
CONVEX HULLS

PETR FELKEL
FEL CTU PRAGUE

felkel@fel.cvut.cz

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg] and [Mount]

Version from 19.10.2014

Felkel: Computational geometry

(2)

Talk overview

� Motivation and Definitions

� Graham’s scan – incremental algorithm

� Divide & Conquer

� Quick hull

� Jarvis’s March – selection by gift wrapping

� Chan’s algorithm – optimal algorithm

www.cguu.com

Felkel: Computational geometry

(3)

Convex hull (CH) – why to deal with it?

� Shape approximation of a point set or complex shapes
(other common approximations include: minimal area enclosing
rectangle, circle, and ellipse,…) – e.g., for collision detection

� Initial stage of many algorithms to filter out irrelevant

points, e.g.:

– diameter of a point set

– minimum enclosing convex shapes (such as rectangle, circle,

and ellipse) depend only on points on CH

Felkel: Computational geometry

(4)

not convex

!!!

Convexity

� A set S is convex

– if for any points p,q œ S the lines segment pq Œ S, or

– if any convex combination of p and q is in S

� Convex combination of points p, q is any point that

can be expressed as
(1 – a) p + aq, where 0 § a § 1

� Convex hull CH(S) of set S – is (similar definitions)

– the smallest set that contains S (convex)

– or: intersection of all convex sets that contain S

– Or in 2D for points: the smallest convex polygon

containing all given points

p

q

a=0

a=1

convex

Line test

Felkel: Computational geometry

(5)

� Metric space – each two of points have defined a distance

� r-neighborhood of a point p and radius r > 0

= set of points whose distance to p is strictly less than r

(open ball of diameter r centered about p)

� Given set S, point p is

– Interior point of S – if (r-neighborhood about p of radius r) Õ S

– Exterior point – if it lies in interior of the complement of S

– Border point – is neither interior neither exterior

Definitions from topology in metric spaces

p

p

r

p

Interior point

Exterior point

Border point

r

S

Felkel: Computational geometry

(6)

Definitions from topology in metric spaces

� Set S is Open (otevřená)

– "p œ S $ (r-neighborhood about p of radius r) Œ S

– it contains only interior points, none of its border points

� Closed (uzavřená)

– If it is equal to its closure S (uzávěr = smallest closed set containing S in topol. space)

"(r-neighborhood about p of radius r) … S ∫ «)

� Clopen (otevřená i uzavřená) – Ex. Empty set «, finite set of disjoint components

– if it is both closed and open space Q = rational numbers

(S= all positive rational numbers whose square is bigger than 2) S = (◊2, ¶) in Q, ◊2 – Q, S = S

� Bounded (ohraničená) Unbounded

– if it can be enclosed in a ball of finite radius

� Compact (kompaktní)

– if it is both closed and bounded

Felkel: Computational geometry

(7)

Definitions from topology in metric spaces

� Convex set S may be bounded or unbounded

� Convex hull CH(S) of a finite set S of points in the

plane

= Bounded, closed, (= compact) convex polygon

point
segment
polygon

[Mount]

Open

Bounded
Bounded

Closed

Felkel: Computational geometry

(8)

Convex hull representation

� CCW enumeration of vertices

� Contains only the extreme points

(“endpoints” of collinear points)

� Simplification for this semester

Assume the input points are in general position,

– no two points have the same x-coordinates and

– no three points are collinear

-> We avoid problem with non-extreme points on x

(solution may be simple – e.g. lexicographic ordering)

Felkel: Computational geometry

(9)

Online x offline algorithms

� Incremental algorithm

– Proceeds one element at a time (step-by-step)

� Online algorithm (must be incremental)

– is started on a partial (or empty) input and

– continues its processing as additional input data

becomes available (comes online, thus the name).

– Ex.: insertion sort

� Offline algorithm (may be incremental)

– requires the entire input data from the beginning

– than it can start

– Ex.: selection sort

Felkel: Computational geometry

(10)

Graham’s scan

� Incremental O(n log n) algorithm

� Objects (points) are added one at a time

� Order of insertion is important

– Random insertion

–> we need to test: is-point-inside-the-hull(p)

– Ordered insertion

Sort points according to x and add them left to right - it

guarantees, that just added point is outside current hull
• Original algorithm sorted the angles around the point with minimal y

• Sorting x-coordinates is simpler to implement than sorting of angles

Felkel: Computational geometry

(11)

Graham’s scan

� O(n log n) for unsorted points, O(n) for sorted pts.

