

GEOMETRIC SEARCHING PART 2: RANGE SEARCH

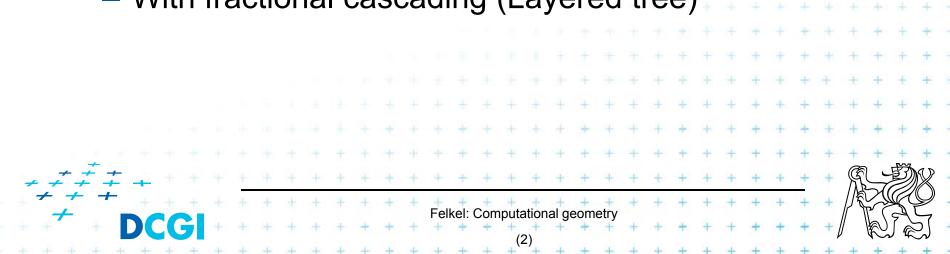
PETR FELKEL

FEL CTU PRAGUE felkel@fel.cvut.cz <u>https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start</u>

Based on [Berg] and [Mount]

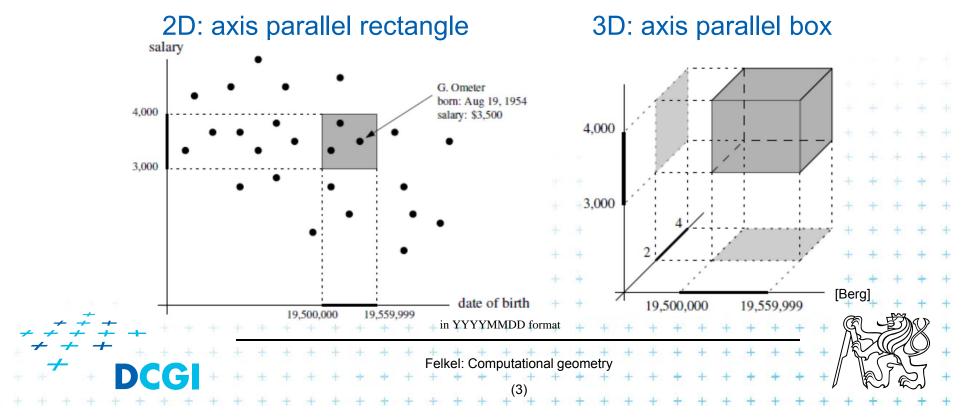
Version from 22.10.2015

- Orthogonal range searching
- Canonical subsets
- ID range tree
- Kd-tree
- 2D-nD Range tree
 - With fractional cascading (Layered tree)



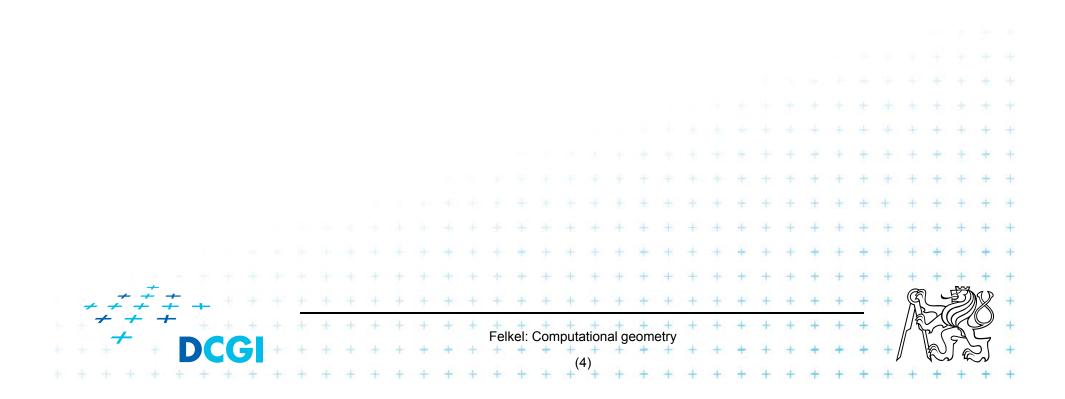
Orthogonal range searching

- Given a set of points P, find the points in the region Q
 - Search space: a set of points P (somehow represented)
 - Query: intervals Q (axis parallel rectangle)
 - Answer: points contained in Q
- Example: Databases (records->points)
 - Find the people with given range of salary, date of birth, kids, ...



Orthogonal range searching

- Query region = axis parallel rectangle
 - nDimensional search can be decomposed into set of 1D searches (separable)



Other range searching variants

	Search space S: set of
	 line segments,
	 rectangles, …
•	Query region Q: any other region
	– disc,

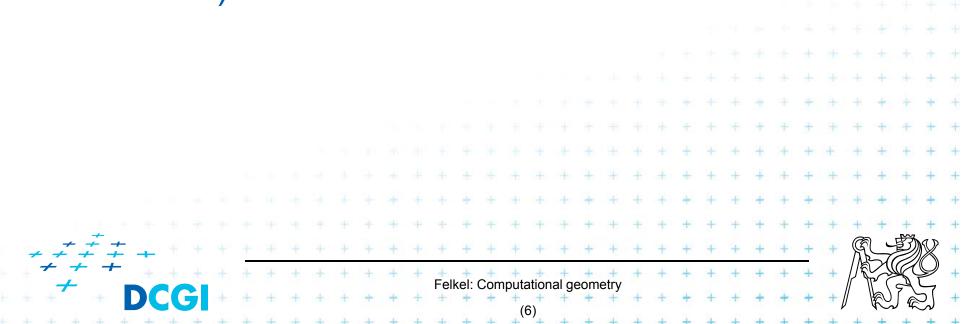
		po ha				e,																													
	^ D	~		~ .	~ .	۰h		~ t	~	f (:		~ :	5	\sim																		
	An	SW	e		51	U L	56	εı	O		2	1d	yı	пć	JI		6	l																	
																																		+	
																												÷	+		÷	+	+	+	
																						÷					Ť	\pm	+	÷	+	÷	+	+	
	We	e C	or	IC	er	nti	a	te	e C	n	р	0	In'	tS	Ir	1 (ort	th	00	JO	na	al	ra	n	ge	es	+	+	+	+	+	+	+	+	-
																			+	÷			+	$\frac{1}{2}$	+	+	÷	+	+	+	+	+	+	÷	
																	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
													÷		÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
									+	+		+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
+ +	$\stackrel{+}{\downarrow} \stackrel{+}{\downarrow}$	-							+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŕ		Ŋ		
+ 7		t.		+	÷.	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		Z(Ą	Q	
* *	-	D	C)	+	+	+	+	+	+	+	+	+	Fel	kel:	Com	+	ation 5)	al g	eom	etry	+	+	+	+	+	+	+	+	+Į	۱ ا	R		2	
												- 12	- 23	100	12	1.1	(-,	1.1		1.10	- 21	121	100	24	- 24			12	120	21	1	10		

How to represent the search space?

