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1. What is Computational Geometry?

= CG Solves geometric problems that require clever
geometric algorithms

= Ex 1: Where is the nearest phone, metro, pub,...?

Ex 2: How to get there?

- [Berg]
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1.1 What is Computational Geometry? (...)

Roads

= Ex 3: Map ove

& |4. A =

rlay

Land use

Boundaries

Hydrography
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1.2 What is Computational Geometry? (...)

» Good solutions need both:

— Understanding of the
geometric properties of the problem

— Proper applications of
algorithmic techniques (paradigms) and data structures
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1.3 What is Computational Geometry? (...)

= Computational geometry
= systematic study of algorithms and data structures for

geometric objects (points, lines, line segments, n-gons,...)
with focus on exact algorithms that are asymptotically fast

— “Born” in 1975 (Shamos), boom of papers in 90s
(first papers sooner: 1850 Dirichlet, 1908 Voronoi,...)

— Many problems can be formulated geometrically
(e.g., range queries in databases)
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1.4 What is Computational Geometry? (...)

= Problems:
— Degenerate cases (points on line, with same x,...))/\

* Ignore them first, include later

- Limited numerical precision of real arithmetic re e
* Inconsistent eps tests (a=b, b=c, but a # c) Y .

— Robustness - correct algorithm but not robust ‘1{ }
?

= Nowadays:

— focus on practical implementations, not just on
asymptotically fastest algorithms

— nearly correct result is better than nonsense or crash
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2. Why to study computational geometry?

= Graphics- and Vision- Engineer should know it
(,DSA in nt"-Dimension®)

= Set of ready to use tools
= You will know new approaches to choose from
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2.1 How to teach computational geometry?

= [ypical “mathematician” method:
— definition-theorem-proof

= Our “practical” approach:
— practical algorithms and their complexity
— practical programing using a geometric library

= Is it OK for you?
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3. Typical application domains

= Computer graphics
— Collisions of objects
— Mouse localization
— Selection of objects in region
— Visibility in 3D (hidden surface removal)
— Computation of shadows

= Robotics

| [Farag] |

— Motion planning (find path - environment with obstacles)
— Task planning (motion + planning order of subtasks)
— Design of robots and working cells 4 1

S 9
+ [ 9 o
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= GIS

— How to store huge data
and search them quickly

— Interpolation of heights . | I~
— Overlap of different data e e ®

(al
« Extract information about regions or relations between data
(pipes under the construction site, plants x average rainfall, /)[| i

» Detect bridges on crossings of roads and rivers...

= CAD/CAM

— Intersections and unions of objects
— Visualization and tests without need to build a prototype
— Manufacturability
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3.2 Typical application domains (...)

= Other domains
— Molecular modeling
— DB search
— 1C design

salary
.
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4. Typical tasks in CG

= Geometric searching - fast location of :

-
The nearest neighbor

N

(range query)
®
®

® @

O,

Points in given range

~
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4.1 Typical tasks in CG

= Convex hull
= smallest enclosing convex polygon in E2 or
n-gon in E3 containing all the points

¢ V — set of points

o
® ®
®
® |
o Convex Hull CH(V')
@
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4.2 Typical tasks in CG

= Voronoi diagrams

— Space (plane) partitioning into regions whose points are
nearest to the given primitive (most usually a point)
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4.3 Typical tasks in CG

= Planar triangulations and space tetrahedronization
of given point set
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4.4 Typical tasks in CG

= Intersection of objects
— Detection of common parts of objects

— Usually linear (line segments, polygons, n-gons,...
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4.5 Typical tasks in CG

= Motion planning

— Search for the shortest path between two points in the
environment with obstacles

[Berg]
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5. Complexity of algorithms and data struc.

