

COMPUTATIONAL GEOMETRY INTRODUCTION

PETR FELKEL FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start Based on [Berg] and [Kolingerova] Version from 17.1.2016

Computational Geometry

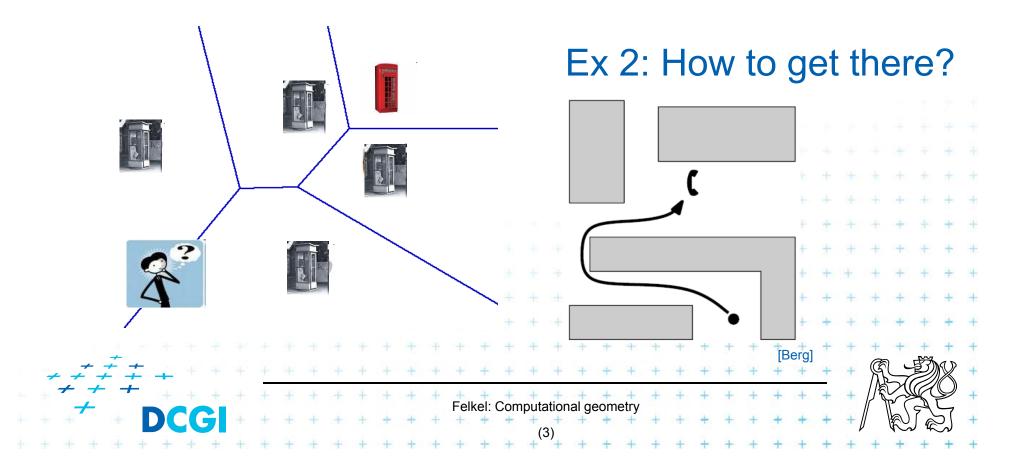
- 1. What is Computational Geometry (CG)?
- 2. Why to study CG and how?
- 3. Typical application domains
- 4. Typical tasks
- 5. Complexity of algorithms
- 6. Programming techniques (paradigms) of CG
- 7. Robustness Issues

Felkel: Computational geometry

- 8. CGAL CG algorithm library intro
- 9. References and resources
- 10. Course summary

1. What is Computational Geometry?

- CG Solves geometric problems that require clever geometric algorithms
- Ex 1: Where is the nearest phone, metro, pub,...?



1.1 What is Computational Geometry? (...)



1.2 What is Computational Geometry? (...)

- Good solutions need both:
 - Understanding of the geometric properties of the problem
- Proper applications of algorithmic techniques (paradigms) and data structures
 Felkel: Computational geometry (6)

1.3 What is Computational Geometry? (...)

Computational geometry

= systematic study of algorithms and data structures for geometric objects (points, lines, line segments, n-gons,...) with focus on exact algorithms that are asymptotically fast

"Born" in 1975 (Shamos), boom of papers in 90s
 (first papers sooner: 1850 Dirichlet, 1908 Voronoi,...)

Felkel: Computational geometry

 Many problems can be formulated geometrically (e.g., range queries in databases)

1.4 What is Computational Geometry? (...)

Problems:

- Degenerate cases (points on line, with same x,...)
 - Ignore them first, include later

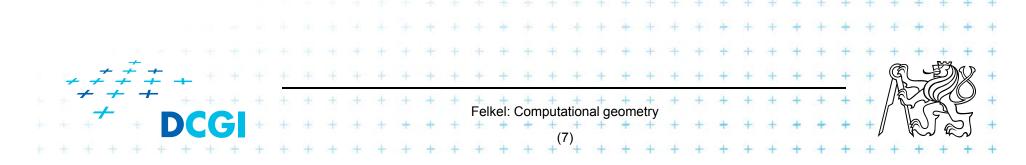
Robustness - correct algorithm but not robust

- Limited numerical precision of real arithmetic
- Inconsistent *eps* tests (a=b, b=c, but a ≠ c)

Nowadays:

 focus on practical implementations, not just on asymptotically fastest algorithms

nearly correct result is better than nonsense or crash



2. Why to study computational geometry?

- Graphics- and Vision- Engineer should know it ("DSA in nth-Dimension")
- Set of ready to use tools
- You will know new approaches to choose from

2.1 How to teach computational geometry?

- Typical "mathematician" method:
 - definition-theorem-proof
- Our "practical" approach:
 - practical algorithms and their complexity
 - practical programing using a geometric library
- Is it OK for you?

3. Typical application domains

- Computer graphics
 - Collisions of objects
 - Mouse localization
 - Selection of objects in region
 - Visibility in 3D (hidden surface removal)
 - Computation of shadows

Robotics

- Motion planning (find path - environment with obstacles)

Felkel: Computational geometr

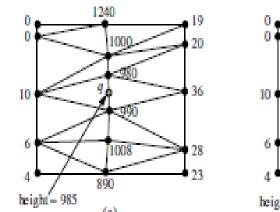
[Farag]

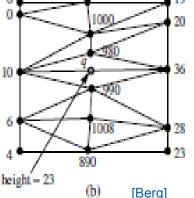
- Task planning (motion + planning order of subtasks)
- Design of robots and working cells

3.1 Typical application domains (...)

GIS

- How to store huge data and search them quickly
- Interpolation of heights
- Overlap of different data



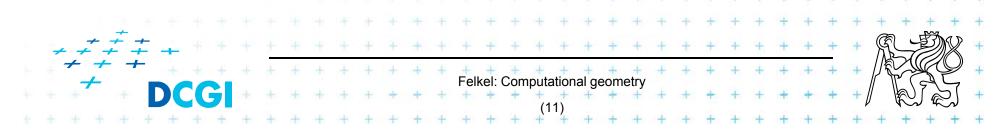


1240

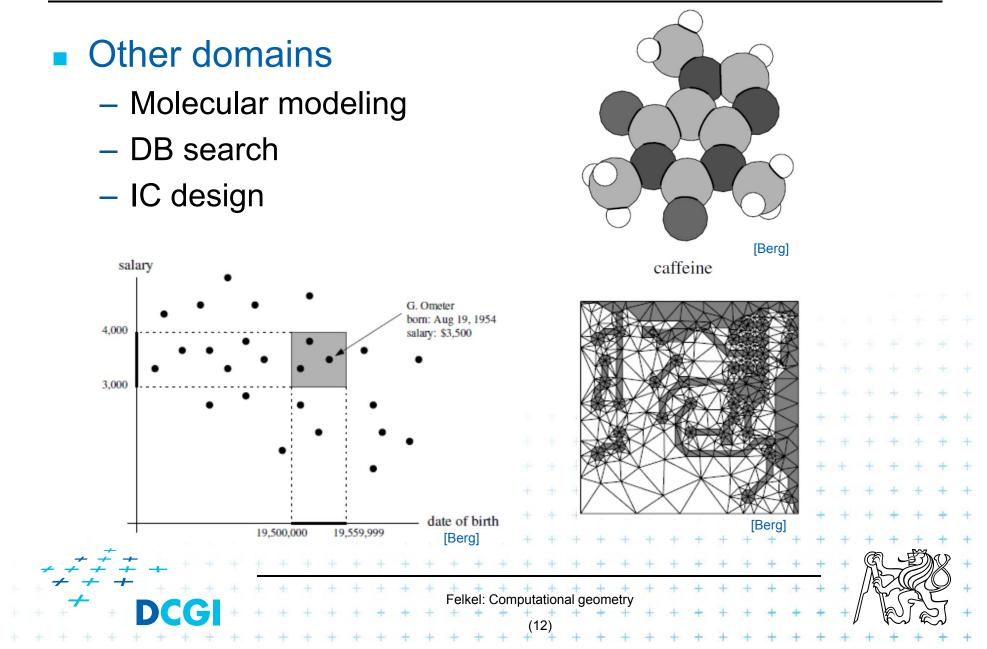
- Extract information about regions or relations between data (pipes under the construction site, plants x average rainfall,.
- Detect bridges on crossings of roads and rivers...