� Upper hull, then lower hull. Merge.

� Minimum and maximum on x belong to CH

p1

pn

lower hull

upper hull

Input:
Output:

Felkel: Computational geometry

(12)

Graham’s scan – incremental algorithm

GrahamsScan(points p)
points p
CCW points on the convex hull

1. sort points according to increasing x-coord -> {p1, p2, …, pn}
2. push(p1, H), push(p2, H)
3. for i = 3 to n do
4. while(size(H) ¥ 2 and orient(sos, tos, pi) ¥ 0) // skip left turns
5. pop H // (back-tracking)
6. push(pi, H) // store right turn
7. store H to the output (in reverse order) // upper hull
8. Symmetrically the lower hull

tos p
i

sos p
i

p
i

tossos tossos

pop

upper hull

pop H pop H

tos
sos

Stack H

push pop

Felkel: Computational geometry

(13)

Position of point in relation to segment

> 0 r is left from pq, CCW orient

orient(p, q, r) = 0 if (p, q, r) are collinear

< 0 r is right from pq, CW orient

q

p

q
r

p

q

r

left from pqPoint r is: on segment pq right from pq

is CCW orientedTriangle pqr: degenerated
to line

is CW oriented

p

q
r

p

qr p
r

Convex polygon with edges pq and qr or

Felkel: Computational geometry

(14)

Geometric meaning: Area of Triangle ABC

� Position of point C in relation to segment AB is given by

the sign of the triangle ABC area

� T = ½ |AB x AC|

� a = B - A

� b = C – A

� T = ½ (ax by - ay bx)

A B

C

a

b

Ax Ay 1

Bx By 1

Cx Cy 1

2T = = Ax By + BxCy + Cx Ay - Ax Cy - BxAy - Cx By

=> 2T = Ax By + BxCy + Cx Ay - Ax Cy - BxAy - Cx By

2x Oriented area

Can be computed as

vector product

Or directly as determinant

Felkel: Computational geometry

(15)

Geometric meaning: Area of Triangle ABC

= Vector perpendicular to both vectors AB and AC

� If vectors in plane

– it is perpendicular to the plane (normal vector of the plane)

– only z-coordinate is non-zero

� |AB x AC| = z-coordinate of the normal vector

= area of parallelopid

= 2x area T of triangle ABC

A B

C

A B

C

A B

C

Equal to size of Vector product of vectors AB x AC

Felkel: Computational geometry

(16)

Is Graham’s scan correct?

� Stack H at any stage contains upper hull of the points

{p1,…,pj, pi}, processed so far

– For induction basis H={p1, p2} … true

– pi = last added point to CH, pj = its predecessor on CH

– Each point pk that lies between pj and pi lies below pjpi and should
not be part of UH after addition of pi => is removed before push pi.
[orient(pj, pk, pi) > 0, pi is left from pjpk => pk is removed from UH]

– Stop if 2 points in the stack or after construction of the upper hull

[Mount]

Points on stack H

= CH ({p1, p2, … ,pi-1,})

pk

Felkel: Computational geometry

(17)

Complexity of Graham’s scan

� Sorting according x – O(n log n)

� Each point pushed once – O(n)

� Some (di § n) points deleted while processing pi

– O(n)

� The same for lower hull – O(n)

� Total O(n log n) for unsorted points

O(n) for sorted points

Felkel: Computational geometry

(18)

Divide & Conquer

� Q(n log(n)) algorithm

� Extension of mergesort

� Principle

– Sort points according to x-coordinate,

– recursively partition the points and solve CH.

