Motion Planning for Autonomous Vehicles

Michal Cap
Autonomous Car Architecture

- Route Planning
 - Route plan
- Behavioral Layer
 - Perceived agents, obstacles, and signage
 - Estimated pose and collision free space
- Motion Planning
 - Reference path or trajectory
- Local Feedback Control
 - Steering, throttle, and brake commands

Figure from Brian Paden
Autonomous Car Architecture

Route Planning
- Road network data
- Destination
- Route plan

Behavioral Layer
- Perceived agents, obstacles, and signage
- Negotiate Intersection
- Lane Following
- Change Lanes
- Unstructured Environment

Motion Planning
- Estimated pose and collision-free space
- Motion Specification
- Reference path or trajectory
- Local Feedback Control
- Steering, throttle and brake commands

Figure from Brian Paden
Autonomous Car Architecture

Figure from Brian Paden
Autonomous Car Architecture

Figure from Brian Paden
Motivation
Motivation

Driving in highly structured environments;
Motivation

Driving in urban environments:
Motivation

Driving in unstructured cluttered environments:
Problem Informally
Motion Planning:

The problem of finding a collision-free motion for a robot from given start pose to given destination pose.
Planning for a Conventional Car

Constraints on path:
- Starts at current position
- Ends at goal position
- Robot does not collide with obstacles
- Respect limited turning-radius
Formalization
Workspace: \((x,y)\)

\(W \subset \mathbb{R}^2\)

Obstacles space \((W_{\text{obst}})\)

Free workspace \((W_{\text{free}})\)
Configuration of Robot

\((0,0,0)\)
Configuration of Robot

$\mathbf{r} = (0, 0, \pi/4)$
Configuration of Robot

\((5, 0, \pi/4)\)
Configuration Space: (x,y,θ)

$X \subset \mathbb{R}^2 \times [-\pi,+\pi]$
Free Configuration:

Obstacles space (W_{obst})

Free workspace (W_{free})
Collision Configuration:

Obstacles space (W_{obst})
Free workspace (W_{free})
Free Configuration Space

Let $R(x)$ be the region occupied by robot at configuration $x \in X$.

The set of all collision-free configurations is

$$X_{\text{free}} = \{ x : x \in X \text{ and } R(x) \subseteq W_{\text{free}} \}$$
Free Configuration Space

Slice of X_{free} for $\theta=\pi/4$:
Free Configuration Space -- Illustration
Free Configuration Space

\[\theta = 0 \]

- **Obstacle space** \((W_{\text{obst}}) \)
- **Collision configurations**
- **Free configuration space** \((C_{\text{free}}) \)
Free Configuration Space

$\theta = \frac{1}{8} \pi$

- **Black**: Obstacle space (W_{obst})
- **Gray**: Collision configurations
- **White**: Free configuration space (C_{free})
Free Configuration Space

$\theta = \frac{1}{4} \pi$

- Black: Obstacle space (W_{obst})
- Grey: Collision configurations
- White: Free configuration space (C_{free})
Free Configuration Space

\[\theta = \frac{3}{8} \pi \]

- Black: Obstacle space \(W_{\text{obst}} \)
- Gray: Collision configurations
- White: Free configuration space \(C_{\text{free}} \)
Free Configuration Space

\[\theta = \frac{1}{2} \pi \]

- **Obstacle space** \(W_{\text{obst}} \)
- **Collision configurations**
- **Free configuration space** \(C_{\text{free}} \)
Path in Configuration Space

\[\sigma(\alpha): [0,1] \rightarrow X \]
Path in Configuration Space

$\sigma(\alpha): [0,1] \to X$
Path in Configuration Space

\[\sigma(\alpha): [0,1] \rightarrow X \]
Trajectory in Configuration Space

$\pi(t): [0,T] \rightarrow X$
Path Planning Problem Formulation

Can be formulated as an optimization problem over all paths in configuration space:

\[\arg \min_{\sigma} J(\sigma) \quad \text{subject to} \]
\[\sigma(0) = x_{\text{init}} \]
\[\sigma(1) \in X_{\text{goal}} \]
\[\sigma(\alpha) \in X_{\text{free}} \quad \forall \alpha \in [0,1] \]