CAD/CAM

- Intersections and unions of objects
- Visualization and tests without need to build a prototype
- Manufacturability

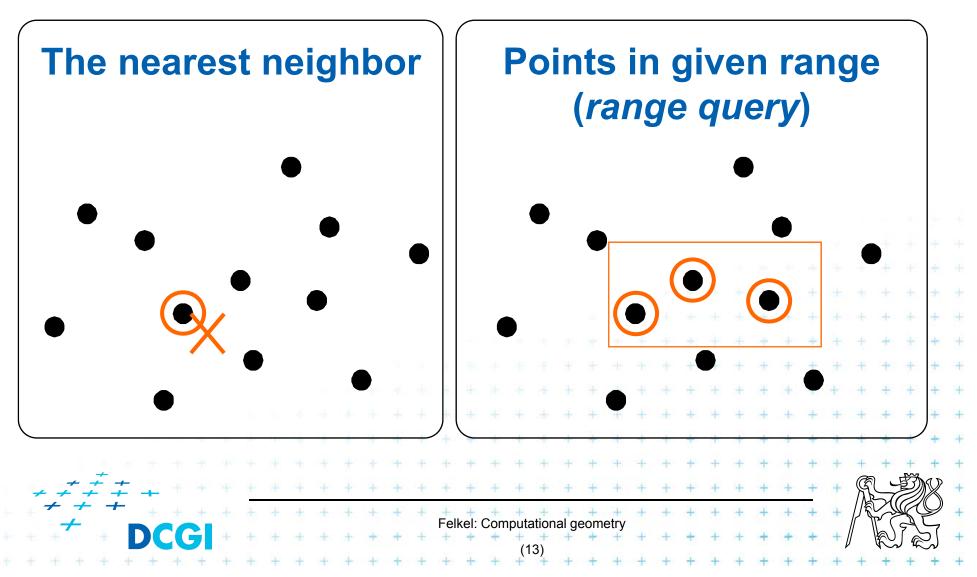


3.2 Typical application domains (...)



4. Typical tasks in CG

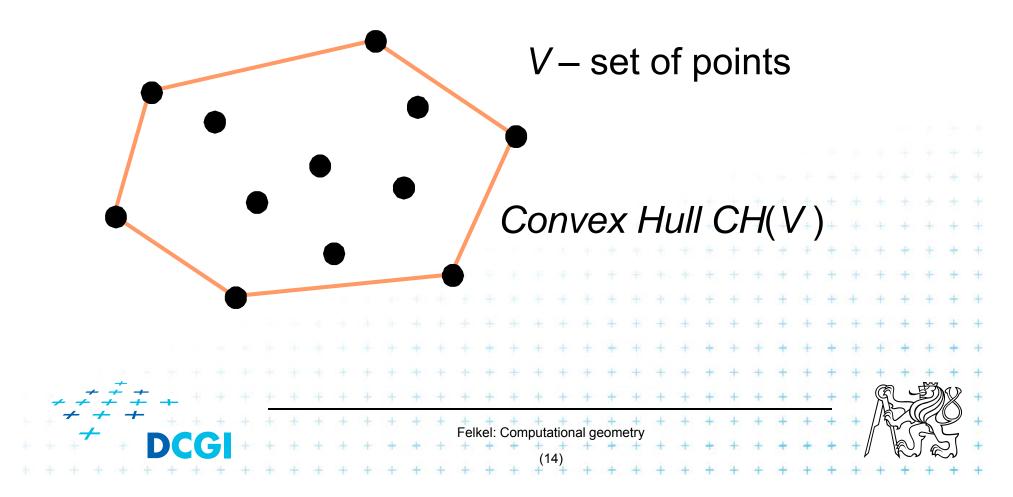
Geometric searching - fast location of :



4.1 Typical tasks in CG

Convex hull

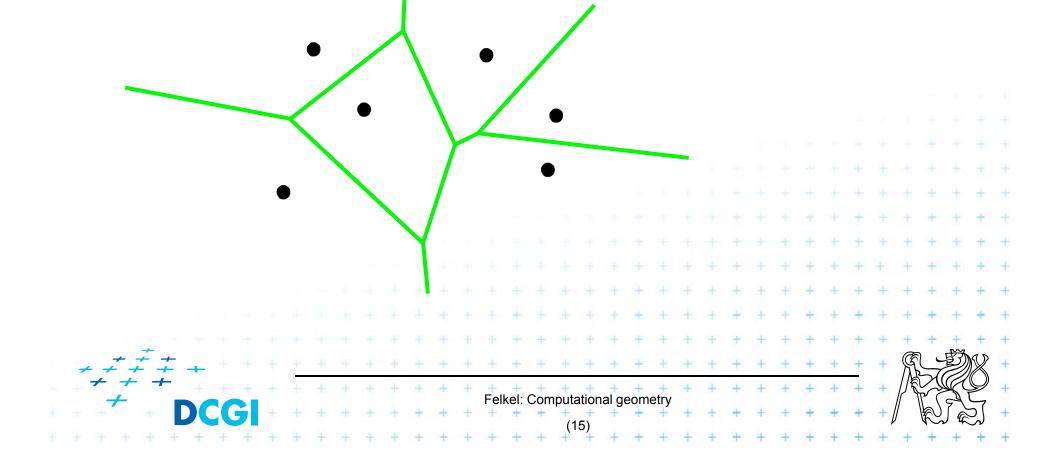
= smallest enclosing convex polygon in E² or n-gon in E³ containing all the points



4.2 Typical tasks in CG

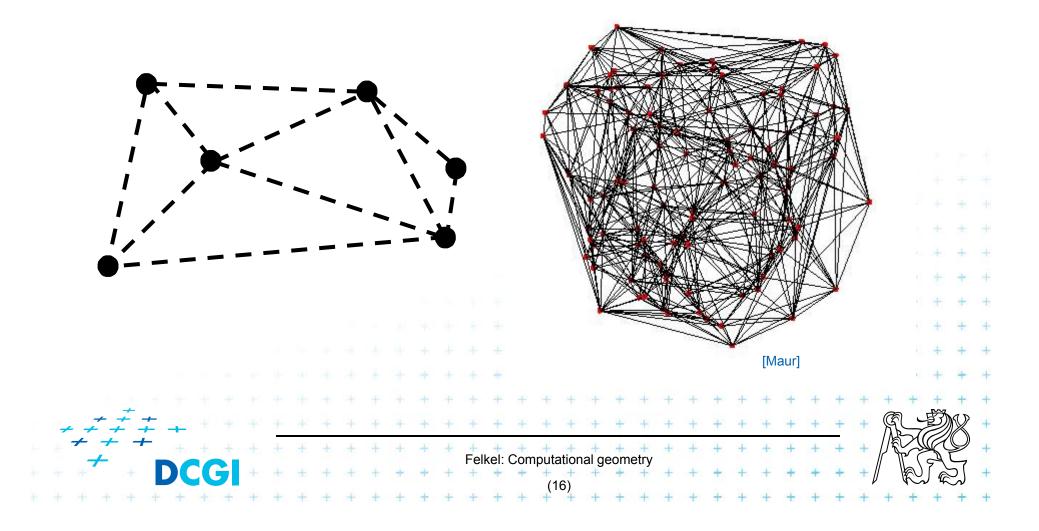
Voronoi diagrams

 Space (plane) partitioning into regions whose points are nearest to the given primitive (most usually a point)



4.3 Typical tasks in CG

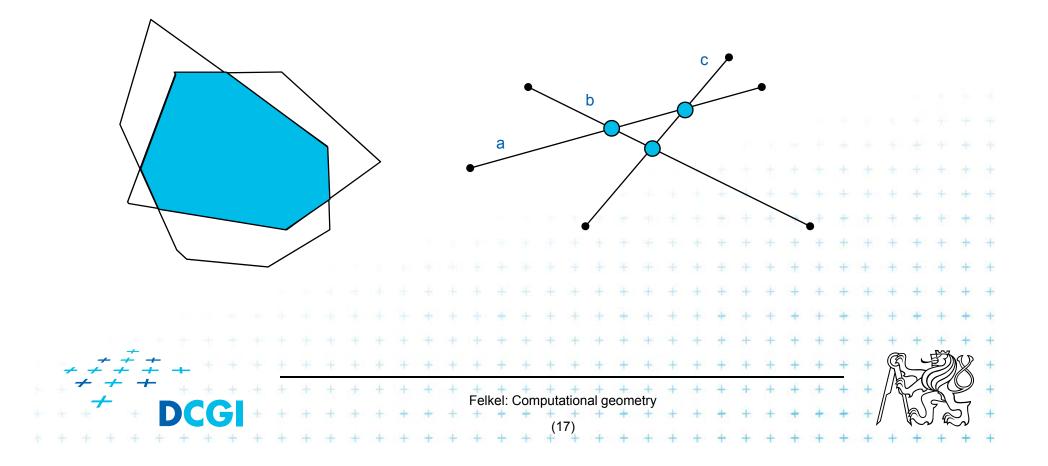
 Planar triangulations and space tetrahedronization of given point set