Input:
Output:

Felkel: Computational geometry

(19)

ConvexHullD&C(points P)

points p

CCW points on the convex hull

1. Sort points P according to x
2. return hull(P)

3. hull(points P)
4. if |P| § 3 then
5. compute CH by brute force,
6. return
7. Partition P into two sets L and R (with lower & higher coords x)
8. Recursively compute HL = hull(L), HR = hull(R)
9. H = Merge hulls(HL, HR) by computing
10. Upper_tangent(HL, HR) // find nearest points, HL CCW, HR CW
11. Lower_tangent(HL, HR) // (HL CW, HR CCW)
12. discard points between these two tangents
13. return H

Convex hull by D&C

Upper tangent

Lower tangent

Input:
Output:

Felkel: Computational geometry

(20)

Search for upper tangent (lower is symmetrical)

Upper_tangent(HL, HR)
two non-overlapping CH’s
upper tangent ab

1. a = rightmost HL

2. b = leftmost HR

3. while(ab is not the upper tangent for HL, HR) do
4. while(ab is not the upper tangent for HL) a = a.succ // move CCW
5. while(ab is not the upper tangent for HR) b = b.pred // move CW
6. Return ab

Where: (ab is not the upper tangent for HL) => orient(a, b, a.succ) ¥ 0
which means a.succ is left from line ab

Upper tangent

Lower tangent

m = |HL|+ |HR| § |L| + |R| => Upper Tangent: O(m) = O(n)

a

b

Felkel: Computational geometry

(21)

Convex hull by D&C complexity

� Initial sort O(n log(n))

� Function hull()

– Upper and lower tangent O(n)

– Merge hulls O(1) O(n)

– Discard points between tangents O(n)

� Overall complexity

– Recursion

– Overall complexity of CH by D&C: => O(n log(n))

T(n) =
1 … if n § 3

2T(n/2) + O(n) … otherwise

Felkel: Computational geometry

(22)

Quick hull

� A variant of Quick Sort

� O(n log n) expected time, max O(n2)

� Principle

– in praxis, most of the points lie in the interior of CH

– E.g., for uniformly distributed points in unit square, we

expect only O(log n) points on CH

� Find extreme points (parts of CH)

quadrilateral, discard inner points

– Add 4 edges to temp hull T

– Process points outside 4 edges

[Mount]

Felkel: Computational geometry

(23)

Process each of four groups of points outside

� For points outside ab (left from ab for clockwise CH)

– Find point c on the hull – max. perpend. distance to ab

– Discard points inside triangle abc (right from the edges)

– Split points into two subsets

- outside ac (left from ac) and outside cb (left from cb)

– Process points outside ac and cb recursively

– Replace edge ab in T by edges ac and cb

[Mount]

discard inner points

Felkel: Computational geometry

(24)

Quick hull complexity

� n points remain outside the hull

� T(n) = running time for such n points outside

– O(n) - selection of splitting point c

– O(n) - point classification to inside & (n1+n2) outside

– n1+n2 § n

– The running time is given by recurrence

1 if n = 1

T(n1) + T(n2) where n1+n2 § n

– If evenly distributed that max(n1, n2) § an, 0 § a § 1

then solves as QuickSort to O(cn log n) where c=f(a)

else O(n2) for unbalanced splits

T(n) =

Felkel: Computational geometry

(25)

Jarvis’s March – selection by gift wrapping

� Variant of O(n2) selection sort

� Output sensitive algorithm

� O(nh) … h = number of points on convex hull

Input:
Output:

Felkel: Computational geometry

(26)

Jarvis’s March

JarvisCH(points P)
points p
CCW points on the convex hull

1. Take point p1 with minimum y-coordinate,
// p1 will be the first point in the hull

2. Take a horizontal line, i.e., create temporary point p0 = (–¶, p1.y)
3. i = 1
4. repeat
5. Rotate the line around pi until bounces to the nearest point q

// compute the smallest angle by the smallest orient(pi-1 , pi , q)
6. i++

pi = the bounced nearest point q
7. until (q ≠ p1)

Complexity: O(n) + O(n) * h => O(h*n)

good for low number of points on convex hull

p1 p2

ph

p0

Output sensitive algorithm

Felkel: Computational geometry

(27)

Output sensitive algorithm

� Worst case complexity analysis analyzes the worst

case data

– Presumes, that all (const fraction of) points lie on the CH

– The points are ordered along CH

=> We need sorting => W(n log n) of CH algorithm

� Such assumption is rare

– usually only much less of points are on CH

� Output sensitive algorithms

– Depend on: input size n and the size of the output h

– Are more efficient for small output sizes

– Reasonable time for CH is O(n log h), h = Number of points on the CH

Felkel: Computational geometry

(28)

Chan’s algorithm

� Cleverly combines Graham’s scan and Jarvis’s

march algorithms

� Goal is O(n log h) running time

– We cannot afford sorting of all points - W(n log n)

