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Range search

= Orthogonal range searching
= Canonical subsets

= 1D range tree

= Kd-tree

= 2D-nD Range tree

— With fractional cascading (Layered tree)
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Orthogonal range searching

— Given a set of points P, find the points in the region Q

« Search space: a set of points P (somehow represented)
* Query: intervals Q (axis parallel rectangle)
* Answer: points contained in Q

— Example: Databases (records->points)
* Find the people with given range of salary, date of birth, kids, ...
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Orthogonal range searching

= Query region = axis parallel rectangle

— nDimensional search can be decomposed into
set of 1D searches (separable)
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Other range searching variants

= Search space S: set of
— line segments,
— rectangles, ...

= Query region Q: any other region
— disc,

— polygon,
— halfspace, ...

= Answer: subset of S laying in Q

= \We concentrate on points in orthogonal ranges

S A o~ == =

—~ DCGI Felkel: Computational geometry

(®)



How to represent the search space?

Basic idea:

= Not all possible combination can be in the output
(not the whole power set)

= => Represent only the “selectable” things
(a well selected subset —> one of the canonical
subsets)
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Subsets selectable by given range class

= The number of subsets that can be selected by
simple ranges Q is limited

= It is usually much smaller than the power set of P
— Power set of P where P = {1 ,2,3,4} (potenéni mnozina)

is {{ }, {1}.{2},{3}.{4}, {1,2},{1,3},{1,4}, {2,3},....{2,3,4},
{1,23,4}} ... 0O(2"
l.e. set of all possible subsets

— Simple rectangular queries are limited °2
 Defined by max 4 points along 4 sides e
=> O(n*) of O(2") power set 4
* Moreover — not all sets can be formed
by [ query Q

e.g. sets {1,4} and {1,2,4} cannot be formed ount
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Canonical subsets S,

= Search space S=(P,Q) represented as a collection
of canonical subsets {S,, S,, ..., S,}, each S.A S,
— S;may overlap each other (elements can be multiple times there)

— Any set can be represented as disjoint UNION asjnkni siednocent
Of CanOnICal SU bSGtS SI each element knows from which subset it came

— Elements of disjoint union are ordered pairs (X, i)
(every element x with index i of the subset S;)

= S;may be selected in many ways
« from n singletons {p;} ... O(n)
* to power set of P ... O(2M
— Good DS balances between total number of canonical
subsets and number of CS needed to answer the query
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1D range queries (interval queries)

= Query: Search the interval [x,, X, ]

= Search space: Points P={p,, p,, ..., p,} on the line
a) Binary search in an array
« Simple, but

 not generalize to any higher dimensions

b) Balanced binary search tree
* 1D range tree
« maintains canonical subsets
* generalize to higher dimensions

Po Selected points P,
|
1

S A o~ == =

bl Xio Xhi
-+~ - 4
S o Felkel: Computational geometry
DCGI |




1D range tree definition

= Balanced binary search tree
— leaves — sorted points
— Inner node label — the largest key in its left child

— Each node associate with subset of descendants_~*"
=> O(n) canonical subsets 4&
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Canonical subsets and <2,23> search

s Canonical subsets for this subtree are #
{{1}, {3}, ..., {31}, 16
1,3}, {4, 7}, ..., {29, 31} 8
{1,3,4, 7, {9, 12, 14, 15}, ..., {25, 27, 29, 31} 4

{1,3,4,7,9,12, 14, 15}, {17, 20, 22, 24, 25, 27, 29, 31} 2
{1,3,4,7,9,12, 14, 15, 17, 20, 22, 24, 25, 27, 29, 31} 1

) _&@<__Q(n)
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1D range tree search interval <2,23>

= Canonical subsets for any range found in O(log n)
— Search x,,: Find leftmost leaf u with key(u) - x,, 2 ->[3
— Search x,,: Find leftmost leaf v with key(v) - X, 23 -> 24

— Points between u and v lie within the range => report
canon. subsets of maximal subtrees between u and v

— Split node = node, where paths to u and v diverge *~
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1D range tree search

= Reporting the subtrees (below the split node)
— On the path to u whenever the path goes left, report
the canonical subset (CS) associated to right child
— On the path to v whenever the path goes right, report
the canonical subset associated to left child
— In the leaf u, if key(u) 1 [X,,:Xy;] then report CS of u