Basic idea:

- Not all possible combination can be in the output (not the whole power set)
- => Represent only the "selectable" things

 (a well selected subset -> one of the canonical subsets)

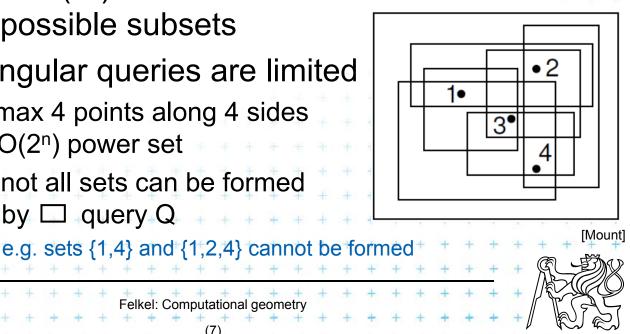


Subsets selectable by given range class

- The number of subsets that can be selected by simple ranges Q is limited
- It is usually much smaller than the power set of P
 - Power set of P where $P = \{1, 2, 3, 4\}$ (potenční množina) is $\{\{\}, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \dots, \{2,3,4\}, \}$ $\{1,2,3,4\}\}$... $O(2^n)$

Felkel: Computational geometry

- i.e. set of all possible subsets
- Simple rectangular queries are limited
 - Defined by max 4 points along 4 sides $=> O(n^4)$ of $O(2^n)$ power set
 - Moreover not all sets can be formed
 - by \Box query Q



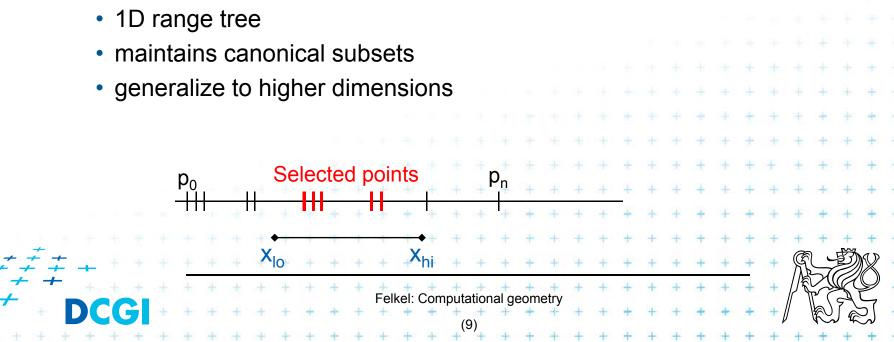
Canonical subsets S_i

- Search space S=(P,Q) represented as a collection of canonical subsets {S₁, S₂, ..., S_k}, each S_i Å S,
 - S_i may overlap each other (elements can be multiple times there)
 - Any set can be represented as disjoint union disjunktní sjednocení of canonical subsets S_i each element knows from which subset it came
 - Elements of disjoint union are ordered pairs (x, i) (every element x with index i of the subset S_i)
- S_i may be selected in many ways
 - from *n* singletons {p_i} ... O(n)
 to power set of P ... O(2ⁿ)
 - Good DS balances between total number of canonical subsets and number of CS needed to answer the query

Felkel: Computational geometry

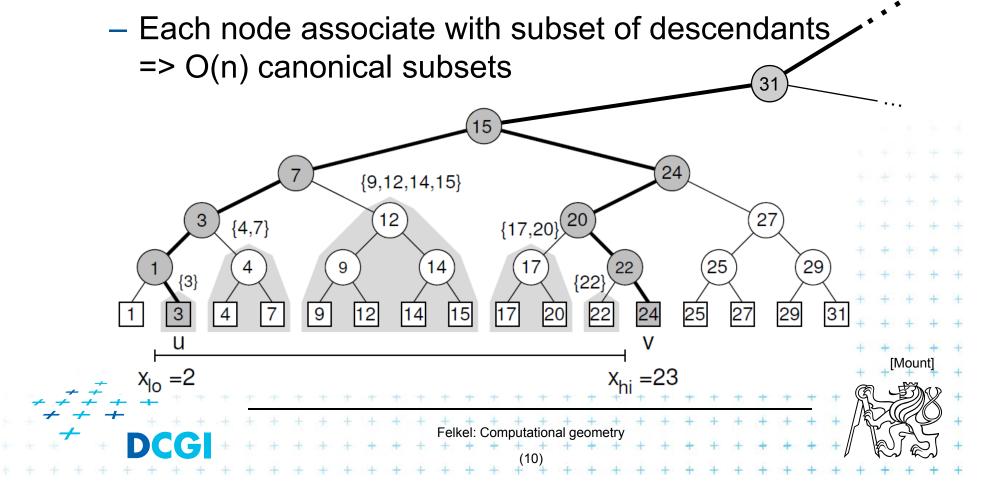
1D range queries (interval queries)

- Query: Search the interval [x_{lo}, x_{hi}]
- Search space: Points P= {p₁, p₂, ..., p_n} on the line
 - a) Binary search in an array
 - Simple, but
 - not generalize to any higher dimensions
 - b) Balanced binary search tree