=> Idea: work on parts, limit the part sizes to polynomial hc

the complexity does not change => log hc = log h

– h is unknown – we get the estimation later

– Use estimation m, better not too high => h § m § h2

� 1. Partition points P into r-groups of size m, r = n/m

– Each group take O(m log m) time - sort + Graham

– r-groups take O(r m log m) = O(n log m) - Jarvis

Felkel: Computational geometry

(29)

Merging of m parts in Chan’s algorithm

� 2. Merge r-group CHs as “fat points”

– Tangents to convex m-gon can be found in O(log m)

by binary search

[Mount][Mount]

r = n/m disjoint subsets

of size at most m

Jarvis Chan

Felkel: Computational geometry

(30)

Chan’s algorithm complexity

� h points on the final convex hull

=> at most h steps in the Jarvis march algorithm

– each step computes r-tangents, O(log m) each

– merging together O(hr log m)

� Complete algorithm O(n log h)

– Graham’s scan on partitions O(r .m log m)=O(n log m)

– Jarvis Merging: O(hr log m) = O(h n/m log m), …4a)
h § m § h2 = O(n log m)

– Altogether O(n log m)

– How to guess m? Wait!
1) use m as an estimation of h 2) if it fails, increase m

r-groups of size m, r = n/m

Input:
Output:

Felkel: Computational geometry

(31)

Chan’s algorithm for known m

PartialHull(P, m)
points P
group of size m

1. Partition P into r = n/m disjoint subsets {p1, p2, …, pr} of size at most m

2. for i=1 to r do

a) Convex hull by GrahamsScan(Pi), store vertices in ordered array

3. let p1 = the bottom most point of P and p0 = (–¶, p1.y)

4. for k = 1 to m do // compute merged hull points

a) for i = 1 to r do // angle to all r subsets => points qi

Compute the point qi œ P that maximizes the angle — pk-1, pk, qi

b) let pk+1 be the point q œ {q1, q2, …, qr} that maximizes — pk-1, pk, q
(pk+1 is the new point in CH)

c) if pk+1 = p1 then return {p1, p2, …, pk}

5. return “Fail, m was too small”

O(log m)

[Mount]

J
a

rv
is

Input:
Output:

Felkel: Computational geometry

(32)

Chan’s algorithm – estimation of m

ChansHull
points P
convex hull p1…pk

1. for t = 1, 2, … , lg lg ℎ do {
a) let m = min(22^t, n)
b) L = PartialHull(P, m)
c) if L ∫ “Fail, m was too small” then return L

}
Sequence of choices of m are { 4, 16, 256,…, 22^t ,…, n } … squares

Example: for h = 23 points on convex hull of n = 57 points, the algorithm
will try this sequence of choices of m { 4, 16, 57 }

1. 4 and 16 will fail
2. 256 will be replaced by n

Felkel: Computational geometry

(33)

Complexity of Chan’s Convex Hull?

� The worst case: Compute all iterations

� tth iteration takes O(n log 22^t) = O(n 2t)

� Algorithm stops when 22^t ¥ h => t = lg lg h

� All t = lg lg h iterations take:

)log(lg2222

122 fact that theUsing

lglg1
lglg

1

lglg

1

1

0

hnOhnnnn
h

h

t

t

h

t

t

k

k

i

i

==≤=

−=

+

==

+

=

∑∑

∑

2x more work in the worst case

Felkel: Computational geometry

(34)

Conclusion in 2D

� Graham’s scan: O(n log n), O(n) for sorted pts

� Divide & Conquer: O(n log n)

� Quick hull: O(n log n), max O(n2) ~ distrib.

� Jarvis’s march: O(hn), max O(n2) ~ pts on CH

� Chan’s alg.: O(n log h) ~ pts on CH

Felkel: Computational geometry

(35)

References

� [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark
Overmars: Computational Geometry: Algorithms and Applications,
Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapter 5, http://www.cs.uu.nl/geobook/

� [Mount] David Mount, - CMSC 754: Computational Geometry, Lecture
Notes for Spring 2007, University of Maryland, Lectures 3 and 4.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

� [Chan] Timothy M. Chan. Optimal output-sensitive convex hull
algorithms in two and three dimensions., Discrete and Computational
Geometry, 16, 1996, 361-368.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.389