4.4 Typical tasks in CG

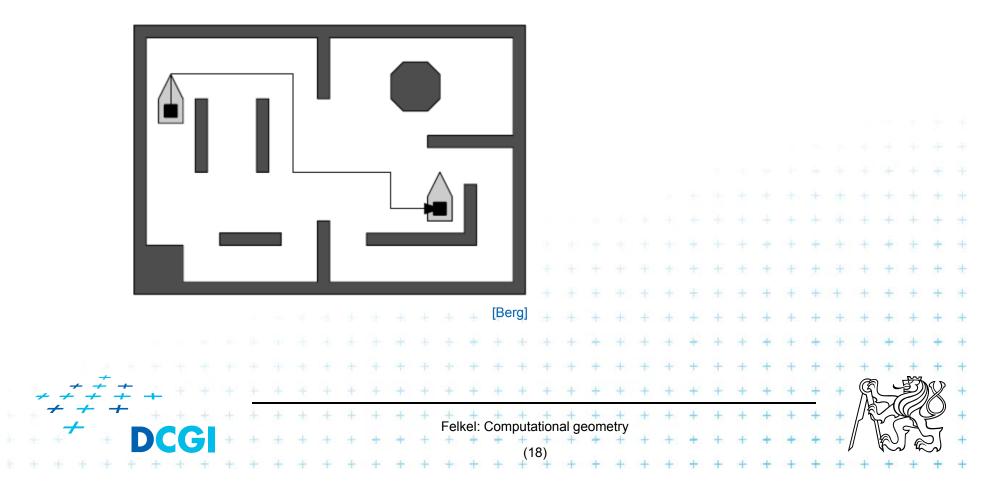
Intersection of objects

- Detection of common parts of objects
- Usually linear (line segments, polygons, n-gons,...)



4.5 Typical tasks in CG

- Motion planning
 - Search for the shortest path between two points in the environment with obstacles

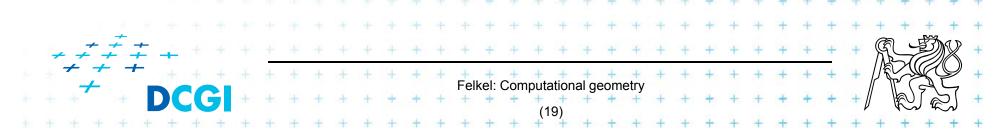


5. Complexity of algorithms and data struc.

- We need a measure for comparison of algorithms
 - Independent on computer HW and prog. language
 - Dependent on the problem size *n*
 - Describing the behavior of the algorithm for different data
- Running time, preprocessing time, memory size
 - Asymptotical analysis O(g(n)), $\Omega(g(n))$, $\Theta(g(n))$
 - Measurement on real data

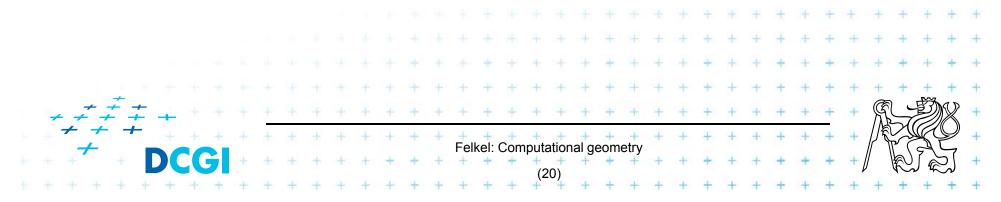
Differentiate:

- complexity of the algorithm (particular sort) and
- complexity of the problem (sorting)
 - given by number of edges, vertices, faces,...
 - equal to the complexity of the best algorithm



5.1 Complexity of algorithms

- Worst case behavior
 - Running time for the "worst" data
- Expected behavior (average)
 - expectation of the running time for problems of particular size and probability distribution of input data
 - Valid only if the probability distribution is the same as expected during the analysis
 - Typically much smaller than the worst case behavior
 - Ex.: Quick sort $O(n^2)$ worst and $O(n \log n)$ expected

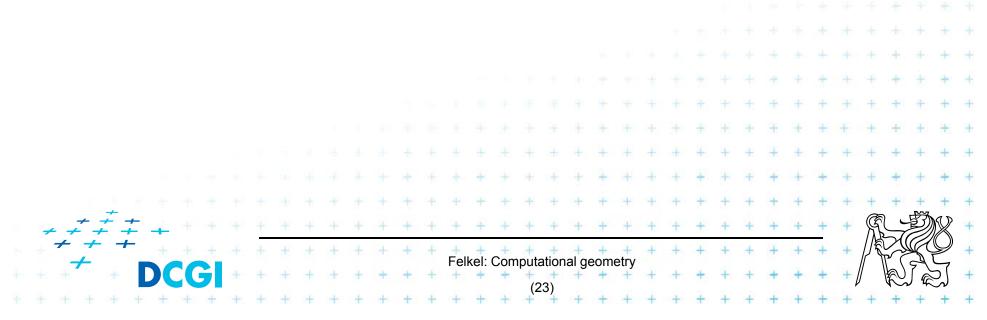


6. Programming techniques (paradigms) of CG

- 3 phases of a geometric algorithm development
 - 1. Ignore all degeneracies and design an algorithm
 - 2. Adjust the algorithm to be correct for degenerate cases
 - Degenerate input exists
 - Integrate special cases in general case
 - It is better than lot of case-switches (typical for beginners)
 - e.g.: lexicographic order for points on vertical lines or Symbolic perturbation schemes
 Implement alg. 2 (use sw library)

6.1 Sorting

- A preprocessing step
- Simplifies the following processing steps
- Sort according to:
 - coordinates x, y,..., or lexicographically to [y,x],
 - angles around point
- O(n logn) time and O(n) space



6.2 Divide and Conquer (divide et impera)

Split the problem until it is solvable, merge results

DivideAndConquer(S)

- 1. If known solution then return it
- 2. else
- 3. Split input S to k distinct subsets S_i
- 4. Foreach *i* call DivideAndConquer(S_i)
- 5. Merge the results and return the solution

Prerequisite

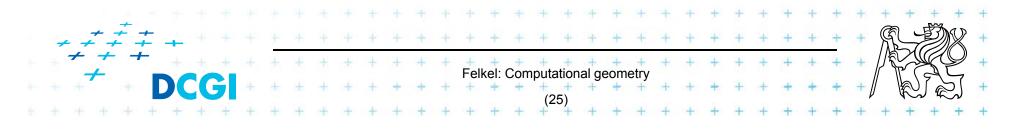
- The input data set must be separable
- Solutions of subsets are independent
- The result can be obtained by merging of sub-results

Felkel: Computational geometry

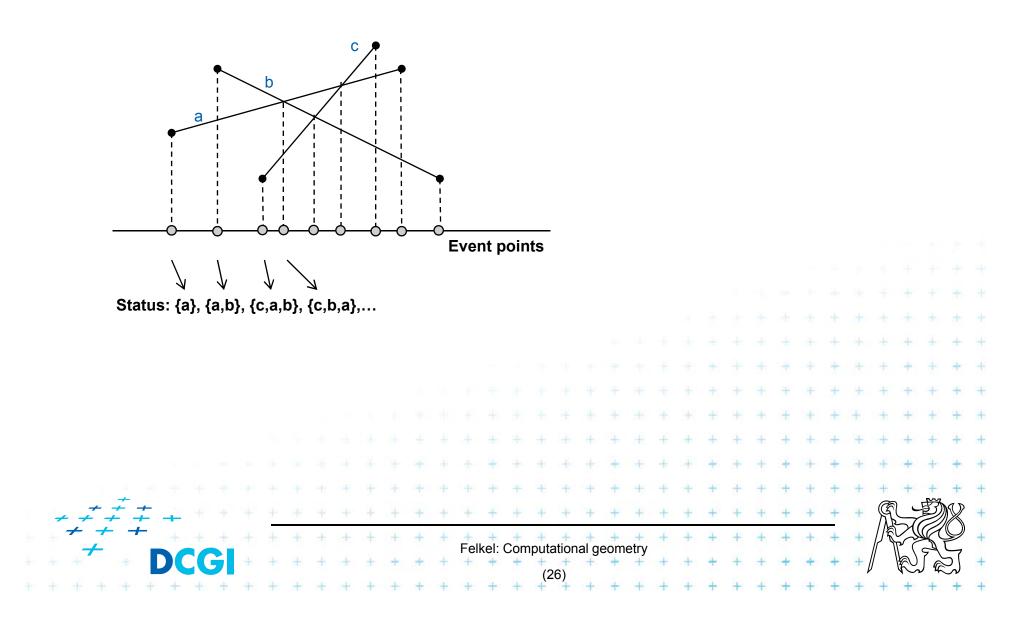
6.3 Sweep algorithm

• Split the space by a hyperplane (2D: sweep line)

