
Solving
Extensive-Form Games

Branislav Bošanský AE4M36MAS, Fall 2015

Extensive-Form Games

Perfect-Information Games

Perfect-Information Games with Chance

Imperfect-Information Games

Solving Zero-Sum Games

Solving General-Sum Games

Approximate Solutions to Large Zero-Sum Games

Imperfect Information EFGs

Actions

Utility

Players
States

1 2

Information
Set

Solving II Zero-Sum EFGs with perfect recall

Exact algorithms:
 Why backward induction does not work?

 Transformation to the normal form

 Using the sequence form (Koller et al. 1996, von Stengel 1996)

 Iterative extensions (a.k.a. double-oracle algorithms (McMahan et al. 2006)) of the
sequence form (Bosansky et al. 2014)

Approximate algorithms:
 Counterfactual Regret Minimization (Zinkevich et al. 2008, Lanctot et al. 2009,

Bowling et al. 2015)

 Excessive Gap Technique (Hoda et al. 2010, Waugh et al. 2015)

Imperfect Information Zero-Sum EFG

3 -2 1 3 2 1 0 3

A B

C D C D E F E F

X Y Z W

Max

Min

Imperfect Information Zero-Sum EFG

XZ XW YZ YW

ACE 3 3 1 1

ACF 3 3 1 1

ADE -2 -2 3 3

ADF -2 -2 3 3

BCE 2 0 2 0

BCF 1 3 1 3

BDE 2 0 2 0

BDF 1 3 1 3

3 -2 1 3 2 1 0 3

A B

C D C D E F E F

X Y Z W

Max

Min

II EFGs - Sequences T𝐫𝐢𝐚𝐧𝐠𝐥𝐞
(𝚺𝟏)

B𝐨𝐱
(𝚺𝟐)

∅ ∅

A X

B Y

AC Z

AD W

BE

BF

• alternative representation of strategies
• 𝜎𝑖 ∈ Σ𝑖
• we use 𝜎𝑖𝑎 to denote executing an action 𝑎 after the sequence 𝜎𝑖

3 -2 1 3 2 1 0 3

A B

C D C D E F E F

X Y Z W

Max

Min

II EFGs - Sequences

• extension of the utility function g
• 𝑔𝑖: Σ1 × Σ2 → ℝ

• sequentially execute actions of the players
• stop at either:

• leaf - z ∈ 𝑍 𝑔𝑖 𝜎1, 𝜎2 = 𝑢𝑖(𝑧)
• there is no applicable action 𝑔𝑖 𝜎1, 𝜎2 = 0

T𝐫𝐢𝐚𝐧𝐠𝐥𝐞
(𝚺𝟏)

B𝐨𝐱
(𝚺𝟐)

∅ ∅

A X

B Y

AC Z

AD W

BE

BF
3 -2 1 3 2 1 0 3

A B

C D C D E F E F

X Y Z W

Max

Min

II EFGs - Sequences

• In EFGs with chance nodes
• 𝑔 corresponds to an expected utility of all reachable

leafs (𝑍′)
• 𝑔 𝜎1, 𝜎2 = 𝑧∈𝑍′ 𝑢𝑖 𝑧 𝛾(𝑧)

where 𝛾 is the probability of Nature playing a
sequence of actions reaching leaf 𝑧 ∈ 𝑍′

T𝐫𝐢𝐚𝐧𝐠𝐥𝐞
(𝚺𝟏)

B𝐨𝐱
(𝚺𝟐)

∅ ∅

A X

B Y

AC Z

AD W

BE

BF
3 -2 1 3 2 1 0 3

A B

C D C D E F E F

X Y Z W

Max

Min

II EFGs - Sequences

• Examples
• 𝑔1 ∅,𝑊 = 0
• 𝑔1 𝐴𝐶,𝑊 = 0
• 𝑔1 𝐵𝐹,𝑊 = 3
• …

T𝐫𝐢𝐚𝐧𝐠𝐥𝐞
(𝚺𝟏)

B𝐨𝐱
(𝚺𝟐)

∅ ∅

A X

B Y

AC Z

AD W

BE

BF
3 -2 1 3 2 1 0 3

A B

C D C D E F E F

X Y Z W

Max

Min

II EFGs – Realization Plans

• behavioral strategies represented as realization plans
• probabilities over sequences of actions
• assuming the opponent allows us to play the actions from the

sequence

T𝐫𝐢𝐚𝐧𝐠𝐥𝐞
(𝚺𝟏)