= We need a measure for comparison of algorithms
— Independent on computer HW and prog. language
— Dependent on the problem size n
— Describing the behavior of the algorithm for different data

= Running time, preprocessing time, memory size
— Asymptotical analysis — O(g(n)), Q(g(n)), O(g(n))
— Measurement on real data

= Differentiate:

— complexity of the algorithm (particular sort) and

— complexity of the problem (sorting)
— given by number of edges, vertices, faces,...
— equal to the complexity of the best algorithm
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5.1 Complexity of algorithms

= Worst case behavior
— Running time for the “worst” data

= Expected behavior (average)

— expectation of the running time for problems of particular
size and probability distribution of input data

— Valid only if the probability distribution is the same as
expected during the analysis

— Typically much smaller than the worst case behavior
— Ex.: Quick sort O(n?) worst and O(n logn) expected
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6. Programming techniques (paradigms) of CG

= 3 phases of a geometric algorithm development
1. Ignore all degeneracies and design an algorithm

2. Adjust the algorithm to be correct for degenerate cases
— Degenerate input exists
— Integrate special cases in general case
— |t is better than lot of case-switches (typical for beginners)
- e.g.
lexicographic order for points on vertical lines
or Symbolic perturbation schemes

3. Implement alg. 2 (use sw library)
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6.1 Sorting

= A preprocessing step

= Simplifies the following processing steps

= Sort according to:

— coordinates X, v,..., or lexicographically to [y,x],
— angles around point

= O(nlogn)time and O(n) space
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6.2 Divide and Conquer (divide et impera)

= Split the problem until it is solvable, merge results
DivideAndConqgquer (S)

. If known solution then return it

. else

Split i1nput S to k distinct subsets S,
Foreach i call DivideAndConquer (S;)

Merge the results and return the solution

= Prerequisite
— The input data set must be separable
— Solutions of subsets are independent
— The result can be obtained by merging of sub-results
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6.3 Sweep algorithm

= Split the space by a hyperplane (2D: sweep line)
— “Left” subspace - solution known
— “Right” subspace — solution unknown

= Stop in event points and update the status

s Data structures:

— Event points — points, where to stop the sweep line
and update the status, sorted

— Status — state of the algorithm in the current position of
the sweep line

= Prerequisite:
— Left subspace does not influence the right subspace
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6.3b Sweep-line algorithm

> S o~ =~

Event points
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6.4 Prune and search

= Eliminate parts of the state space, where the
solution clearly does not exist
— Binary search =t

/N
— Search trees K@

prune
— Back-tracking (stop if solution worse than current
optimum)
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6.5 Locus approach

= Subdivide the search space into regions of
constant answer

= Use point location to determine the region
— Nearest neighbor search example

Region of the

constant answer:

All points in this
o region are nearest
to the yellow point

+
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6.6 Dualisation

= Use geometry transform to change the problem
iInto another that can be solved more easily

= Points < hyper planes
— Preservation of incidence (Aep = p*e AY)

= Ex. 2D: determine if 3 points lie on a common line
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6.7 Combinatorial analysis

= The branch of mathematics which studies the
number of different ways of arranging things

= Ex. How many subdivisions of a point set can be
done by one line?
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6.8 New trends in Computational geometry

= From 2D to 3D and more from mid 80s, from linear
to curved objects

= Focus on line segments, triangles in E3 and hyper
planes in E9

= Strong influence of combinatorial geometry
= Randomized algorithms

= Space effective algorithms (in place, in situ, data
stream algs.)

= Robust algorithms and handling of singularities
= Practical implementation in libraries (LEDA, CGAL,
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7. Robustness issues

= Geometry in theory is exact

= Geometry with floating-point arithmetic is not exact
— Limited numerical precision of real arithmetic
— Numbers are rounded to nearest possible representation
— Inconsistent epsilon tests (a=b, b=c, but a+c)

= Naive use of floating point arithmetic causes
geometric algorithm to

— Produce slightly or completely wrong output
— Crash after invariant violation
— Infinite loop

- - 4+ [siggraph2008-CGAL-course]
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Geometry in theory is exact

= ccw(s,q,r) & ccw(p,s,r) & ccw(p,q,s) => ccw(p,q,r)

= Correctness proofs of algorithms rely on such
theorems

- -+ [siggraph2008-CGAL-course] .
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Floating-point arithmetic is not exact

a) Limited numerical precision of real numbers
= Numbers represented as normalized