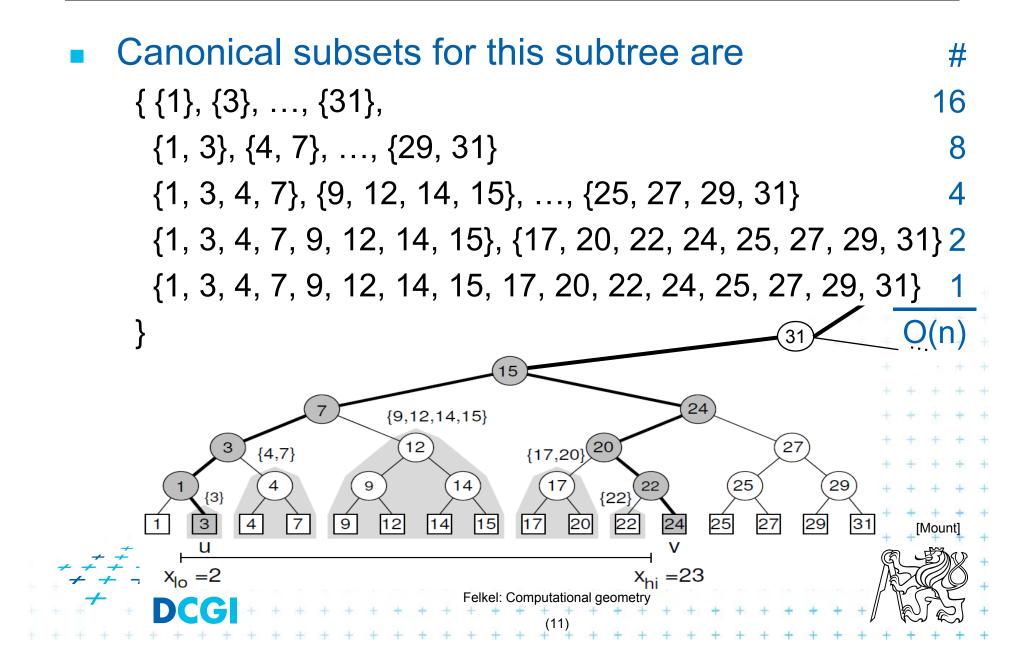


1D range tree definition

- Balanced binary search tree
 - leaves sorted points
 - inner node label the largest key in its left child

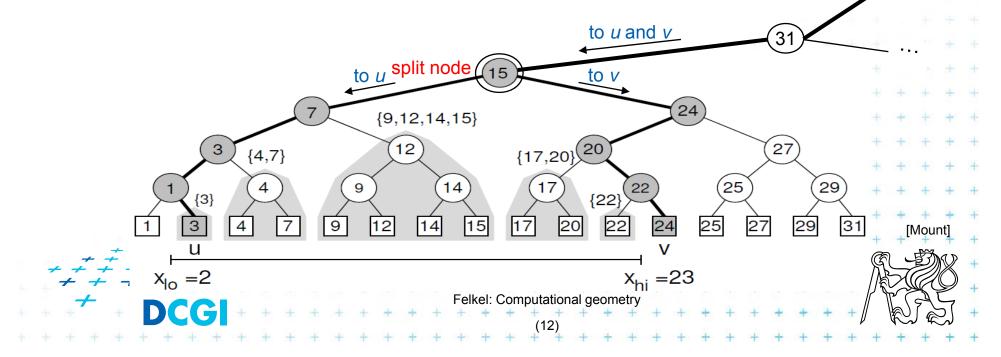


Canonical subsets and <2,23> search



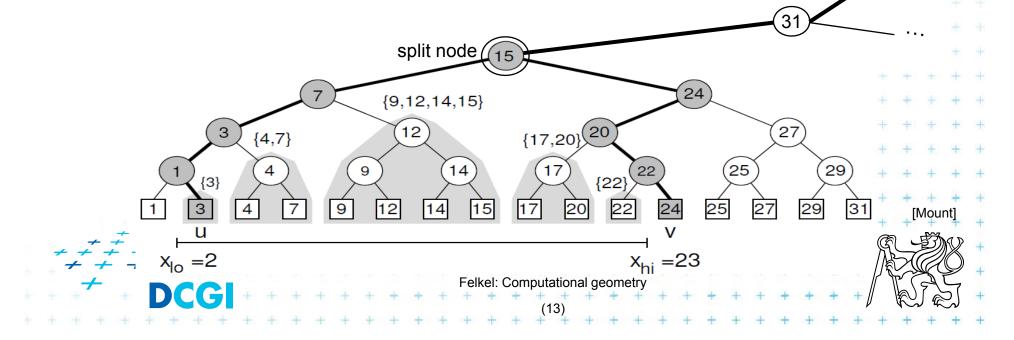
1D range tree search interval <2,23>

- Canonical subsets for any range found in O(log n)
 - Search x_{lo} : Find leftmost leaf *u* with key(*u*) x_{lo} 2 -> 3
 - Search x_{hi} : Find leftmost leaf v with key(v) x_{hi} 23 ->24
 - Points between u and v lie within the range => report canon. subsets of maximal subtrees between u and v
 - Split node = node, where paths to u and v diverge



1D range tree search

- Reporting the subtrees (below the split node)
 - On the path to u whenever the path goes left, report the canonical subset (CS) associated to right child
 - On the path to v whenever the path goes right, report the canonical subset associated to left child
 - In the leaf u, if key(u) μ [x_{lo}:x_{hi}] then report CS of u
 - In the leaf v, if key(v) μ [x_{lo}:x_{hi}] then report CS of v

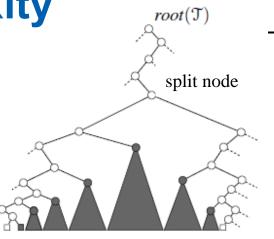


1D range tree search complexity

Path lengths O(log n)

=> O(log n) canonical subsets (subtrees)