B𝐨𝐱
(𝚺𝟐)

∅ ∅

A X

B Y

AC Z

AD W

BE

BF
3 -2 1 3 2 1 0 3

A B

C D C D E F E F

X Y Z W

Max

Min

II EFGs – Realization Plans

• 𝑟1 ∅ = 1
• 𝑟1 𝐴 + 𝑟1 𝐵 = 𝑟1 ∅
• 𝑟1 𝐴𝐶 + 𝑟1 𝐴𝐷 = 𝑟1 𝐴
• 𝑟1 𝐵𝐸 + 𝑟1 𝐵𝐹 = 𝑟1 𝐵

• 𝑟2 ∅ = 1
• 𝑟2 𝑋 + 𝑟2 𝑌 = 𝑟2 ∅
• 𝑟2 𝑍 + 𝑟2 𝑊 = 𝑟2 ∅

• network-flow perspective

T𝐫𝐢𝐚𝐧𝐠𝐥𝐞
(𝚺𝟏)

B𝐨𝐱
(𝚺𝟐)

∅ ∅

A X

B Y

AC Z

AD W

BE

BF
3 -2 1 3 2 1 0 3

A B

C D C D E F E F

X Y Z W

Max

Min

II EFGs – Sequence Form LP

• NE of a zero-sum game can be found by solving sequence form LP
• finding the best realization plan 𝑟1 against a best-responding

player 2
• ℐ(𝜎) – information set, in which the last action of sequence 𝜎 was

executed
• 𝑠𝑒𝑞(𝐼) – sequence leading to an information set 𝐼
• 𝑣𝐼 - expected utility in an information set

max
r1,𝑣
𝑣ℐ ∅

𝑟1 ∅ = 1, 0 ≤ 𝑟1 𝜎 ≤ 1 ∀𝜎 ∈ Σ1

𝑟1 𝜎 =

𝑎∈𝜒 𝐼1,𝑘

𝑟1(𝜎𝑎) ∀𝐼1,𝑘 ∈ 𝐼1, 𝜎 = 𝑠𝑒𝑞 𝐼1,𝑘

𝑣ℐ 𝜎2 ≤

𝐼2,𝑗|𝑠𝑒𝑞 𝐼2,𝑗 =𝜎2

𝑣𝐼2,𝑗 +

𝜎1∈Σ1

𝑔1 𝜎1, 𝜎2 𝑟1 𝜎1 ∀𝜎2∈ Σ2

Sequence Form LP (example)

max
r1,𝑣
𝑣ℐ(𝑋) + 𝑣ℐ(𝑍)

𝑟1 ∅ = 1, 𝑟1 𝐴 + 𝑟1 𝐵 = 𝑟1 ∅ ,
𝑟1 𝐴 = 𝑟1 𝐴𝐶 + 𝑟1 𝐴𝐷
𝑟1 𝐵 = 𝑟1 𝐵𝐸 + 𝑟1 𝐵𝐹

𝑣ℐ(𝑋) ≤ 0 + 𝑔 𝐴𝐶, 𝑋 ⋅ 𝑟1(𝐴𝐶) + 𝑔 𝐴𝐷, 𝑋 ⋅ 𝑟1(𝐴𝐷)

𝑣ℐ(𝑌) ≤ 0 + 𝑔 𝐴𝐶, 𝑌 ⋅ 𝑟1(𝐴𝐶) + 𝑔(𝐴𝐷, 𝑌) ⋅ 𝑟1(𝐴𝐷)

𝑣ℐ(𝑍) ≤ 0 + 𝑔 𝐵𝐸, 𝑍 ⋅ 𝑟1(𝐵𝐸) + 𝑔 𝐵𝐹, 𝑍 ⋅ 𝑟1(𝐵𝐹)

𝑣ℐ(𝑊) ≤ 0 + 𝑔 𝐵𝐸,𝑊 ⋅ 𝑟1(𝐵𝐸) + 𝑔(𝐵𝐹,𝑊) ⋅ 𝑟1(𝐵𝐹)

• note that ℐ 𝑋 = ℐ(𝑌) and ℐ 𝑍 = ℐ(𝑊)