- \(\sigma(\alpha) \) is a continuous function \([0,1] \rightarrow X\)
- \(J(\sigma) \) is a cost functional
- \(x_{\text{init}} \) is the initial configuration of the robot
- \(X_{\text{goal}} \) is the set of goal configurations
- \(X_{\text{free}} \) is the free configuration space
Holonomic System

Holonomic system: (no differential constraints)

\[
\arg \min \ J(\sigma) \ \text{subject to} \\
\sigma(0) = x_{\text{init}} \\
\sigma(1) = x_{\text{goal}} \\
\sigma(\alpha) = x_{\text{free}} \quad \forall \alpha \in [0,1]
\]

Nonholonomic System

Nonholonomic system: (differential constraints)

\[
\arg \min \ J(\sigma) \ \text{subject to} \\
\sigma(0) = x_{\text{init}} \\
\sigma(1) = x_{\text{goal}} \\
\sigma(\alpha) = x_{\text{free}} \quad \forall \alpha \in [0,1] \\
D(\sigma(\alpha), \sigma'(\alpha), \sigma''(\alpha), \ldots) \quad \forall \alpha \in [0,1]
\]

E.g., bound on path curvature k can be enforced as $|\sigma'(\alpha) \sigma''(\alpha)| / |\sigma'(\alpha)|^3 < k$.
Complexity of Path Planning

- Path planning “Piano Movers problem” is PSPACE-hard [Reif ‘79]
- Complete (non-optimal) algorithms for exist [Canny ‘88] but have running time exponential in dimension of configuration space.
Solution Techniques for Path Planning Problem

- Variational Methods
- Graph-search Methods
 - Cell decomposition
 - Visibility graph
 - Sampling-based roadmap construction
 - Tree of motion primitives
- Incremental Search Methods
 - RRT: Rapidly-exploring Random Trees
 - RRT*: Optimal Rapidly-exploring Random Trees
Properties of Path Planning Methods

An algorithm is

- **Complete**: if it finds valid path or detect non-existence of thereof in finite time.
- **Optimal**: if it find optimal path in finite time.

- **Anytime**: if it can be terminated at any point of the execution, but the path quality improves with computation time

- **Probabilistically Complete**: if the probability that the algorithm finds valid solution goes to 1 with running time.
- **Asymptotic Optimal**: if it returns a sequence of solutions converging to an optimal solution.
Trajectory Planning Problem Formulation

Useful for

- Dynamic constraints
- Dynamic obstacles

Can be formulated as optimization in the space of trajectories over time interval $[0,T]$ in configuration space:

$$\arg \min J(\pi) \text{ subject to }$$
$$\pi(0) = x_{\text{init}}$$
$$\pi(T) \in X_{\text{goal}}$$
$$\pi(t) \in X_{\text{free}}(t) \quad \forall t \in [0,T]$$
$$D(\pi(t), \pi'(t), \pi''(t), \ldots) \quad \forall t \in [0,T]$$
Solution Techniques for Trajectory Planning Problem

- Variational Methods
- Convert to Path Planning in Space–Time:

 \[
 \text{trajectory planning in } (x,y,\theta) \\
 \Rightarrow \\
 \text{path planning in } (x,y,\theta,t) + \text{diff. constraints}
 \]
Solution Techniques for Path Planning Problem

- **Variational Methods**
- **Graph-search Methods**
 - Cell decomposition
 - Visibility graph
 - Sampling-based roadmap construction
 - Tree of motion primitives
- **Incremental Search Methods**
 - RRT: Rapidly-exploring Random Trees
 - RRT*: Optimal Rapidly-exploring Random Trees
Variational Techniques

Aka Trajectory optimization, Optimal control, etc.