— In the leaf v, if key(v) 1 [X:X;;] then report AC);ZV"

31

split node A

o {9,12,14,15} @
(& wn (12) (17.20/29) (27)
R (20 (o) () (7)) @ @) (29
1 B [ [ E] B2 64 B B Bd B2 BE B BA BY BU e

- U Y
S A -~ - ' 1
DCGI Felkel: Computational geometry
(13)



1D range tree search complexity root(T)

&)

-
= Path lengths O(log n ) ) it noc

=> O( log n ) canonical subsets
(subtrees)

= Range queries aﬁi“ﬁ

[Berg]

— Return just the number of points in given range
— Sum the total numbers of leaves stored in maximal

subtree roots ... O(log n) time
= Range queries
— Return all k points in given range
— Traverse the canonical subtrees ... O( log n + k) time

= O(n) storage, O(n log n) preprocessing (sort P)
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Find split node

FindSplitNode( T, [x:x])

Input: Tree T and Query range [x:xX], X . X
Output: The node, where the paths to x and x’ split
or the leaf, where both paths end
1. t=root(T)
2. while(t isnotaleaf and (x' ., t.xor t.x<x)) //outofthe range [x:X]
3. if( X’ , t.x)t=tleft
4 else t = t.right \‘ v :i: y, __position
5. returnt D}mor[fﬂ \ X . tx

)‘ split node vy y _position
. ]
\ tx<x

,L}I ‘ I »;(, | : ::: position
L . ’
-+ f J):)‘lil Jd'- X . t.X < X
== ++: —l_'—_ — [Berg]
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1D range search (2D on slide 30)

1dRangeQuery( t, [x:x])

Input: 1d range tree t and Query range [x: x']

Output: All points in t lying in the range

1.t = FindSplitNode( t, x, X ) // find interval point t 1 [x:x]

2 if( tsplit is leaf ) /I e.g. Searching [16:17] or [16:16.5] both stops in the leaf 17 in the previous example

3 check if the point in ty,;; must be reported // t, € [x:x]

4. else // follow the path to x, reporting points in subtrees right of the path
5. t=tgyleft e

6 while( tis not a leaf ) P

7 if(x . t.x) 3

8 ReportSubtree( t.right ) // any kind of tree traversal

Q. t=t.left

10. else t = t.right

11.  check if the point in leaf t must be reported

12. I/ Symmetrically follow the path to x’ reporting points left of the path

-~ 1= tgeright .
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Multidimensional range searching

= Equal principle — find the largest subtrees
contained within the range

= Separate one n-dimensional search
Into n 1-dimensional searches

= Different tree organization
— Kd tree

— Orthogonal (Multilevel) range search tree
e.g. nd range tree
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Kd-tree

= Easy to implement

= (Good for different searching problems
(counting queries, nearest neighbor,...)

= Designed by Jon Bentley as k-dimensional tree
(2-dimensional kd-tree was a 2-d tree, ...)

= Not the asymptotically best for orthogonal range
search (=> range tree is better)

= [ypes of queries
— Reporting — points in range
— Counting — number of points in range
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Kd-tree principle

= Subdivide space according to different dimension
(x-coord, then y-coord, ...)

= [his subdivides space into rectangular cells
=> hierarchical decomposition of space

= Innodet Store:[CUtDim,_CU.tvalJ (Size (for counting queries))
= Cutting line Each tree node

oo | ¢ represents a region
4 |Pg op
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Pq )
N
. p8 ><
. P P1o
P3 to,
Ps || P7 [Mount]

Subdi\{ision Tree structure |
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Kd-tree principle

= Which dimension to cut?  (cutDim)

— Cycle through dimensions (round robin)
« Save storage — cutDim is implicit ~ depth in the tree
« May produce elongated cells (if uneven data distribution)

— Greatest spread (the largest difference of coordinates)
« Adaptive
 Called “Optimal kd-tree”

= Whereto cut?  (cutval)

— Median, or midpoint between upper and lower median
->P(n)

— Presort coords of points in each dimension (x-, y-,...)
for P(1) median — resp. P(d) for all d dimensions
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Kd-tree principle

= \What about points on the cell boundary?
— Boundary belongs to the left child
— Left: Peutoim . CUtVal
— Right: Peutpim > cutVal
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Kd-tree construction in 2-dimensions

BuildKdTree(P, depth)
Input: A set of points P and current depth.
Output: The root of a kD tree storing P.