3 -2 1 3 2 1 0 3

A B

C D C D E F E F

X Y Z W

Max

Min

Sequence Form LP (example)

min
𝑟2,𝑣
𝑣ℐ(𝐴)

𝑟2 ∅ = 1, 𝑟2 𝑋 + 𝑟2 𝑌 = 𝑟2 ∅ ,
𝑟2 𝑍 + 𝑟2 𝑊 = 𝑟2 ∅

𝑣ℐ(𝐴) ≥ 𝑣ℐ 𝐴𝐶 , 𝑣ℐ 𝐵 ≥ 𝑣ℐ(𝐵𝐷)
𝑣ℐ 𝐴𝐶 ≥ 𝑔 𝐴𝐶, 𝑋 ⋅ 𝑟2(𝑋) + 𝑔(𝐴𝐶, 𝑌) ⋅ 𝑟2(𝑌)

𝑣ℐ 𝐴𝐷 ≥ 𝑔 𝐴𝐷, 𝑋 ⋅ 𝑟2(𝑋) + 𝑔(𝐴𝐷, 𝑌) ⋅ 𝑟2(𝑌)

𝑣ℐ 𝐵𝐸 ≥ 𝑔 𝐵𝐸, 𝑍 ⋅ 𝑟2(𝑍) + 𝑔(𝐵𝐸,𝑊) ⋅ 𝑟2(𝑊)

𝑣ℐ 𝐵𝐹 ≥ 𝑔 𝐵𝐹, 𝑍 ⋅ 𝑟2(𝑍) + 𝑔(𝐵𝐹,𝑊) ⋅ 𝑟2(𝑊)

• note that ℐ 𝐴 = ℐ 𝐵 , ℐ 𝐴𝐶 = ℐ 𝐴𝐷 , and ℐ 𝐵𝐸 = ℐ(𝐵𝐹)

3 -2 1 3 2 1 0 3

A B

C D C D E F E F

X Y Z W

Max

Min

Extensive-Form Games

Perfect-Information Games

Perfect-Information Games with Chance

Imperfect-Information Games

Solving Zero-Sum Games

Solving General-Sum Games

Approximate Solutions to Large Zero-Sum Games

General Sum EFGs – Sequence Form LCP

• NE of a general-sum game can be found by solving a sequence form
LCP (linear complementarity problem)
• satisfiability program
• realization plans for both players
• connection between realization plans and best responses via

complementarity constraints
• best-response inequalities are rewritten using slack variables

𝑟𝑖 ∅ = 1, 0 ≤ 𝑟𝑖 𝜎𝑖 ≤ 1 ∀𝑖 ∈ 𝑁, ∀𝜎𝑖 ∈ Σ𝑖

𝑟𝑖 𝜎𝑖 =

𝑎∈𝜒 𝐼𝑖,𝑗

𝑟𝑖(𝜎𝑖𝑎) ∀𝑖 ∈ 𝑁, ∀𝐼𝑖,𝑗 ∈ 𝐼𝑖 , 𝜎𝑖 = 𝑠𝑒𝑞 𝐼𝑖,𝑗

𝑣ℐ 𝜎𝑖 = 𝑠𝜎𝑖 +

𝐼𝑖,𝑗:𝑠𝑒𝑞 𝐼𝑖,𝑗 =𝜎𝑖

𝑣𝐼𝑖,𝑗 +

𝜎−𝑖∈Σ−𝑖

𝑔𝑖 𝜎𝑖 , 𝜎−𝑖 𝑟𝑖 𝜎𝑖 ∀𝑖 ∈ 𝑁, ∀𝜎𝑖∈ Σ𝑖

𝑟𝑖 𝜎𝑖 ⋅ 𝑠𝜎𝑖 = 0 ∀𝑖 ∈ 𝑁, ∀𝜎𝑖 ∈ Σ𝑖
0 ≤ 𝑠𝜎𝑖 ∀𝑖 ∈ 𝑁, ∀𝜎𝑖 ∈ Σ𝑖

General Sum EFGs – practical algorithms

• computing one (any) NE
• Lemke algorithm

• computing some specific NE
• e.g., maximizing welfare, maximizing utility for some player, …
• MILP reformulations (Sandholm et al. 2005, Audet et al. 2009)

• complementarity constraints can be replaced by using a
binary variable that represents whether a sequence is used in
a strategy with a non-zero probability