31 30 23 22 0
+m2¢€ S exp. mantisa
single precision
63 62 52 51 0
S exponent mantisa
double precision [http://cs.wikipedia.org/wiki/Soubor:Single_double_extended2.gif]

= The mantissa mis a 24-bit (53-bit) value whose
most significant bit (MSB) is always 1 and is,
therefore, not stored.

s Stored numbers (results) are rounded to 24/53 bits
mantissa — lower bits are lost
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Floating-point arithmetic is not exact

b) Smaller numbers are shifted right during additions
and subtractions to align the digits of the same order

Example for float:

- 12 _ p fOr p ~ 05 23 1 Normalized mantisa 23 bit
- 12,,=1100, =010000010{10000000000000000000000

o1 |1
- p=0.5¢ =0011111 1 00000000000000000000000
— p=0.50000084,=00111111300000000000000000001 101},

— Mantissa of pis shifted 4 bits right to align with 12
(to have the same exponent 23)

p = 0.5680008,,= 01000001 ¢0001 000000000000000000Q,+1+0+
—> four least significant bits (LSB) are lost

. = _Jheresultis 11.5 instead of 11.4999992 %
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Floating-point arithmetic is not exact

b) Smaller numbers are shifted right during additions
and subtractions to align the digits of the same order

Example for float:

= 12— p for p~ 0.5 (suchas05+27-23))

— Mantissa of pis shifted 4 bits right to align with 12
—> four least significant bits (LSB) are lost

= 24—p forp~0.5
— Mantissa of pis shifted 5 bits right to align with 25 -> 5 LSB are lost

Try it on [htip://www.h-schmidt.net/FloatConverter/[EEE754.html or
http://babbage.cs.qc.cuny.edu/I[EEE-754/index.xhtml]
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Orientation predicate - definition

1 px py
orientation(p, q,r) =sign | det |1 qx qy]| | =
1 n n

= sign (@ = P (1 = 1y) = (g = 1) 05 = )

where point p = (px, Py ), - N
= third coordinate of = (u X v), \v
: : : q
Three points orientation(p, q,r) =
— lie on common line
— form a left turn = +1 (positive) / u
= form a right turn = —1 (negative)

- o~ = p
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Experiment with orientation predicate

H orientation(p,q,r) = Sign((px'rx)(qy'ry)'(py_ry)(qx_rx))

r = [24, 24]
Ideal return values

\i-
1770 p=[05+d,,05+d], d,=k2%

-~ [0.5, 0.5]
p a7

- : -t ?
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Real results of orientation predicate

H orientation(p,q,r) = Sign((px_rx)(qy'ry)_(py_ry)(qx_rx))

Return values during the experiment for exponent -52

> S o~ =~

o Pivot r
- Felkel: Computational geometry
DCGI (39) .




Floating point orientation predicate douie exp--s3

Pivot p

0.50000000000002531 ( 0.5 )
( 0.5000000000000171 ) 0.5
17.300000000000001 ( 8.8000000000000007 )
( 17.300000000000001 ) 8.8000000000000007
24.00000000000005 ( 1] )
( 24.0000000000000517765 ) 12.]
(b) (c)

- [Kettner] with correct coolors
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Errors from shift ~0.5 right in subtraction

s 4 bits shift => 24 values rounded to the same value
16 24 32 40 48 56 64 72 80

T A A A A

= 5 bits shift => 2° values rounded to the same value
0 16 30 48 64 80 96

"IN VAN A VAR
= Combined intervals of size 8, 16, 24,...
0 8 16 24 32 40 48 56 64 72 80 88

e—O e&—O e———0  e&—0 e—O0
¢—5b  e&——0  e—o = &—0

These intervals match the size of rectangular areas of the same value

— —/_—I_ -
K A =~ ==
+< -+~ -+
—~ DCGI Felkel: Computational geometry
(41) -




Orientation predicate — pivot selection

1 px py
orientation(p, q,r) = sign [ det [1 qx qy| | =
1 n n)