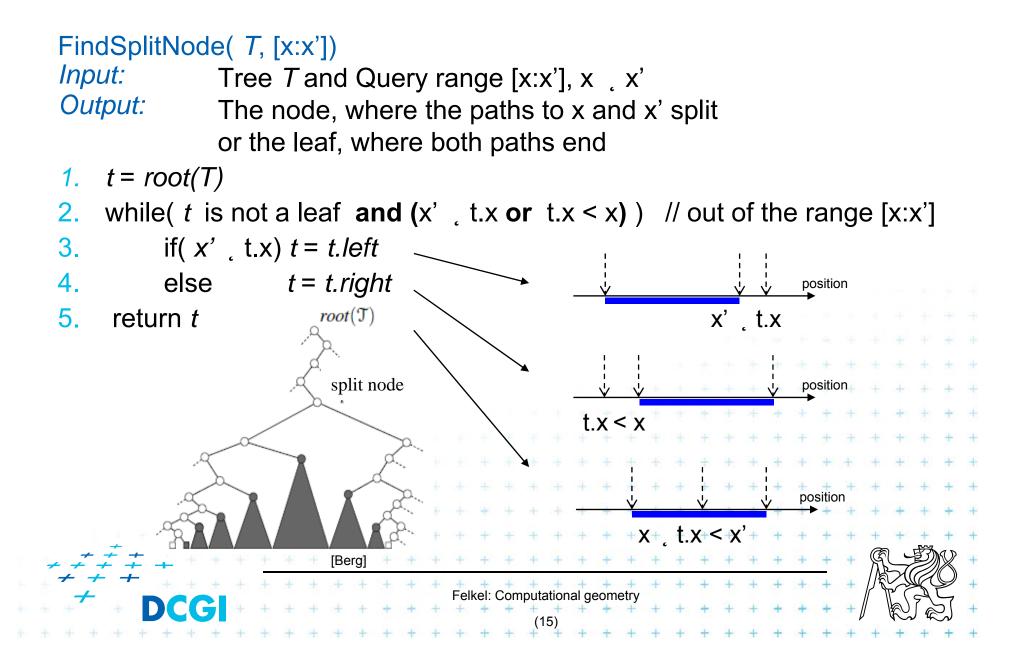
Range counting queries



[Bera]

- Return just the number of points in given range
- Sum the total numbers of leaves stored in maximal subtree roots
 ... O(log n) time
- Range reporting queries
 - Return all k points in given range
 - Traverse the canonical subtrees ... O($\log n + k$) time

Find split node



1dRangeQuery(t , [x:x'])Input:1d range tree t and Query range $[x:x']$ Output:All points in t lying in the range1. $t_{split} = FindSplitNode(t, x, x')$ // find interval point t μ [x:x']2. if(t_{split} is leaf) // e.g. Searching [16:17] or [16:16.5] both stops in the leaf 17 in the previous example3. check if the point in t_{split} must be reported // $t_x \in [x:x']$
4. else // follow the path to x, reporting points in subtrees right of the path
5. $t = t_{split}$.left
6. while (t is not a leaf)
7. if(x,t.x)
8. ReportSubtree(<i>t.right</i>) // any kind of tree traversal
9. <i>t</i> = <i>t</i> ./eft
10. else <i>t</i> = <i>t</i> . <i>right</i>
11. check if the point in leaf <i>t</i> must be reported
12. // Symmetrically follow the path to x' reporting points left of the path + +
$ \begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ \end{array} $ $ \begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\$

Multidimensional range searching

- Equal principle find the largest subtrees contained within the range
- Separate one *n*-dimensional search into *n* 1-dimensional searches
- Different tree organization
- Kd tree
 Orthogonal (Multilevel) range search tree e.g. nd range tree
 Felke: Computational geometry (17)

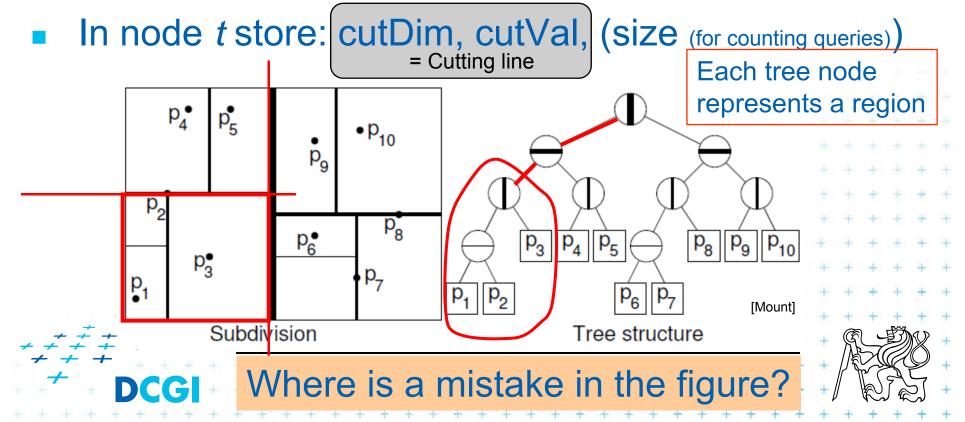
Kd-tree

- Easy to implement
- Good for different searching problems (counting queries, nearest neighbor,...)
- Designed by Jon Bentley as k-dimensional tree (2-dimensional kd-tree was a 2-d tree, ...)
- Not the asymptotically best for orthogonal range search (=> range tree is better)
- Types of queries

 Reporting points in range
 Counting number of points in range

Kd-tree principle

- Subdivide space according to different dimension (*x*-coord, then *y*-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space



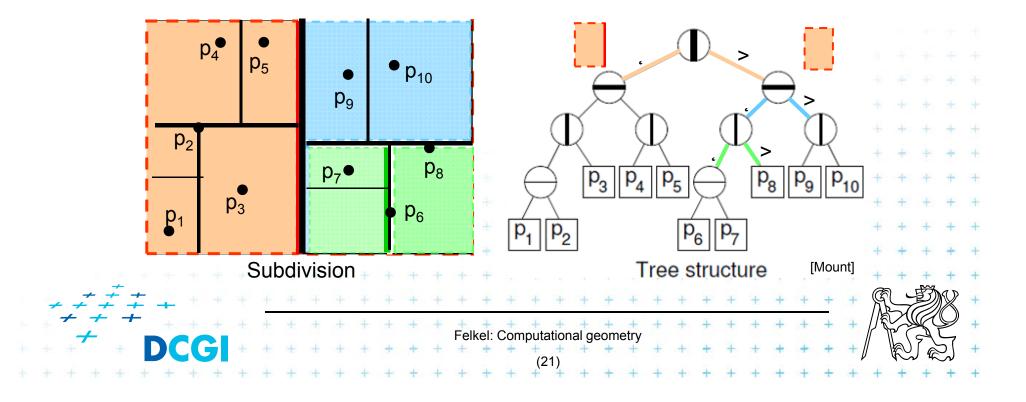
Kd-tree principle

Which dimension to cut? (cutDim)

