s Convex Hull?

= [he worst case: Compute all iterations
= tthiteration takes O(nlog 22™) = O(n 29
= Algorithm stops when 22t = h =>t=|g Ig h|
= All t=[lg g Hl iterations take:

Using the fact that > 2" =2"" —1

—
lglg h lglg h

dYn2'=n) 2" <n2"™*" =2nlg h=0(nlogh)

g |

A 2X more work in the worst case
+< -+~ -+
- Felkel: Computational geometry _
DCGI (33) .

Conclusion in 2D

= Graham’s scan: O(nlog n), O(n) for sorted pts
= Divide & Conquer: O(nlog n)

= Quick hull: O(nlog n), max O(n?) ~ distrib.
= Jarvis’s march: O(hn), max O(n?) ~ pts on CH
= Chan’s alg.: O(nlog h) ~ pts on CH

- —/_—I_ ——
+++++
-+ - - _
-~ DCGI Felkel: Computational geometry _
(34) R

References

o [Berg] Mark de Berq, Otfried Cheonq, Marc van Kreveld, Mark
Overmars: Computational Geometry: Algorithms and Applications,
Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapter 5, htip://www.cs.uu.nl/geobook/

= [Mount] David Mount, - CMSC 754: Computational Geometry, Lecture
Notes for Spring 2007, University of Maryland, Lectures 3 and 4.
http://www.cs.umd.edu/class/sprinq2007/cmsc754/lectures.shtml

o [Chan] Timothy M. Chan. Optimal output-sensitive convex hull
algorithms in two and three dimensions., Discrete and Computational
Geometry, 16, 1996, 361-368.

hitp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.389

- : -t J |

I S o~ —— — t

-+ -+ -4 TENE g

-~ DCGI Felkel: Computational geometry _ _ l y
(35) |

-4 + + 4+ + 4+ + + + + + + 4+ + + +