If (P contains only one point) [or small set of (10 to 20) points]
then return a leaf storing this point

1.

2

3. else if (depth is even) Split according to (depth%max_dim) dimension

4 then split P with a vertical line | through median x into two subsets
P, and P, (left and right from median)

else split P with a horiz. line | through median y into two subsets

P, and P, (below and above the median)

t .x = BuildkdTree(P,, depth+1)

t gt = BuildKdTree(P,, depth+1)

create node t storing |, t. and t;y, children  //'1 = cutDim, cutVal

return t

o

© NS

If median found in O(1) and array split in O(n)
e E T(n)=2T(n/2) + n => O(n log n) construction
T Felkel: Computational geometry %
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Kd-tree test variants

Test interval-interval

a) Compare rectang. array Q with rectangular cells C
Rectangle C:[x,, X, Yio» Ynil — cOmMputed on the fly
Test of kD node cell C against query Q (in one cutDim)

1. if cell is disjoint with Q

..CyQ=p ...stop

2. If cell C completely inside Q ... C 4 Q ... stop and report cell points

3. else cell C overlaps Q

... recurse on both children

Recursion stops on the largest subtree (in/out)

1 1

1 |
\"; v cutDim
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. QIo
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I 1 1 1
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if (CutDim == x) C,, = X,,

»
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° ®
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W
v . ;I; E:‘ cutDim
CIO c th c Chi




Kd-tree rangeCount (with rectangular cells)

int rangeCount(t, Q, C)

Input: The root t of kD tree, query range Q and t’s cell C.

Output: Number of points at leaves below t that lie in the range.

1. if (tis a leaf)

2 if (t.point lies in Q) return 1 // or loop this test for all points in leaf

3 else return O M // visited, not counted

4. else /I (tis not a leaf)

5. if(CyQ=p) retunO o disjoint

6 else if (C 4 Q) return t.size @ cis fully contained in Q

7 else O

8 split C along t’s cutting value and dimension, C, C,
creating two rectangles C, and C.,. C

9. return rangeCount(t.left, Q, C,) + rangeCount(t.right, Q, C,)

/Il (pictograms refer to the next slide)
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Kd-tree rangeCount example

Tree node (rectangular region)

Q O visited D contained in Q
' D disjoint of @ @ counted in the search

[Mount]

Nodes visited in range search
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Kd-tree test variants Test point-interval

b) Compare Q with cutting lines
— Line = Splitting value p in one of the dimensions

— Test of single position given by dimension against Q
1. Line pisrightfrom Q ... recurse on left child only (prune right child)

2. Line p intersects Q ... recurse on both children
3. LinepisleftfromQ ... recurse on right child only (prune left ch.)
— Recursion stops in leaves - traverses the whole tree
L Py @ o [ [
2 @® O
° @ ® o e|le ¢ ° o| ©
@ P @ ® @ ..
® @ e Y O @ ® e
- o e e
i [Havran]

1 | } | 1
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Kd-tree rangeSearch (with cutting lines)

int rangeSearch(t, Q)

Input: The root t of (a subtree of a) kD tree and query range Q.
Output: Points at leaves below t that lie in the range.

1. if (tis a leaf)

2. if (t.point lies in Q) report t.point // or loop test for all points in leaf
3. else return

4. else (tis not a leaf)

5. if (Q,; . t.cutVal) rangeSearch(t.left, Q) // go left only

6. if (Q,, > t.cutVal) rangeSearch(t.right, Q) // go right only

7. else

8. rangeSearch(t.left, Q) // go to both

9. rangeSearch(t.right, Q)
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Kd-tree - summary

= Orthogonal range queries in the plane
(in balanced 2d-tree)
— Counting queries O( 6n ) time
— Reporting queries O( 6 n + k ) time,
where k = No. of reported points
— Space O(n)

— Preprocessing: Construction O( n log n ) time
(Proof: if presorted points to arrays in dimensions. Median in O(1)
and split in O(n) per level, log n levels of the tree)

= Ford-2:
— Construction O(d n log n), space O(dn), Search O(d n*(1-1/d) + k)
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Orthogonal range tree (RT)

= DS highly tuned for orthogonal range queries
= Query times in plane

2d tree versus | range tree
O(én+k)timeof Kd > |O(logn)time query
O( n ) space of Kd < |O(nlogn)space

n = number of points
k = number of reported points
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From 1D to 2D range tree