- "Left" subspace solution known
- "Right" subspace solution unknown
- Stop in event points and update the status
- Data structures:
 - Event points points, where to stop the sweep line and update the status, sorted
 - Status state of the algorithm in the current position of the sweep line
- Prerequisite:
 - Left subspace does not influence the right subspace



6.3b Sweep-line algorithm



6.4 Prune and search

 Eliminate parts of the state space, where the solution clearly does not exist

- Binary search

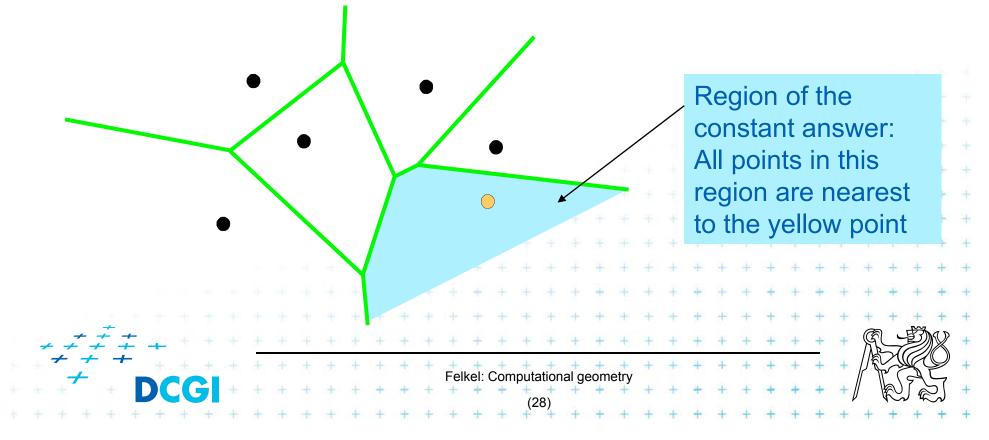
Search trees

Back-tracking (stop if solution worse than current optimum)

Felkel: Computational geometry

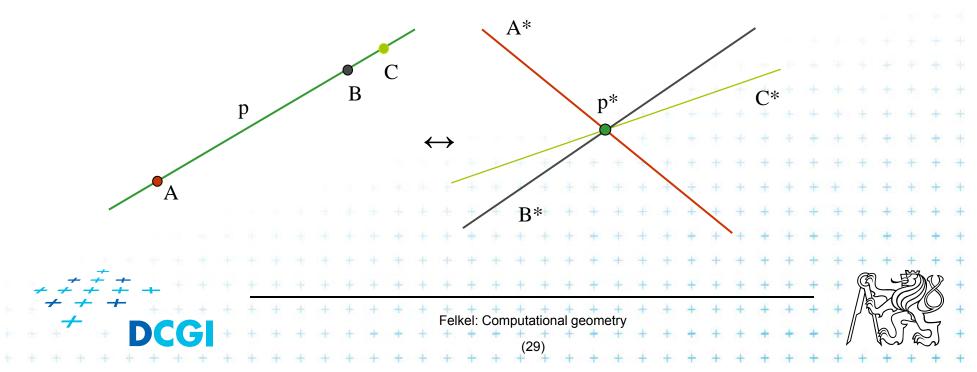
6.5 Locus approach

- Subdivide the search space into regions of constant answer
- Use point location to determine the region
 - Nearest neighbor search example



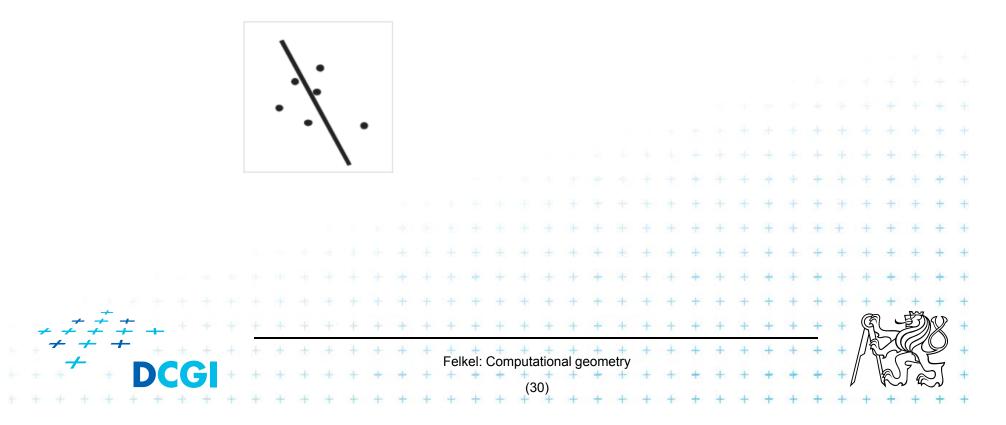
6.6 Dualisation

- Use geometry transform to change the problem into another that can be solved more easily
- Points ↔ hyper planes
 - Preservation of incidence (A \in p \Rightarrow p* \in A*)
- Ex. 2D: determine if 3 points lie on a common line



6.7 Combinatorial analysis

- = The branch of mathematics which studies the number of different ways of arranging things
- Ex. How many subdivisions of a point set can be done by one line?



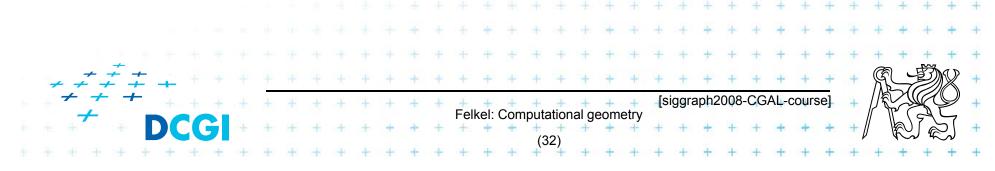
6.8 New trends in Computational geometry

- From 2D to 3D and more from mid 80s, from linear to curved objects
- Focus on line segments, triangles in E³ and hyper planes in E^d
- Strong influence of combinatorial geometry
- Randomized algorithms
- Space effective algorithms (in place, in situ, data stream algs.)
- Robust algorithms and handling of singularities
- Practical implementation in libraries (LEDA, CGAL,

Felkel: Computational geometry

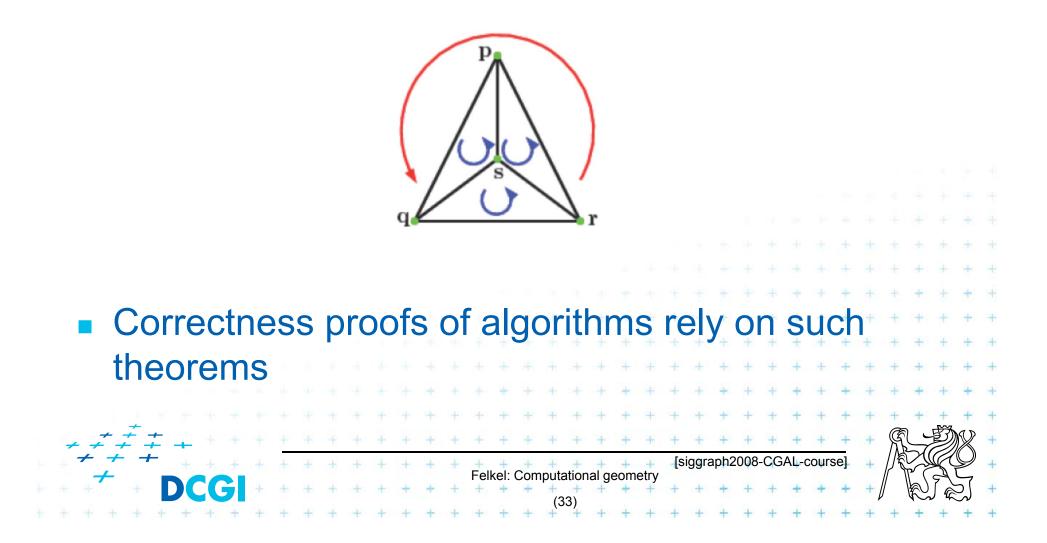
7. Robustness issues

- Geometry in theory is exact
- Geometry with floating-point arithmetic is not exact
 - Limited numerical precision of real arithmetic
 - Numbers are rounded to nearest possible representation
 - Inconsistent *epsilon* tests (a=b, b=c, but $a \neq c$)
- Naïve use of floating point arithmetic causes geometric algorithm to
 - Produce slightly or completely wrong output
 - Crash after invariant violation
 - Infinite loop



