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Extensive-Form Games




Impertfect Information EFGs

Players 1A 2m

Information

0-2
/ Set

yes

Actions (0,0) (2,0) (0,0) (1,1) (0,0) (0,2)

\/

Utility




Solving Il Zero-Sum EFGs with perfect recall

Exact algorithms:
= Why backward induction does not work?
= Transformation to the normal form
= Using the sequence form (Koller et al. 1996, von Stengel 1996)

= |terative extensions (a.k.a. double-oracle algorithms (McMahan et al. 2006)) of the
sequence form (Bosansky et al. 2014)

Approximate algorithms:

= Counterfactual Regret Minimization (Zinkevich et al. 2008, Lanctot et al. 2009,
Bowling et al. 2015)

" Excessive Gap Technique (Hoda et al. 2010, Waugh et al. 2015)



Impertfect Information Zero-Sum EFG

Max




Impertfect Information Zero-Sum EFG
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- Triangle Box
[l EFGs - Sequences
i ; ? g

A X
B Y
AC Z

’ (A A N
i ) X ) BE
C/ \D C/ \D E/ \F E/ \F
BF
3 -2 1 3 2 1 0 3

* alternative representation of strategies
* 0 (S Zi
* we use o;a to denote executing an action a after the sequence o;
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- Triangle Box
[l EFGs - Sequences
A 0 g

A X

B Y
AC Z
AD W
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* extension of the utility function g
* gi:2y1 XX, > R
* sequentially execute actions of the players
e stop at either:
e leaf -z € Z g;(0y,0,) = u;(2)
* there is no applicable action g;(gy,0,) = 0



- Triangle Box
[l EFGs - Sequences
| 0) 0)

A X
B Y
AC Z
AD W
BE
BF

* |In EFGs with chance nodes
* g corresponds to an expected utility of all reachable
leafs (Z')
* g(o-l' 0-2) — Zzez’ ui(Z)y(Z)
where y is the probability of Nature playing a
sequence of actions reaching leaf z € Z'



- Triangle Box
Il EFGS SequeMDxces
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 Examples
* gl(Q, W) =0
« g.(AC, W) =0
« g.(BF,W)=3



|| EFGs — Realization Plans
Max i | 2
A | 0 0
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* behavioral strategies represented as realization plans

* probabilities over sequences of actions
e assuming the opponent allows us to play the actions from the

sequence
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| EFGs — Realization Plans
Max 1 y]
1) 1)

1
1
1
1
1
!

AT ° A X
-------------------- ] v
x /N AC Z
(AT AD W
BE
C
[ e )
3 2 1
* 1(0) =1 * 1,(0) =1
* 11(4) + r(B) = (0) * (X)) + 1Y) = 1(0)
* 11(AC) + 11 (AD) = (A) * 1(Z) + (W) =1,(0)

* n(BE) +r(BF) =r,(B)
* network-flow perspective



* NE of a zero-sum game can be found by solving sequence form LP
* finding the best realization plan r; against a best-responding
player 2
* J(o) —information set, in which the last action of sequence o was

executed
* seq(l) —sequence leading to an information set |
* v; - expected utility in an information set

maxv
r{,v :7(@)

rn@)=10<nr()<1 Vo € %,

r (o) = z r(oa) VI, €l,0= Seq(ll’k)
acy(I1x)

Vi(g,) = z VI, + z g1(0y,0,)11(07) Vo,€ %,

Iz,j|seq(12,j)=02 01€%,



Sequence Form LP (example)

Maxvsx) + Vi)

(@) = 1,1(4) + r(B) = r (D),
r(4) = r,(AC) + r;(AD)
r1(B) = r{(BE) + r{(BF)

v3x) < 0+ g(AC, X) -1 (AC) + g(AD, X) - 11 (AD)
vy < 0+ g(AC,Y) - (AC) + g(AD,Y) - 11, (AD)
Vyzy < 0+ g(BE,Z) -1 (BE) + g(BF,Z) - r1(BF)
vy < 0+ g(BE,W) - 1 (BE) + g(BF,W) - 1, (BF)

* notethatJ(X) =J(Y)and J(Z) = J(W)



Sequence Form LP (example)

min UJ(A) X
s, U

____________________________

[

12(Z) + (W) = 1,(0)