= Search points from [Q.x,, Q.x,] [Q.y, Q.Y}i]
= 1d range tree: log n canonical subsets based on x

= Construct an auxiliary tree for eacikhﬂbset y

31
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2D range tree

X—range tree

y—range tre o
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2D range search

2dRangeQuery( t, [x:x] ° [y:y])
Input: 2d range tree t and Query range
Output: All points in t laying in the range
1.t = FindSplitNode( t, x, X )

2. 1f( tgpy is leaf )

3. check if the point in t,,;; must be reported ... t.xu [xX], ty u [y:y]
4. else // follow the path to x, calling 1dRangeQuery ony

5. t=t-left  // path to the left

6. while( tis not a leaf )

7. if( x . t.x)

8. 1dRangeQuerry( t...( t.right ), [y:y’] ) // check associated subtree
Q. t=t.left

10. else t = t.right

11. check if the point in leaf t must be reported Lot xSty [y
12.  Similarly for the pathto x’ ... // path to the right
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2D range tree

= Search O(log2n+k)—logninx-, logniny
= Space O(n log n)

— O(n) the tree for x-coords

— O(n log n) trees for y-coords

* Point p is stored in all canonical subsets
along the path from root to leaf with p, P

* once for x-tree level (only in one x-range)

 each canonical subsets is stored in one auxiliary tree P
[Berg]

* log n levels of x-tree => O(n log n) space for y-trees

= Construction - O(n log n)
— Sort points (by x and by y). Bottom up construction
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Canonical subsets

s Canonical subsets for this subtree are #
{{1}, {3}, ..., {31}, 16
1,3}, {4, 7}, ..., {29, 31} 8
{1,3,4, 7, {9, 12, 14, 15}, ..., {25, 27, 29, 31} 4

{1,3,4,7,9,12, 14, 15}, {17, 20, 22, 24, 25, 27, 29, 31} 2
{1,3,4,7,9,12, 14, 15, 17, 20, 22, 24, 25, 27, 29, 31} 1

) _&@<__Q(n)
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nD range tree (multilevel search tree)

A_\ Tree for each dimension

canonical subsets
\ of 2. dimension

Split node

S ﬁmar{_ T)

canonical subsets ) _
: : 4 split node
of 1. dimension
(nodes 1 [xX]) o \
| I_.jA"-
vy | &
— —~—
Felkel: Computational geometry [Berg] |




Fractional cascading - principle

= [wo sets S,, S, stored in sorted arrays A,, A,
= Report objects in both whose keys in [y:y’]
= Naive approach
— O(logn,+k,) — search in A, + report k, elements
— O(logn,+k,) — search in A, + report k, elements
= Fractional cascading — adds pointers from A, to A,
— O(logn,+k,+1+k,) — search in A, + report k, elements
- O(1 + k) — jump to A, + report k, elements
— Saves the O(logn,) — search
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Fractional cascading — principle for arrays

= Add pointers from A, to A,

— From element in A, with a key y; point to the element in
A, with the smallest key larger or equal to vy,

= Example query with the range [20 : 65

Aj 3 11019 30 [ 37 | 59 | 62 | 70 | 80 | 100 | 105

|

62 70 30 100

[Berg]
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Fractional cascading in the 2D range tree

= How to save one log n during last dim. search?
— Store canonical subsets in arrays sorted by y
— Pointers to subsets for both child nodes v, and vy

— O(1) search in lower levels => in two dimensional
search O(log? n)time->0O(2logn)

internal node in x-tree

f . / pOintS p1 to p6 sorted by -y
: right son of v

Pointer to the smallest
larger or equal y-value

|
e
[Mount]
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Orthogonal range tree - summary

= Orthogonal range queries in plane
— Counting queries O( log? n ) time,
or with fractional cascading O( log n ) time
— Reporting queries plus O( k ) time, for k reported points
— Space O(nlogn)
— Construction O( nlog n)

= Orthogonal range queries in d-dimensions, d-2
— Counting queries O( log? n ) time,
or with fractional cascading O( log@-") n ) time
— Reporting queries plus O( k ) time, for k reported points
— Space O(n log@" n)

o Construction O(n log@-1) n ) time %
Felkel: Computational geometry
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