Geometry in theory is exact

ccw(s,q,r) & ccw(p,s,r) & ccw(p,q,s) => ccw(p,q,r)



Floating-point arithmetic is not exact

a) Limited numerical precision of real numbers

Numbers represented as normalized

				31	30	23 3	22	0
		± <i>m</i> 2 ^e		S	exp.		mantisa	
				single	precision			
63	62	52	51					0
S		exponent			mantisa	ì		
double precision				[http://cs.wikipedia.org/wiki/Soubor:Single_double_extended2.gif]				

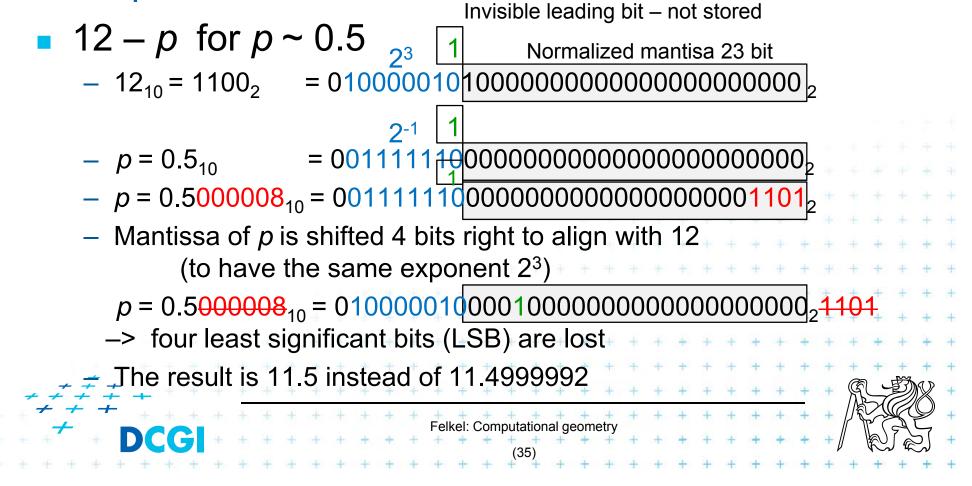
The mantissa m is a 24-bit (53-bit) value whose most significant bit (MSB) is always 1 and is, therefore, not stored.

 Stored numbers (results) are rounded to 24/53 bits mantissa – lower bits are lost

Felkel: Computational geometry

Floating-point arithmetic is not exact

 b) Smaller numbers are shifted right during additions and subtractions to align the digits of the same order
 Example for float:



Floating-point arithmetic is not exact

- b) Smaller numbers are shifted right during additions and subtractions to align the digits of the same order
 Example for float:
- 12 p for $p \sim 0.5$ (such as 0.5+2^(-23))

Mantissa of *p* is shifted 4 bits right to align with 12
 –> four least significant bits (LSB) are lost

Orientation predicate - definition

orientation
$$(p, q, r) = \operatorname{sign} \left(\operatorname{det} \begin{bmatrix} 1 & p_{\chi} & p_{y} \\ 1 & q_{\chi} & q_{y} \\ 1 & r_{\chi} & r_{y} \end{bmatrix} \right) =$$

$$= \operatorname{sign} \left((q_{\chi} - p_{\chi}) (r_{y} - p_{y}) - (q_{y} - p_{y}) (r_{\chi} - p_{\chi}) \right),$$
where point $p = (p_{\chi}, p_{y}), \dots$

$$= \operatorname{third \ coordinate \ of} = (\vec{u} \times \vec{v}),$$
Three points

$$= \operatorname{lie \ on \ common \ line} = 0$$

$$= \operatorname{lie \ on \ common \ line} = 0$$

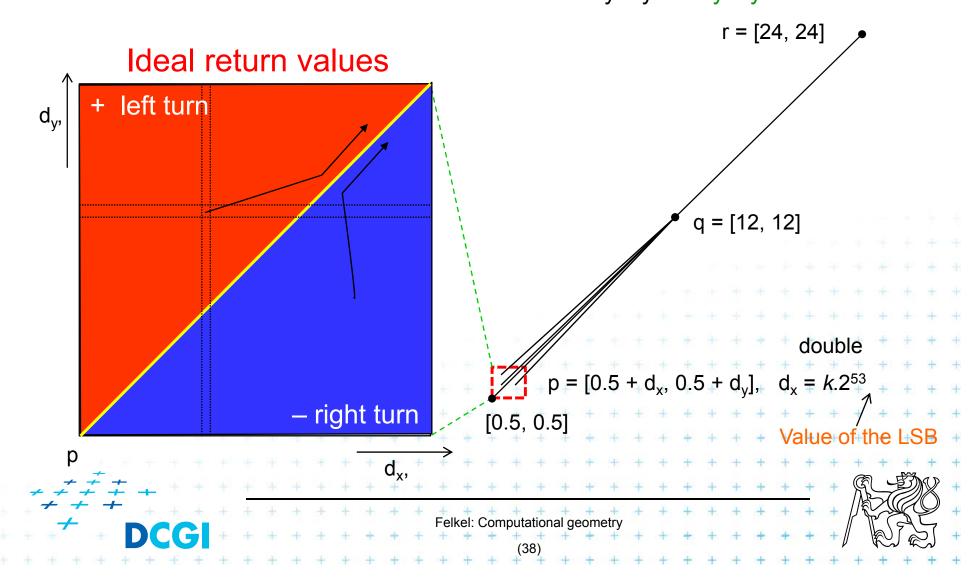
$$= \operatorname{form \ a \ left \ turn} = +1 \ (\operatorname{positive})$$

$$= -1 \ (\operatorname{negative}) \qquad p$$
Fetket: Computational geometry

$$= \operatorname{DCGI} \qquad \operatorname{Fetket: \ Computational geometry} \qquad (a)$$

Experiment with orientation predicate

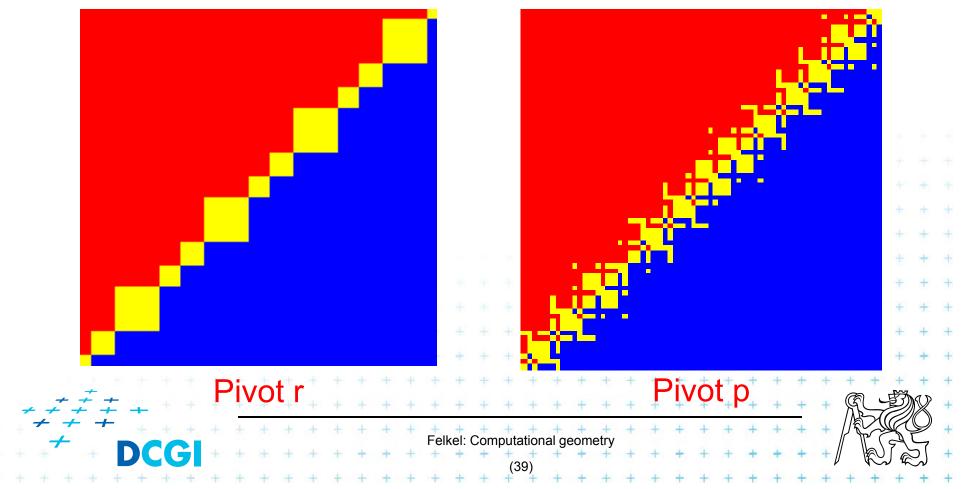
• orientation(p,q,r) = sign($(p_x-r_x)(q_y-r_y)-(p_y-r_y)(q_x-r_x)$)