- Non-linear optimization
- Path is represented as a spline
- Position of control points is optimized
Variational Techniques

Obstacles are modelled as high-cost regions
Variational Techniques

Find gradient
Variational Techniques

Move the control points in the direction of negative gradient
Variational Techniques

Repeat until convergence
Variational Techniques
Variational Techniques

Pros:
● Efficient
● Widely applicable

Cons:
● Only local convergence
 ○ Incomplete
 ○ Locally optimal

Notes:
● Used in for local path optimization within CMU’s car ‘Boss’.
Solution Techniques for Path Planning Problem

- Variational Methods
- **Graph-search Methods**
 - Cell decomposition
 - Visibility graph
 - Sampling-based roadmap construction
 - Tree of motion primitives
- Incremental Search Methods
 - RRT: Rapidly-exploring Random Trees
 - RRT*: Optimal Rapidly-exploring Random Trees
Graph-based Methods

- C_{free}
- Discretization
- Graph (Roadmap)
 - Vertices: selected configurations in C_{free}
 - Edges: path segments in C_{free} connecting two given vertices
- Graph search (Dijkstra/A*/D*)
- Graph Path
- Concatenate edges
- Path in C_{free}
Roadmap
Solution Techniques for Path Planning Problem

- Variational Methods
- Graph-search Methods
 - Cell decomposition
 - Visibility graph
 - Sampling-based roadmap construction
 - Tree of motion primitives
- Incremental Search Methods
 - RRT: Rapidly-exploring Random Trees
 - RRT*: Optimal Rapidly-exploring Random Trees
Cell Decomposition

- A method for building roadmaps in 2d polygonal environments
Cell Decomposition

Pros:
- Complete
- Generalizes to higher dimensions and beyond polygonal models

Cons:
- Only holonomic systems
- Suboptimal
Solution Techniques for Path Planning Problem

● Variational Methods
● Graph-search Methods
 ○ Cell decomposition
 ○ Visibility graph
 ○ Sampling-based roadmap construction
 ○ Tree of motion primitives
● Incremental Search Methods
 ○ RRT: Rapidly-exploring Random Trees
 ○ RRT*: Optimal Rapidly-exploring Random Trees
Visibility Graph

- Polygonal environment
- Circular robot
Visibility Graph

- Compute collision-free configuration space
Visibility Graph

- Vertices: corners of obstacles, start, and goal. Edge if two vertices “see” each other.
Visibility Graph

- Complete graph
Visibility Graph

- Graph search to obtain shortest path in graph
Visibility Graph

Pros:
- Efficient: $O(n^2)$
- Exact optimal

Cons:
- Optimality guarantee only for 2-d environments and circular robot
- Only for holonomic systems and polygonal models
Solution Techniques for Path Planning Problem

- Variational Methods
- Graph-search Methods
 - Cell decomposition
 - Visibility graph
 - Sampling-based roadmap construction
 - Tree of motion primitives
- Incremental Search Methods
 - RRT: Rapidly-exploring Random Trees
 - RRT*: Optimal Rapidly-exploring Random Trees
Sampling-based Roadmap Construction

Generate roadmap by:

1. Sampling the free configuration space
 - Deterministically
 - Randomly

2. Connecting nearby samples
 - All neighbors closer than distance \(r \)
 - \(K \)-nearest neighbors
Sampling-based Roadmap Construction

Deterministic Sampling (Sukharev Grid)
Sampling-based Roadmap Construction

Probabilistic Roadmap
Sampling-based Roadmap Construction
Sampling-based Roadmap Construction

Finding Path
Sampling-based methods rely on steering function.

- Steer\((x,y)\) returns a feasible path segment between configuration \(x\) and \(y\).
- Steering function respects kinematic and dynamic constraints, but does not consider obstacles.
- Often obtained by simulating a dynamic model of the vehicle.
Steering for Duckiebot
Dubins Path: Steering for vehicle moving forward

- Car that moves only forward.
- The shortest path for can be computed analytically.
- It consist of three path segments: sharpest-possible turn left (L), right (R) or straight (S).
- Total six templates: {LRL, RLR, LSL, LSR, RSL, RSR}.
Reeds–Shepp Path: Steering for Car Moving Forwards and Backwards.

- Car that can move both forward and backwards.
- Up to 5 segments: \{R+, R-, L+, L-, S+, S-\}.
- 46 templates.
Sampling-based Roadmap with Dubins Path

Sample the configuration space. Here $8 \times 8 \times 16 = 1024$ regular samples.