- Cycle through dimensions (round robin)
 - Save storage cutDim is implicit ~ depth in the tree
 - May produce elongated cells (if uneven data distribution)
- Greatest spread (the largest difference of coordinates)
 - Adaptive
 - Called "Optimal kd-tree"
- Where to cut? (cutVal)
 - Median, or midpoint between upper and lower median
 P(n)
 - Presort coords of points in each dimension (x-, y-,...)
 for P(1) median resp. P(d) for all d dimensions

Kd-tree principle

- What about points on the cell boundary?
 - Boundary belongs to the left child
 - Left: p_{cutDim} , cutVal
 - Right: $p_{cutDim} > cutVal$



Kd-tree construction in 2-dimensions

BuildKdTr	ee(<i>P, depth</i>)
Input:	A set of points <i>P</i> and current <i>depth</i> .
Output:	The root of a kD tree storing P.

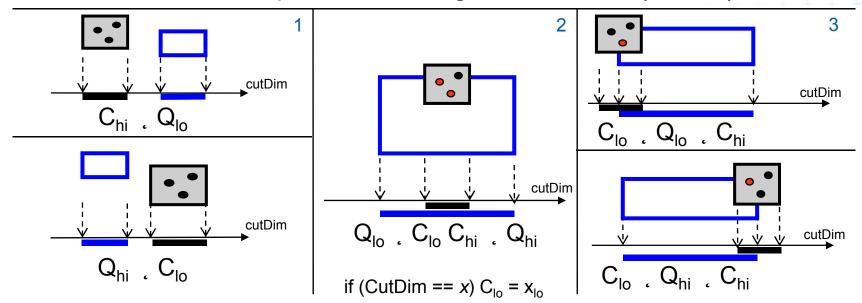
- 1. If (P contains only one point) [or small set of (10 to 20) points]
- 2. then return a leaf storing this point
- Split according to (*depth%max_dim*) dimension 3. else if (*depth* is even) **then** split *P* with a vertical line *I* through median *x* into two subsets 4. P_1 and P_2 (left and right from median) else split *P* with a horiz. line *I* through median y into two subsets 5. P_1 and P_2 (below and above the median) t_{left} = BuildKdTree(P_1 , depth+1) 6. t_{right} = BuildKdTree(P_2 , depth+1) 7. create node *t* storing *I*, t_{left} and t_{right} children // I = cutDim, cut 8. 9. return t If median found in O(1) and array split in O(n) $T(n) = 2 T(n/2) + n => O(n \log n)$ construction Felkel: Computational geometry

a) Compare rectang. array Q with rectangular cells C

- Rectangle C: $[x_{lo}, x_{hi}, y_{lo}, y_{hi}]$ computed on the fly
- Test of kD node cell C against query Q (in one cutDim)
 - 1. if cell is disjoint with Q ... $C \neq Q = p$... stop
 - 2. If cell C completely inside Q ... C Å Q ... stop and report cell points
 - 3. else cell C overlaps Q

... recurse on both children

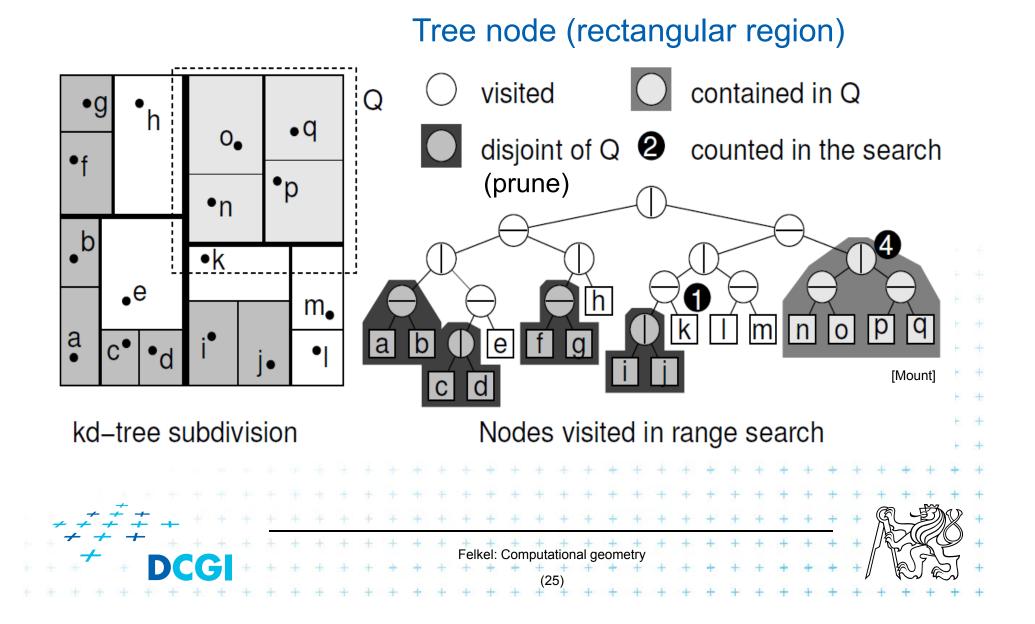
Recursion stops on the largest subtree (in/out)



Kd-tree rangeCount (with rectangular cells)