Real results of orientation predicate

• orientation(p,q,r) = sign($(p_x-r_x)(q_y-r_y)-(p_y-r_y)(q_x-r_x)$)

Return values during the experiment for exponent -52



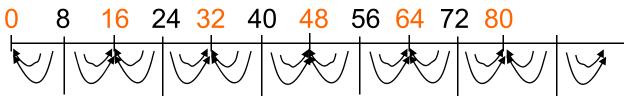
Floating point orientation predicate double exp=-53

Pivot *p*

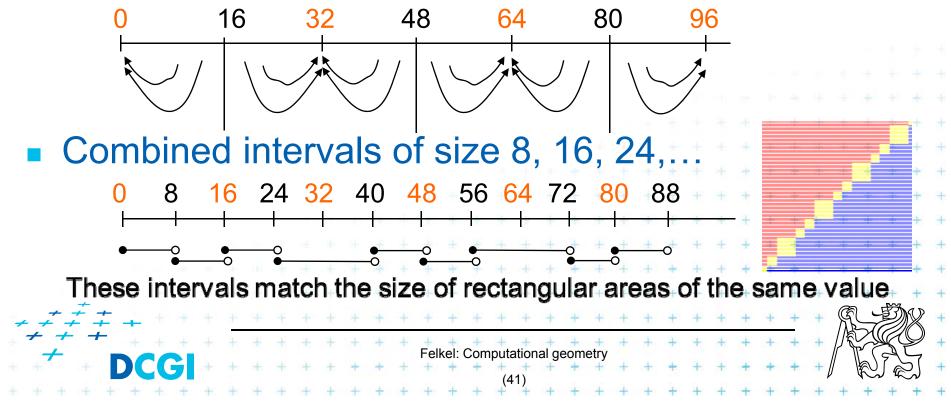


Errors from shift ~0.5 right in subtraction

4 bits shift => 2⁴ values rounded to the same value



5 bits shift => 2⁵ values rounded to the same value



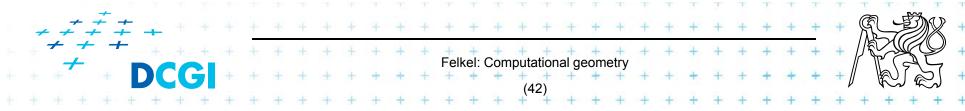
Orientation predicate – pivot selection

orientation
$$(p, q, r)$$
 = sign $\begin{pmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{pmatrix} =$

The formula depends on choose for the pivot – row to be subtracted from other rows

$$= \operatorname{sign} \left((q_x - p_x)(r_y - p_y) - (q_y - p_y)(r_x - p_x) \right) \\ = \operatorname{sign} \left((r_x - q_x)(p_y - q_y) - (r_y - q_y)(p_x - q_x) \right) \\ = \operatorname{sign} \left((p_x - r_x)(q_y - r_y) - (p_y - r_y)(q_x - r_x) \right)$$

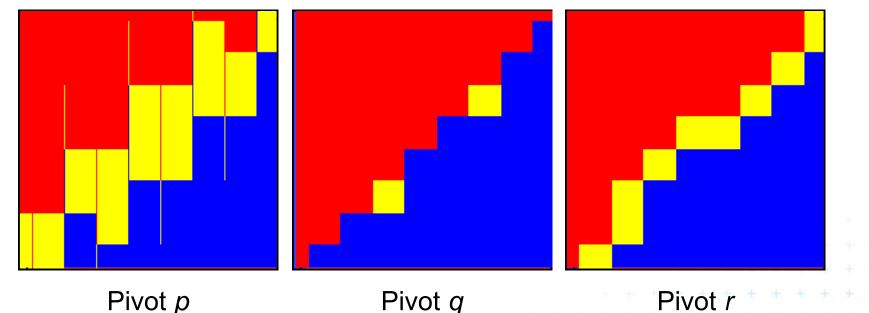
Which order is the worst?



Little improvement - selection of the pivot

(b) double exp=-53

Pivot – subtracted from the rows in the matrix

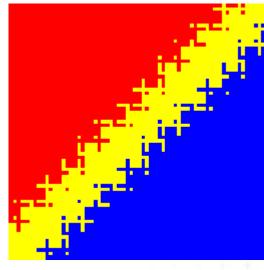


=> Pivot q (point with middle x or y coord.) is the best But it is typically not used – pivot search is too complicated in comparison to the predicate itself [Kettner]

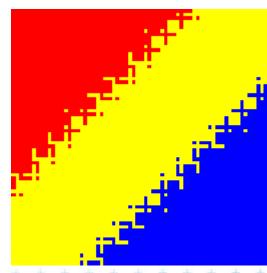
Felkel: Computational geometry

Wrong approach – epsilon tweaking

- Use tolerance ε =0.00005 to 0.0001 for float
- Points are declared collinear if float_orient returns a value $\leq \epsilon$ 0.5+2^(-23), the smallest repr. value 0.500 000 06