The formula depends on choose for the pivot - row to
be subtracted from other rows

= sign ((qx - px)(ry — Py) _ (CIy o py)(rx N Px))
= sign ((x — 4:)(py — @y) — (15 — 4y) (0 — 4) )
= sign ((px — Tx)(CIy - ry) - (py - ry)(qx B rx))

Which order is the worst?
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Little improvement - selection of the pivot

(b) double exp=-53
= Pivot — subtracted from the rows in the matrix

Pivot p Pivot g Pivot r

=> Pivot g (point with middle x or y coord.) is the best
But it iIs not used — pivot search is too complicated
In comparison to the predicate itself

- [Kettner]
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Wrong approach — epsilon tweaking

s Use tolerance £ =0.00005 to 0.0001 for float

= Points are declared collinear if float orient returns
avalue < ¢ 0.5+27(-23) , the smallest repr. value 0.500 000 06

Boundary for e= 0.00005 Boundary for €= 0.0001

‘= _Baundary is fractured as before, but brighter %
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Consequences in convex hull algorithm

TPy TPy "By
TP, D5 * Pl P *Pl,D5
! P .
F ) P Pg P P Pg P

pé pl

[Kettner04]

ps erroneously inserted  a) pg sees p,ps first b) pg S€Es p4p, first
|nset[ing Pe => forms p, Ps Ps => forms p; pPs P2
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Exact Geometric Computing [Yap]

= Make sure that the control flow in the
implementation corresponds to the control flow
with exact real arithmetic
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Solution

1. Use predicates, that always return the correct
result -> such as YAP, LEDA or CGAL

>.  Change the algorithm to cope with floating point
predicates but still return something meaningftull
(hard to define)

. Perturb the input so that the floating point
iImplementation gives the correct result on it
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Computational Geometry
Algorithms Library

Slides from [siggraph2008-CGAL-course]
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CGAL

= Large library of geometric algorithms
— Robust code, huge amount of algorithms
— Users can concentrate on their own domain

= Open source project

— Institutional members
(Inria, MPI, Tel-Aviv U, Utrecht U, Groningen U, ETHZ,
Geometry Factory, FU Berlin, Forth, U Athens)

— 500,000 lines of C++ code

— 10,000 downloads/year (+ Linux distributions)
— 20 active developers

— 12 months release cycle
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CGAL algorithms and data structures

7

G S
- D
= B £ h
i = x . !
\ /Z{' A .
b Y
& %

Bounding Volumes Polyhedral Surface BooleanOperations
| N N A {
LN . A
:(-"4'./_'{} .\:”L{<>» \af 8 s e
7 e | —_— -~
L] ==\ TO¢
¢ Ao 4 _./! "”:\:/; ‘\
Triangulations Voronoi Diagrams

Su!!ivision Simplification

Parametrisation Streamlines Ridge Neighbor Kinetic
° Detection  Search Datastructures
s
/ :- ;{f A
'/r' }9
r”r *
Intersection Minkowski
Lower Envelope Arrangement : PCA
L Detection  Sum
- -+ [siggraph2008-CGAL-course] | +

-~ DCGI Felkel: Computational geometry | o 5
(52) _ | |



Exact geometric computing

Predicates Constructions

[ ] q °
S
r
°p p
orientation In_circle intersection circumcenter

> - —+ [siggraph2008-CGAL-course]
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CGAL Geometric Kernel (see [Hert] for details)

= Encapsulates

— the representation of geometric objects
— and the geometric operations and predicates on these objecrts

= CGAL provides kernels for
— Points, Predicates, and Exactness
— Number Types
— Cartesian Representation
— Homogeneous Representation

— : -
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Points, predicates, and Exactness

#include "tutorial.h"