For each sampled configuration, connect neighbors closer than 6m in Dubins distance. Blue are collision-free connections.
Sampling-based Roadmap Construction

Resulting roadmap

Graph searched using Dijkstra/A*, we obtain a feasible path for the vehicle.
Choosing Connection Radius

- How to choose connection radius?
 - too small: roadmap will be disconnected
 - Too large: too many computationally intensive

- PRM* [Karaman 2011]: for asymptotic optimality, chose connection radius as a function of number of samples of graph:

\[r = \gamma \sqrt[\frac{d}{d}} \left(\log n \right) / n \]

 - \(O(\log n) \) connections attempted at each iteration
 - Maintains asymptotic optimality with \(O(n \log n) \) complexity
Sampling-based Roadmap Construction

Pros:
- Handle differential constraints
- Model agnostic
- Multiquery
- PRM/PRM* - asymptotic optimality guarantee

Cons:
- Completeness and optimality achieved only up to discretization resolution
- Need exact steering
Solution Techniques for Path Planning Problem

- Variational Methods
- Graph-search Methods
 - Cell decomposition
 - Visibility graph
 - Sampling-based roadmap construction
 - Tree of motion primitives
- Incremental Search Methods
 - RRT: Rapidly-exploring Random Trees
 - RRT*: Optimal Rapidly-exploring Random Trees
Motion Primitives

A discrete set of maneuvers that the vehicle can execute from each configuration:
Recursive Application of Motion Primitives
Recursive Application of Motion Primitives

- Can be computed “lazily” during A* search.

Start expanding motion primitives from current configuration.

Use Dijkstra/A* to find the shortest path to the desired region in the tree.
Lattice generating motion primitives

- Some motion primitives generate regular lattice.

90-deg turns generate lattice

89-deg turns do not generate lattice.
Motion Primitives

Pros:
- No need for exact steering function
- Can handle differential constraints
- Model agnostic

Cons:
- Completeness and optimality achieved only up to discretization resolution
- Single-query

Notes:
- Used in CMU’s Boss and Stanford’s Junior during DARPA Urban Challenge
Solution Techniques for Path Planning Problem

● Variational Methods
● Graph-search Methods
 ○ Cell decomposition
 ○ Visibility graph
 ○ Sampling-based roadmap construction
 ○ Tree of motion primitives
● Incremental Search Methods
 ○ RRT: Rapidly-exploring Random Trees
 ○ RRT*: Optimal Rapidly-exploring Random Trees
Incremental Search

- Graph-based methods plan on a fixed resolution.
 - => Path might be suboptimal
 - => They may fail to find solution

- Main idea:
 - Incrementally grow a tree rooted at initial configuration to explore the reachable region of the configuration space.
 - Once first branch reaches goal region, return the branch as the first solution.
 - Keep reporting the shortest branch found so far

- Anytime
Solution Techniques for Path Planning Problem

● Variational Methods
● Graph-search Methods
 ○ Cell decomposition
 ○ Visibility graph
 ○ Sampling-based roadmap construction
 ○ Tree of motion primitives
● Incremental Search Methods
 ○ RRT: Rapidly-exploring Random Trees
 ○ RRT*: Optimal Rapidly-exploring Random Trees
Rapidly-exploring Random Tree (RRT)
Rapidly-exploring Random Tree (RRT)

Pros:
- Anytime
- Handles differential constraints
- Does not need exact steering
- Probabilistic completeness guarantee (shown for some variants of the algorithm)
- Demonstrated good performance in high-dimensional systems

Cons:
- Suboptimal
- Single-query

Notes:
- Used in MIT Talos Urban Challenge Vehicle
Solution Techniques for Path Planning Problem

- Variational Methods
- Graph-search Methods
 - Cell decomposition
 - Visibility graph
 - Sampling-based roadmap construction
 - Tree of motion primitives
- Incremental Search Methods
 - RRT: Rapidly-exploring Random Trees
 - RRT*: Optimal Rapidly-exploring Random Trees
Optimal Rapidly-exploring Random Tree (RRT*)

\[r = \gamma d \sqrt{(\log n)/n} \]
Optimal Rapidly-exploring Random Tree (RRT*)

Pros:
● Anytime
● Asymptotic optimality/Probabilistic completeness guarantee
● Can handle differential constraints

Cons:
● Requires exact steering
● Single-query
Summary

- Motion planning is needed in complex driving situations
- Path Planning vs. Trajectory Planning
- Different solution approaches
 - Variational
 - Graph-based
 - Incremental