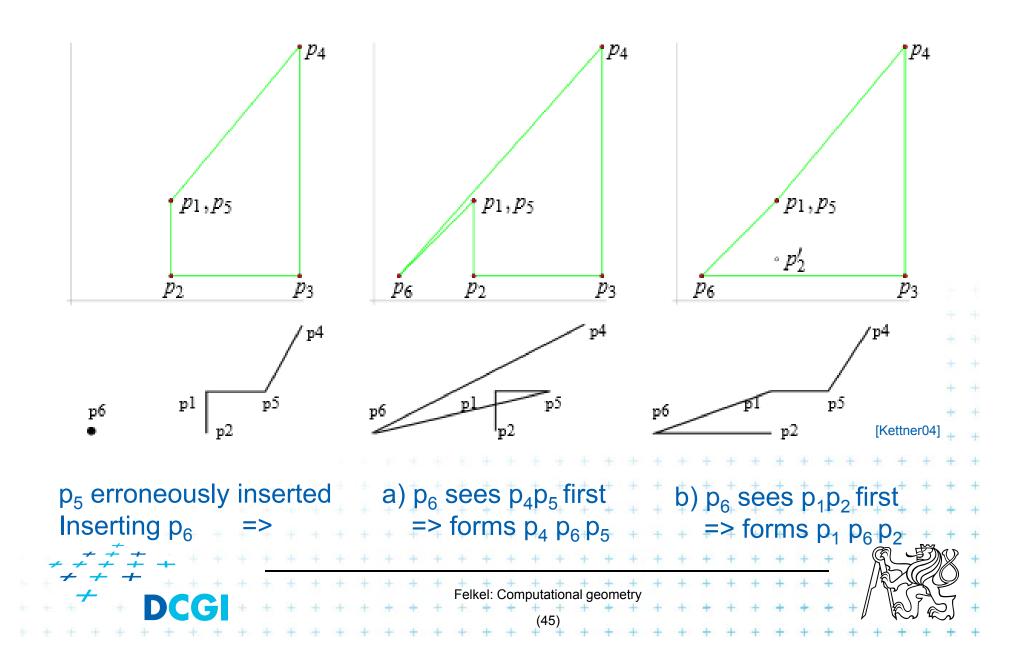
Boundary for $\varepsilon = 0.00005$



Boundary for $\varepsilon = 0.0001$

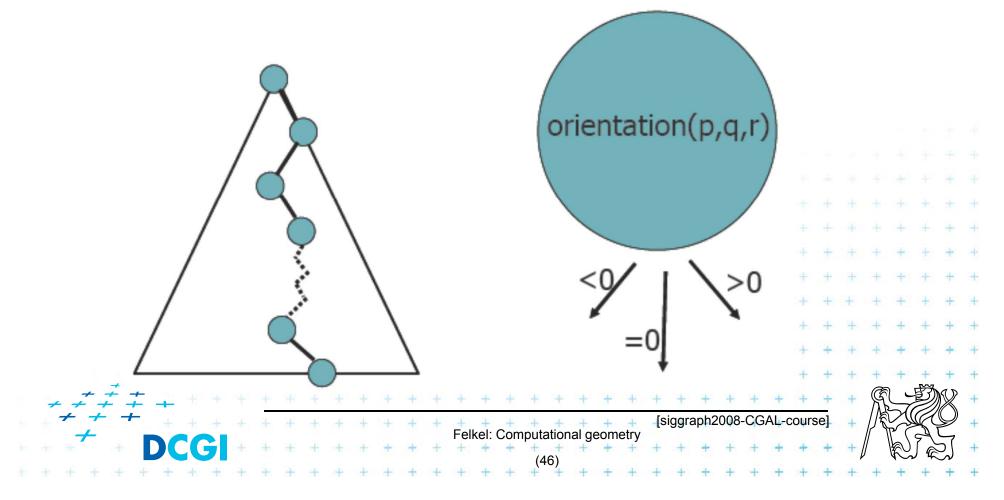
Felkel: Computational geometr

Consequences in convex hull algorithm



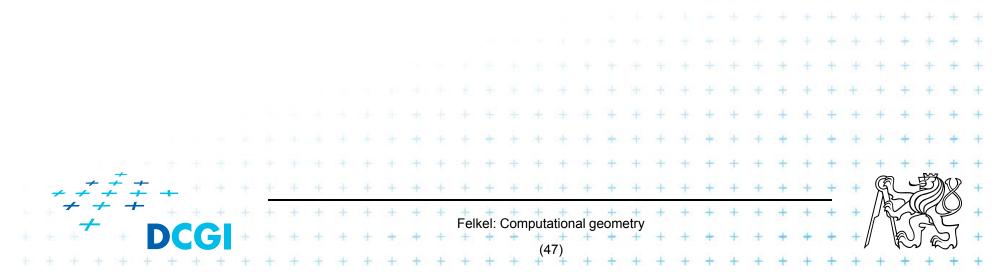
Exact Geometric Computing [Yap]

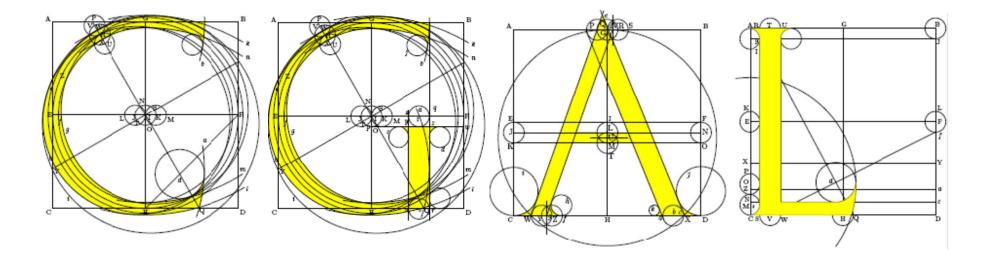
 Make sure that the control flow in the implementation corresponds to the control flow with exact real arithmetic



Solution

- Use predicates, that always return the correct result -> such as YAP, LEDA or CGAL
- 2. Change the algorithm to cope with floating point predicates but still return something *meaningfull* (hard to define)
- 3. Perturb the input so that the floating point implementation gives the correct result on it





Computational Geometry Algorithms Library

Slides from [siggraph2008-CGAL-course]

Felkel: Computational geometry

CGAL

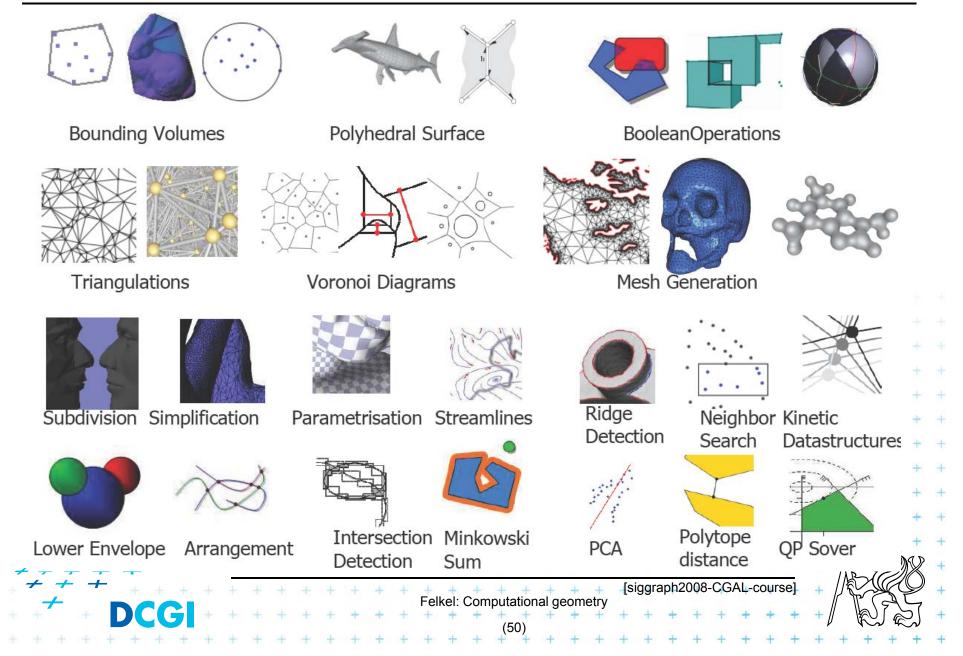
Large library of geometric algorithms

- Robust code, huge amount of algorithms
- Users can concentrate on their own domain
- Open source project
 - Institutional members
 (Inria, MPI, Tel-Aviv U, Utrecht U, Groningen U, ETHZ, Geometry Factory, FU Berlin, Forth, U Athens)

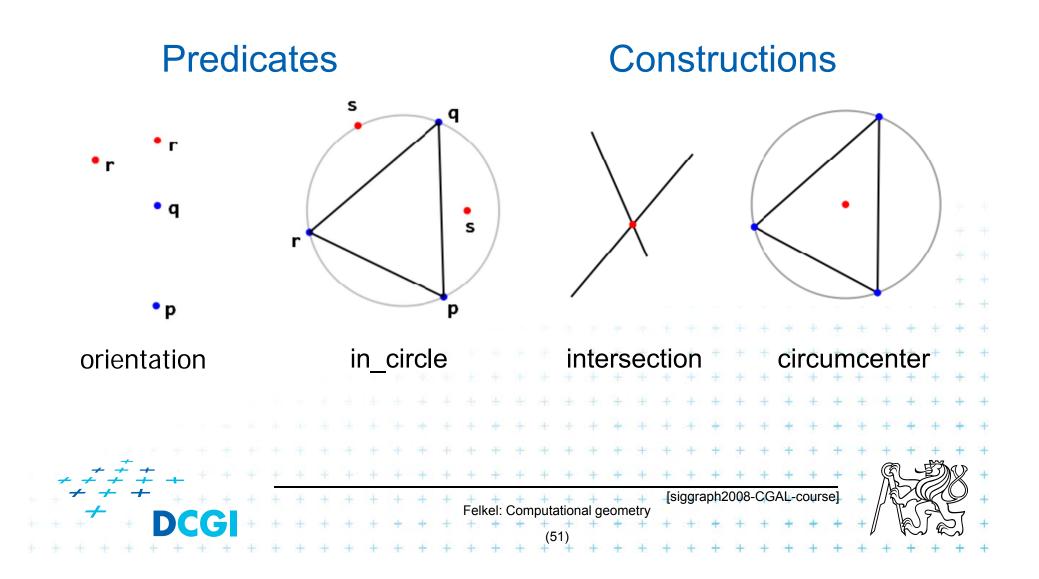
Felkel: Computational geometry

- 500,000 lines of C++ code
- 10,000 downloads/year (+ Linux distributions)
- 20 active developers
- 12 months release cycle