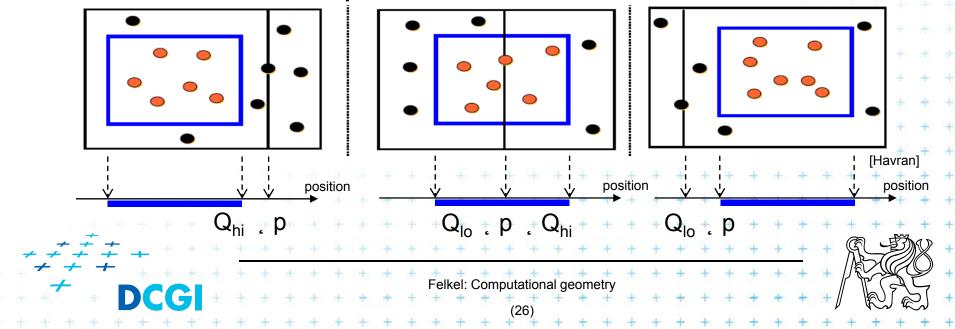
int rangeCou <i>Input:</i> <i>Output:</i>	Int(<i>t</i> , <i>Q, C</i>) The root <i>t</i> of kD tree, query range <i>Q and t's</i> cell C. Number of points at leaves below <i>t</i> that lie in the range.
1. if (<i>t</i> is a	
2. if (<i>t.p</i>	oint lies in Q) return 1 \mathcal{A} // or loop this test for all points in leaf
3. else r	return 0 $\overline{\square}$ // visited, not counted
4. else // (t is not a leaf)
5. if (C)	$\mathcal{F} \mathbf{Q} = p$) return 0 O disjoint
6. else i	f ($C \stackrel{\sim}{A} \stackrel{\sim}{Q}$) return t.size $\square \stackrel{\sim}{\Box} \dots C$ is fully contained in Q
7. else	
8. spli	t C along <i>t</i> 's cutting value and dimension, ating two rectangles C_1 and C_2 .
9. ret	urn rangeCount(<i>t.left</i> , Q , C_1) + rangeCount(<i>t.right</i> , Q , C_2)
	// (pictograms refer to the next slide)
$\begin{array}{c} & \stackrel{+}{} & \stackrel{+}{} \\ & \neq & \stackrel{+}{} & \stackrel{+}{} \\ & \neq & \stackrel{+}{} & \stackrel{+}{} & \stackrel{+}{} \end{array}$	+ + + + + + + + + + + + + + + + + + + +
⁺ + + DCC	Felkel: Computational geometry
. + + + + + + +	+ + + + + + + + + + + + + + + + + + + +

Kd-tree rangeCount example



b) Compare Q with cutting lines

- Line = Splitting value p in one of the dimensions
- Test of single position given by dimension against Q
 - 1. Line *p* is right from Q ... recurse on left child only (prune right child)
 - 2. Line *p* intersects Q
- ... recurse on both children
- 3. Line p is left from Q
- ... recurse on right child only (prune left ch.)
- Recursion stops in leaves traverses the whole tree



Kd-tree rangeSearch (with cutting lines)

	int rangeSearch(<i>t</i> , <i>Q</i>)
Input:	The root t of (a subtree of a) kD tree and query range Q.
Output:	Points at leaves below <i>t</i> that lie in the range.

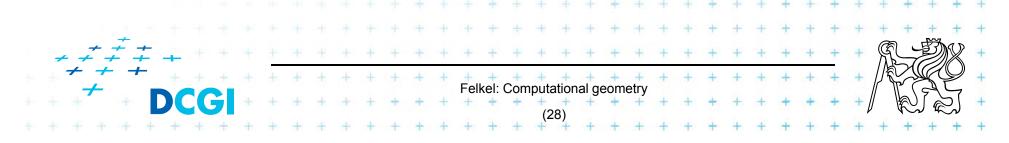
- **1. if (***t* is a leaf)
- 2. **if** (*t.point* lies in *Q*) report *t.point* // or loop test for all points in leaf
- 3. else return
- 4. else (*t* is not a leaf) 5. if (Q_{hi} , *t.cutVal*) rangeSearch(*t.left*, Q) // go left only 6. if ($Q_{lo} > t.cutVal$) rangeSearch(*t.right*, Q) // go right only 7. else 8. rangeSearch(*t.left*, Q) // go to both 9. rangeSearch(*t.right*, Q) 4. Felket: Computational geometry (27)

Kd-tree - summary

- Orthogonal range queries in the plane (in balanced 2d-tree)
 - Counting queries $O(\circ n)$ time
 - Reporting queries O(ô n + k) time, where k = No. of reported points
 - Space O(n)
 - Preprocessing: Construction O(n log n) time (Proof: if presorted points to arrays in dimensions. Median in O(1) and split in O(n) per level, log n levels of the tree)

• For d–2:

Construction O(d n log n), space O(dn), Search O(d n^(1-1/d) + k)



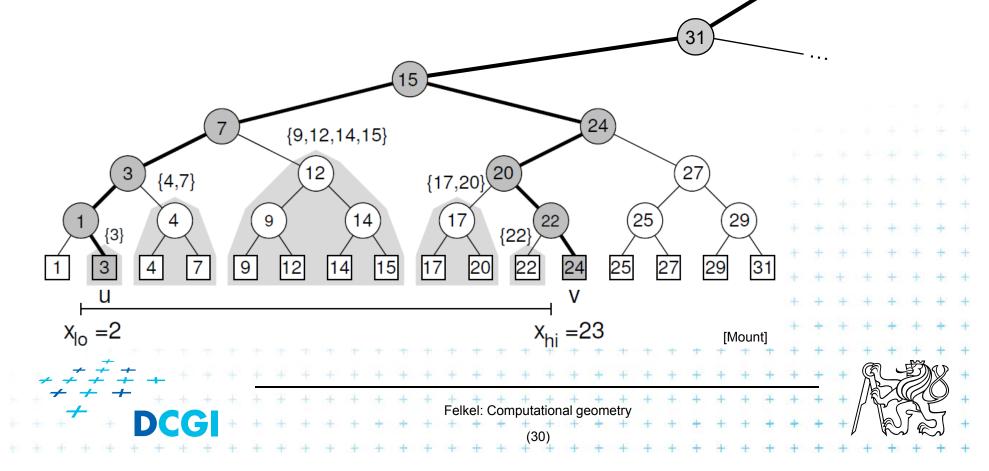
Orthogonal range tree (RT)