• big-M notation
• poor performance (104 nodes) using state-of-the-art MILP solvers

(e.g., IBM CPLEX, …)

Extensive-Form Games

Perfect-Information Games

Perfect-Information Games with Chance

Imperfect-Information Games

Solving Zero-Sum Games

Solving General-Sum Games

Approximate Solutions to Large Zero-Sum Games

Approximate algorithms - CFR

• we can learn the best strategy to play
• learning is done via repeated self-play
• under certain conditions we approximate the optimal (NE) strategy

• we restrict to zero-sum games
• no-regret learning
• construct the complete game tree

• in each iteration traverse through the game tree and adapt the
strategy in each information set according to the learning rule

• this learning rule minimizes the (counterfactual) regret
• the algorithm minimizes the overall regret in the game
• the average strategy converges to the optimal strategy

Regret and Counterfactual Regret

• player 𝑖’s regret for not playing an action 𝑎𝑖
′ against the opponent’s

action 𝑎−𝑖

𝑢𝑖 𝑎′𝑖 , 𝑎−𝑖 − 𝑢𝑖(𝑎𝑖 , 𝑎−𝑖)

• in extensive-form games we need to evaluate the value for each
action in an information set (counterfactual value):

𝑣𝑖 𝑠, 𝐼 =
𝑧∈𝑍𝐼

𝜋−𝑖
𝑠 𝑧 𝐼 𝜋𝑖

𝑠 𝑧|𝑧 𝐼 𝑢𝑖(𝑧)

• 𝑍𝐼 are the leafs reachable from 𝐼
• 𝑧[𝐼] is the history prefix of 𝑧 in 𝐼
• 𝜋𝑖
𝑠 h is the probability of player 𝑖 reaching node ℎ following

strategy 𝑠

Regret and Counterfactual Regret

• counterfactual value for one deviation in information set 𝐼; strategy
𝑠 is altered in information set 𝐼 by playing action 𝑎: 𝑣𝑖 𝑠𝐼→𝑎, 𝐼

• at a time step 𝑡, the algorithm computes counterfactual regret for
current strategy

𝑟𝑖
𝑡 𝐼, 𝑎 = 𝑣𝑖 𝑠𝐼→𝑎

𝑡 , 𝐼 − 𝑣𝑖(𝑠
𝑡 , 𝐼)

• the algorithm calculates the cumulative regret

𝑅𝑖
𝑇 𝐼, 𝑎 =

𝑡=1

𝑇

𝑟𝑖
𝑡(𝐼, 𝑎) , 𝑅𝑖

𝑇,+ 𝐼, 𝑎 = max{𝑅𝑖
𝑇 𝐼, 𝑎 , 0}

• strategy for new iteration is selected using regret matching

𝑠𝑖
𝑡+1(𝐼, 𝑎) =

𝑅𝑖
𝑇,+(𝐼,𝑎)

𝑎′∈𝜒(𝐼)

𝑅𝑖
𝑇,+(𝐼,𝑎′)

1

|𝜒 𝐼 |

if the denominator is positive

otherwise

Regret and Counterfactual Regret

• average cumulative regret converges to zero with iterations

 𝑅𝑖
𝑇 ≤

Δ𝑖,𝑢 𝐼𝑖 max
𝑘
|𝜒 𝐼𝑖,𝑘 |

𝑇
• average strategy converges to optimal strategy
• many additional improvements (sampling, MC versions, …)
• for details see PhD thesis by Marc Lanctot (2013)

• modification of CFR (CFR+) was used to solve two-player limit poker
(Bowling et al. 2015)
• uses only positive updates of regret
• instead of the average strategy the algorithm uses the

immediate (or current) strategy
• the immediate strategy does not (provably) converge to NE

Comparison SQF vs. CFR

SQF (and iterative variants)
• the leading exact algorithm
• suffers from memory

requirements
• memory is reduced with

double-oracle variants
• these work best for games

with small support

CFR
• leading algorithm in practice
• memory-efficient
• robust and applicable in

more general settings
• average strategy converges

slowly

Open Questions in EFGs

• very active and challenging sub-field of computational
game theory
• When does the current strategy in CFR+ converge in zero-sum

EFGs?
• What is the expected number of iterations of double-oracle

algorithms?
• How to solve games with imperfect recall?
• What is the optimal strategy to use in general-sum EFGs?

(opponent modeling)
• …