CGAL algorithms and data structures



Exact geometric computing



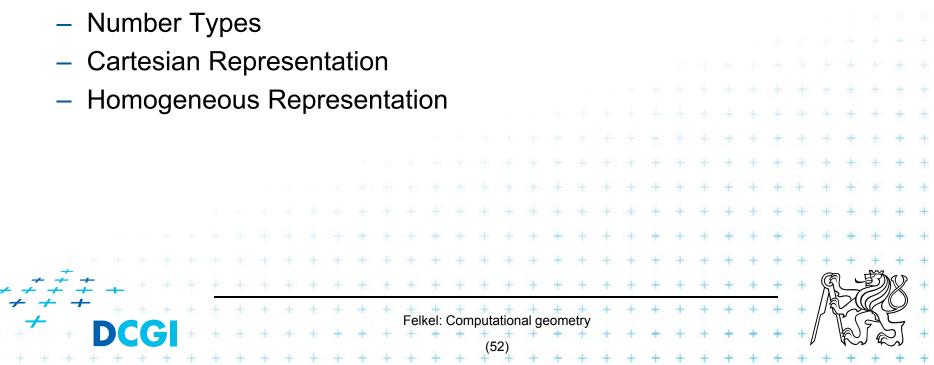
CGAL Geometric Kernel (see [Hert] for details)

Encapsulates

- the representation of geometric objects
- and the geometric operations and predicates on these objects

CGAL provides kernels for

- Points, Predicates, and Exactness



Points, predicates, and Exactness

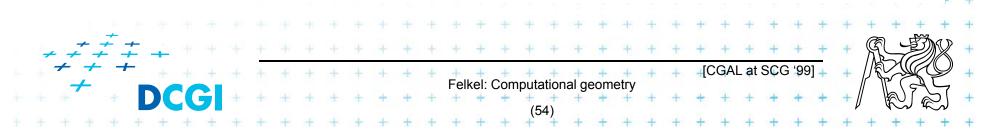
```
#include "tutorial.h"
#include <CGAL/Point_2.h>
#include <CGAL/predicates_on_points_2.h>
#include <iostream>
int main() {
    Point p( 1.0, 0.0);
    Point q( 1.3, 1.7);
    Point r( 2.2, 6.8);
    switch ( CGAL::orientation( p, q, r)) {
                                  std::cout << "Left turn.\n";</pre>
         case CGAL::LEFTTURN:
                                                                   break;
                                  std::cout << "Right turn.\n"; break;</pre>
         case CGAL::RIGHTTURN:
                                  std::cout << "Collinear.\n";</pre>
         case CGAL::COLLINEAR:
                                                                   break:
    return 0;
                                                          at SCG '991 +
                                 Felkel: Computational geometry
```

Number Types

- Builtin: double, float, int, long, ...
- CGAL: Filtered_exact, Interval_nt, ...
- LEDA: leda_integer, leda_rational, leda_real, ...
- Gmpz: CGAL::Gmpz
- others are easy to integrate

Coordinate Representations

- Cartesian p = (x, y) : CGAL::Cartesian<Field_type>
- Homogeneous $p = (\frac{x}{w}, \frac{y}{w})$: CGAL::Homogeneous<Ring_type>



Precission x slow-down

Cartesian with double

#include <CGAL/Cartesian.h>
#include <CGAL/Point_2.h>

```
typedef CGAL::Cartesian<double> Rep;
typedef CGAL::Point_2<Rep> Point;
```

```
int main() {
    Point p( 0.1, 0.2);
    ....
}

Felkel: Computational geometry
    (56)
```

Cartesian with Filtered_exact and leda_real

```
#include <CGAL/Cartesian.h>
#include <CGAL/Arithmetic_filter.h>
#include <CGAL/leda real.h>
#include <CGAL/Point_2.h>
                                                Number type
typedef CGAL::Filtered_exact<double, leda_real>
                                                 NT:
typedef CGAL::Cartesian<NT>
                                                 Rep;
typedef CGAL::Point_2<Rep>
                                                 Point:
int main()
           p(0.1, 0.2);
    Point
                           One single-line declaration
                                  changes the
                          precision of all computations
```


Some other libraries

- OpenMesh effective implementation of DCEL structure (polygonal and triangular mesh)
- Adaptive Precision Floating-Point Arithmetic and Fast Robust Predicates by Schewchuk

9 References – for the lectures

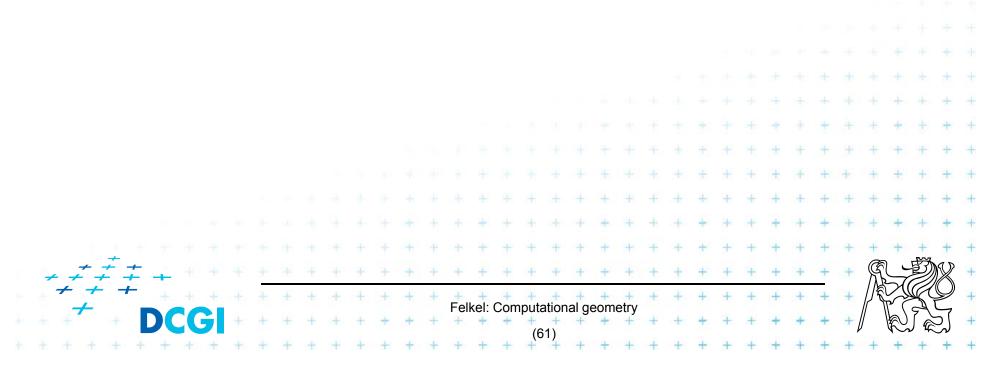
- Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5 http://www.cs.uu.nl/geobook/
- [Mount] Mount, D.: Computational Geometry Lecture Notes for Spring 2007 http://www.cs.umd.edu/class/spring2007/cmsc754/Lects/comp-geomlects.pdf
- Franko P. Preperata, Michael Ian Shamos: Computational Geometry. An Introduction. Berlin, Springer-Verlag,1985
- Joseph O'Rourke: .: Computational Geometry in C, Cambridge University Press, 1993, ISBN 0-521- 44592-2 <u>http://maven.smith.edu/~orourke/books/compgeom.html</u>
- Ivana Kolingerová: Aplikovaná výpočetní geometrie, Přednášky, MFF UK 2008

Felkel: Computational geometry

9.1 References – CGAL

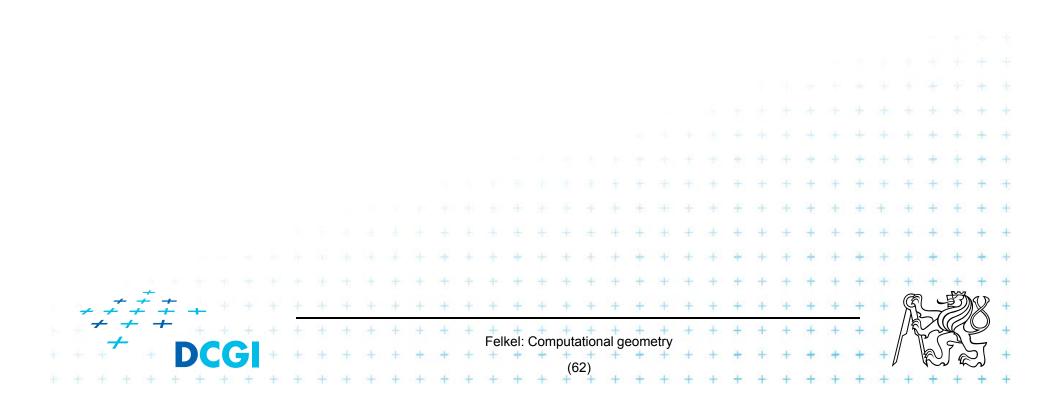
CGAL

- www.cgal.org
- Kettner, L.: Tutorial I: Programming with CGAL
- Alliez, Fabri, Fogel: Computational Geometry Algorithms Library, SIGGRAPH 2008
- Susan Hert, Michael Hoffmann, Lutz Kettner, Sylvain Pion, and Michael Seel.
 An adaptable and extensible geometry kernel. Computational Geometry: Theory and Applications, 38:16-36, 2007. [doi:10.1016/j.comgeo.2006.11.004]



9.2 Collections of geometry resources

- N. Amenta, Directory of Computational Geometry Software, http://www.geom.umn.edu/software/cglist/.
- D. Eppstein, Geometry in Action, http://www.ics.uci.edu/~eppstein/geom.html.
- Jeff Erickson, Computational Geometry Pages, <u>http://compgeom.cs.uiuc.edu/~jeffe/compgeom/</u>



10. Computational geom. course summary

- Gives an overview of geometric algorithms
- Explains their complexity and limitations
- Different algorithms for different data
- We focus on
 - discrete algorithms and precise numbers and predicates
 - principles more than on precise mathematical proofs
 - practical experiences with geometric sw