- DS highly tuned for orthogonal range queries
- Query times in plane

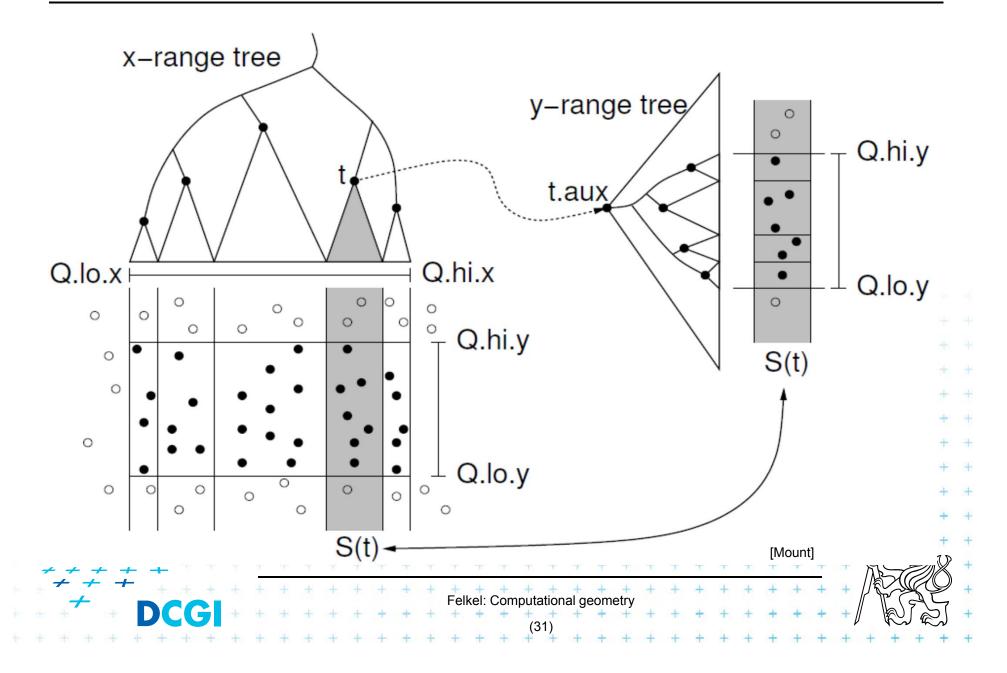
2d tree versus												s range tree																			
$O(\circ n + k)$ time of Kd >																															
O(n) space of Kd <																															
<i>n</i> = n	um	ıb	e	r (of	р	oi	nt	S																		đ.	4	+	÷	
k = n						•				ed	р	O	int	ts																	+
							•				•													+ +	+	+++++++++++++++++++++++++++++++++++++++	+ +	+ +	+	+	++
																					÷	+	Ŧ	+	+	+	+	Ŧ	+	+	+
																	÷			+	$\frac{1}{2}$	+	+	÷	+	+	+	+	+	+	+
														÷	÷	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+
										+		+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
<i>±</i> +						+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ E	· + ·	+ দিন্দী	+ NA 5
- + + +			-	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	A	Ľ	18
DC	GI	+	+	+	+	+	+	+	+	+	Fell	kel:	Com	puta (2	+	al ge	eom	etry	+	+	+	+	+	+	+	+	+	ſ	R		ピッ
														14	J																

From 1D to 2D range tree

- Search points from [Q.x_{lo}, Q.x_{hi}] [Q.y_{lo}, Q.y_{hi}]
- Id range tree: log n canonical subsets based on x
- Construct an auxiliary tree for each such subset y



2D range tree



2D range search

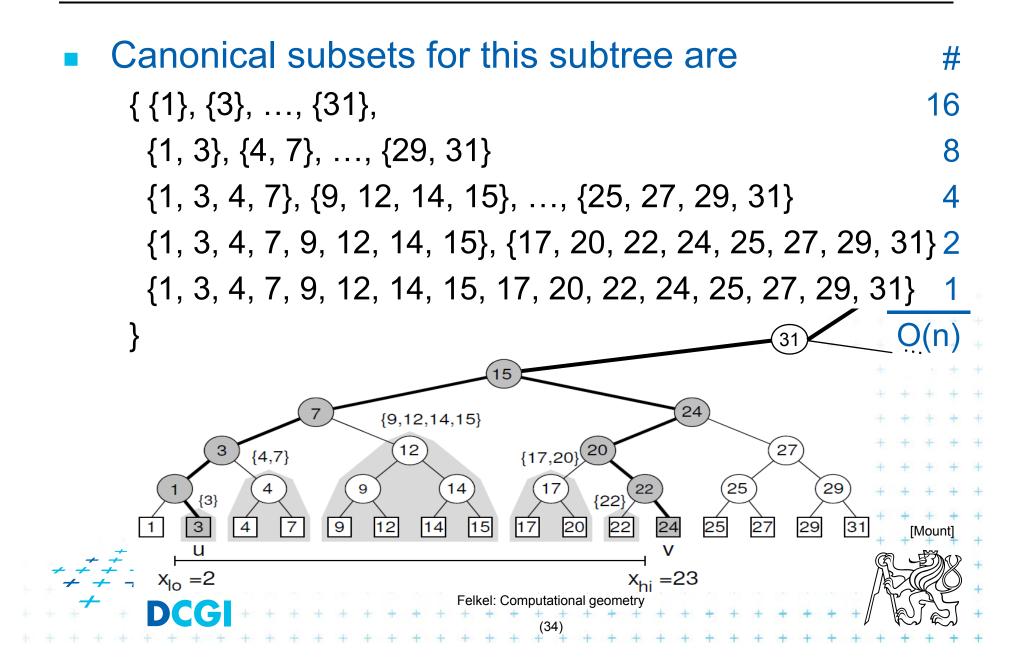
2dRangeQuery(<i>t</i> , [x:x'] ° [y:y']) Input: 2d range tree <i>t</i> and Query range
Output: All points in t laying in the range
 t_{split} = FindSplitNode(t, x, x')
2. if(t _{split} is leaf)
3. check if the point in t_{split} must be reported t.x μ [x:x'], t.y μ [y:y']
 else // follow the path to x, calling 1dRangeQuery on y
5. $t = t_{split}$. left // path to the left
6. while(t is not a leaf)
7. $if(x, t.x)$
8. 1dRangeQuerry(t _{assoc} (<i>t.right</i>), [<i>y:y'</i>]) // check associated subtree
9. $t = t.left$
10. else $t = t.right$
11. check if the point in leaf <i>t</i> must be reported t.x x' , t.y μ [y:y'] + +
12. Similarly for the path to x' // path to the right
+ + + + + + + + + + + + + + + + + + +
$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$
Felkel: Computational geometry
* * * * * * * * * * * * * * * * * * * *