A A
(@) = LX)+ () =@, TN TR
/ \2 { \3 { \1 ({ \3

3
V304) = Vi(4c) V1(B) = V9(BD)
Vycac) = g(AC, X) - 1,(X) + g(AC,Y) - 1 (Y)
Vycap) = 9(AD,X) - 12(X) + g(AD,Y) - rp(Y)
Vye) = 9(BE,Z) - 15(Z) + g(BE, W) - r,(W)
Vypr) = Y(BF,Z) - 1,(Z) + g(BF, W) - 1, (W)

* notethatJ(4) = J(B),J(AC) = I(AD),and I(BE) = 7(BF)



Extensive-Form Games




General Sum EFGs — Sequence Form LCP

* NE of a general-sum game can be found by solving a sequence form
LCP (linear complementarity problem)
* satisfiability program
* realization plans for both players
* connection between realization plans and best responses via
complementarity constraints
* best-response inequalities are rewritten using slack variables

T'i(Q) = 1,0S7"i(0'i)£ 1 ViEN,VO'i EZi
Ti(O'i) — Z Ti(O'iCl) Vi € N, VIi,j (S Il',O'l' — SBQ(IL'J')
{aex(1i)}
Ug(o.i) = So-l. + z vli,j + z gi(O'i,O'_i)T'i(O'i) Vi €N, VO'iE Zi
{Ii,j:seq(li,j)=ai} O_i€XL_j
1i(0;) - Sg;, =0 Vi € N,Vo; € Z;

OSSO'i ViEN,VUiEZi



e computing one (any) NE
* Lemke algorithm

* computing some specific NE
* e.g., maximizing welfare, maximizing utility for some player, ...
 MILP reformulations (Sandholm et al. 2005, Audet et al. 2009)
 complementarity constraints can be replaced by using a
binary variable that represents whether a sequence is used in
a strategy with a non-zero probability
* big-M notation
 poor performance (10% nodes) using state-of-the-art MILP solvers
(e.g., IBM CPLEX, ...)



Extensive-Form Games




we can learn the best strategy to play
learning is done via repeated self-play
under certain conditions we approximate the optimal (NE) strategy

we restrict to zero-sum games
no-regret learning
construct the complete game tree
* in each iteration traverse through the game tree and adapt the
strategy in each information set according to the learning rule
e this learning rule minimizes the (counterfactual) regret
* thealgorithm minimizes the overall regret in the game
 the average strategy converges to the optimal strategy



player i’s regret for not playing an action a; against the opponent’s
action a_;

u;(a'y,a_;) — u;(a;,a_;)

in extensive-form games we need to evaluate the value for each
action in an information set (counterfactual value):

vi(s,1) = z RECILACHTINEG

* Z; are the leafs reachable from |

* z|[I]isthe history prefix of z in I

17 (h) is the probability of player i reaching node h following
strategy s



counterfactual value for one deviation in information set I; strategy
s is altered in information set I by playing action a: v;(s;_4,1)
at a time step t, the algorithm computes counterfactual regret for
current strategy

rit(l: a) — 171’(5It—>at I) _ vi(st' I)

the algorithm calculates the cumulative regret
T

RI'(I,a) = Z ri(l,a), R"*(I,a) = max{R!(I,a), 0}
t=1
strategy for new iteration is selected using regret matching

(

Rt (La)

T,+ !

si1(1,a) = { Zarex R 4D
1

\ |x (D] otherwise

if the denominator is positive




average cumulative regret converges to zero with iterations
Ai,u|1i|\/m,§X|)((1i,k)|
VT

average strategy converges to optimal strategy
many additional improvements (sampling, MC versions, ...)
for details see PhD thesis by Marc Lanctot (2013)

R} <

modification of CFR (CFR+) was used to solve two-player limit poker

(Bowling et al. 2015)

* uses only positive updates of regret

* instead of the average strategy the algorithm uses the
immediate (or current) strategy

 theimmediate strategy does not (provably) converge to NE



SQF (and iterative variants)

the leading exact algorithm
suffers from memory
requirements

memory is reduced with
double-oracle variants
these work best for games
with small support

leading algorithm in practice
memory-efficient

robust and applicable in
more general settings
average strategy converges
slowly



very active and challenging sub-field of computational

game theory

e When does the current strategy in CFR+ converge in zero-sum
EFGs?

* What is the expected number of iterations of double-oracle
algorithms?

* How to solve games with imperfect recall?

 Whatis the optimal strategy to use in general-sum EFGs?
(opponent modeling)