#include <CGAL/Point_2.h>

#include <CGAL/predicates_on_points_2.h>

#include <iostream>

int main() {
Point p( 1.0, 0.0);
Point q( 1.3, 1.7);
Point r( 2.2, 6.8);
switch ( CGAL::orientation( p, q, r)) {

case CGAL::LEFTTURN: std::cout << "Left turn.\n"; break;
case CGAL::RIGHTTURN: std::cout << "Right turn.'\n"; break;
case CGAL::COLLINEAR: std::cout << "Collinear.'\n"; break;
}
return 0;
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Number Types

Precission
e Builtin: double, float, int, long, ... X
e CGAL: Filtered_exact, Interval_nt, ... S|OW-dOWﬂ

e LEDA: leda_integer, leda_rational, leda_real, ...
e Gmpz: CGAL: :Gmpz

e Oothers are easy to integrate

Coordinate Representations

e Cartesian p = (x,y) : CGAL::Cartesian<Field type>

e Homogeneous p = (£, £): CGAL: :Homogeneous<Ring_type>

w?! w
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Cartesian with double

#include <CGAL/Cartesian.h>

#i1include <CGAL/Point 2.h>

typedef CGAL: :Cartesian<double>

=
®
ge

edef CGAL::Point 2<Rep>

‘lh\dp’

O
Q

ped o
-
ct

int main() {
Point p( 0.1, 0.2);

> - 4+ [CGAL at SCG ‘99] b
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Cartesian with Filtered exact and leda_real

#include <CGAL/Cartesian.h>

#include <CGAL/Arithmetic_filter.h>

#include <CGAL/leda_real .h>

#include <CGAL/Point_2.h>

typedef CGAL::
typedef CGAL::
typedef CGAL::

int main() {
Point p(

Number type

Filtered_exact<double, leda_real> NT; +«—
Cartesian<NT> Rep;
Point_2<Rep> Point;

0.4, 0.2)= . ) .
One single-line declaration

changes the
precision of all computations

[CGAL at SCG ‘99]
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(59) | | 7

- o+ 4+

4=

-+



9 References - for the lectures

= Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
Computational Geometry: Algorithms and Applications, Springer-Verlag,
3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5
http://www.cs.uu.nl/geobook/

= [Mount] Mount, D.: Computational Geometry Lecture Notes for Spring 2007
http://www.cs.umd.edu/class/sprinqg2007/cmsc754/Lects/comp-geom-
lects.pdf

= Franko P. Preperata, Michael lan Shamos: Computational Geometry. An
Introduction. Berlin, Springer-Verlag,1985

= Joseph O'Rourke: .: Computational Geometry in C, Cambridge University
Press, 1993, ISBN 0-521- 44592-2
http:/maven.smith.edu/~orourke/books/compgeom.html

= Ivana Kolingerova: Aplikovana vypocetni geometrie, Prednasky, MFF UK
2008

= Kettner et al. Classroom Examples of Robustness Problems in Geometric

Computations, CGTA 2006,
http://www.mpi-inf.mpg.de/~kettner/pub/nonrobust cqta 06:pdf
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9.1 References — CGAL

CGAL
= www.cqgal.org
= Kettner, L.: Tutorial I: Programming with CGAL

= Alliez, Fabri, Fogel: Computational Geometry Algorithms Library,
SIGGRAPH 2008

= Susan Hert, Michael Hoffmann, Lutz Kettner, Sylvain Pion, and Michael Seel.
An adaptable and extensible geometry kernel. Computational Geometry:
Theory and Applications, 38:16-36, 2007. [doi:10.1016/j.comge0.2006.11.004]
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9.2 Collections of geometry resources

= N. Amenta, Directory of Computational Geometry Software,
http://www.geom.umn.edu/software/cqlist/.

= D. Eppstein, Geometry in Action,
http://www.ics.uci.edu/~eppstein/geom.html.

= Jeff Erickson, Computational Geometry Pages,
hitp:/compgeom.cs.uiuc.edu/~jeffe/compgeom/
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10. Computational geom. course summary

= Gives an overview of geometric algorithms
= Explains their complexity and limitations
= Different algorithms for different data

= We focus on

— discrete algorithms and precise numbers and predicates
— principles more than on precise mathematical proofs
— practical experiences with geometric sw
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