2D range tree

- Search O(log² n + k) log n in x-, log n in y
- Space O(n log n)
 - O(n) the tree for x-coords
 - O(n log n) trees for y-coords
 - Point p is stored in all canonical subsets along the path from root to leaf with p,
 - once for x-tree level (only in one x-range)
 - each canonical subsets is stored in one auxiliary tree
 - log n levels of x-tree => O(n log n) space for y-trees
- Construction O(n log n)

- Sort points (by x and by y). Bottom up construction

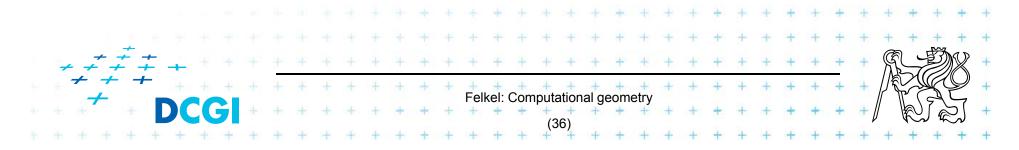
Felkel: Computational geometry



nD range tree (multilevel search tree) Tree for each dimension canonical subsets of 2. dimension Split node root(T)canonical subsets split node of 1. dimension (nodes µ [x:x']) [Bera] Felkel: Computational geometry

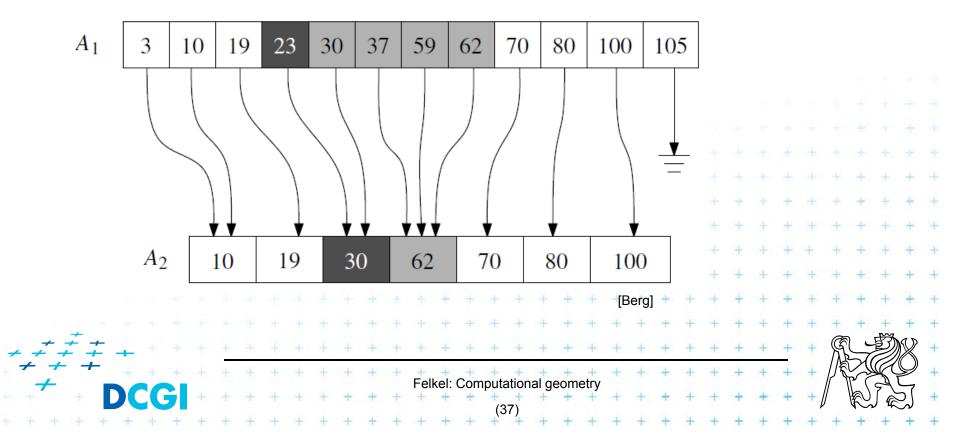
Fractional cascading - principle

- Two sets S₁, S₂ stored in sorted arrays A₁, A₂
- Report objects in both whose keys in [y:y']
- Naïve approach
 - O(log n_1 + k_1) search in A₁ + report k_1 elements
 - O(log $n_2 + k_2$) search in A₂ + report k_2 elements
- Fractional cascading adds pointers from A₁ to A₂
 - O(log n_1 + k_1 +1+ k_2) search in A₁ + report k_1 elements
 - $-O(1 + k_2)$ $-jump to A_2 + report k_2 elements$
 - Saves the $O(\log n_2)$ search



Fractional cascading – principle for arrays

- Add pointers from A₁ to A₂
 - From element in A₁ with a key y_i point to the element in
 A₂ with the smallest key *larger or equal* to y_i
- Example query with the range [20 : 65]

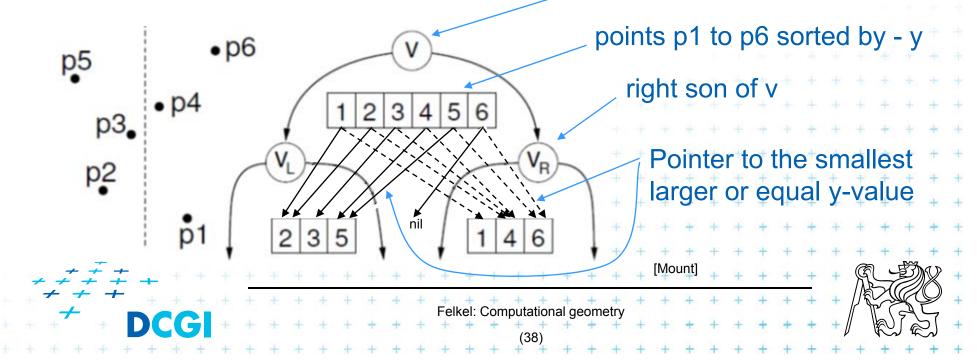


Fractional cascading in the 2D range tree

• How to save one log n during last dim. search?

- Store canonical subsets in arrays sorted by y
- Pointers to subsets for both child nodes v_L and v_R
- O(1) search in lower levels => in two dimensional search O(log² n) time -> O(2 log n)

internal node in x-tree



Orthogonal range tree - summary

- Orthogonal range queries in plane
 - Counting queries O(log² n) time,
 or with fractional cascading O(log n) time
 - Reporting queries plus O(k) time, for k reported points
 - Space O($n \log n$)
 - Construction O($n \log n$)
- Orthogonal range queries in d-dimensions, d-2
 - Counting queries O(log^d n) time, or with fractional cascading O(log^(d-1) n) time
 - Reporting queries plus O(k) time, for k reported points

Felkel: Computational geometry

- Space O($n \log^{(d-1)} n$)
- $\neq \pm$ Construction O(*n* log^(d-1) *n*) time

References

- [Berg] <u>Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark</u> <u>Overmars</u>: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapter 5, <u>http://www.cs.uu.nl/geobook/</u>
- [Mount] David Mount, CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland , Lectures 17 and 18. <u>http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml</u>
- [Havran] Vlastimil Havran, Materiály k předmětu Datové struktury pro počítačovou grafiku, přednáška č. 6, Proximity search and its Applications 1, CTU FEL, 2007

