

Solving Extensive-Form Games

Branislav Bošanský

AE4M36MAS, Fall 2015

Extensive-Form Games

Perfect-Information Games

Perfect-Information Games with Chance

Imperfect-Information Games

Solving Zero-Sum Games

Solving General-Sum Games

Approximate Solutions to Large Zero-Sum Games

Imperfect Information EFGs

Solving II Zero-Sum EFGs with perfect recall

Exact algorithms:

- Why backward induction does not work?
- Transformation to the normal form
- Using the sequence form (Koller et al. 1996, von Stengel 1996)
- Iterative extensions (a.k.a. double-oracle algorithms (McMahan et al. 2006)) of the sequence form (Bosansky et al. 2014)

Approximate algorithms:

- Counterfactual Regret Minimization (Zinkevich et al. 2008, Lanctot et al. 2009, Bowling et al. 2015)
- Excessive Gap Technique (Hoda et al. 2010, Waugh et al. 2015)

Imperfect Information Zero-Sum EFG

Imperfect Information Zero-Sum EFG

	XZ	XW	YZ	YW
ACE	3	3	1	1
ACF	3	3	1	1
ADE	-2	-2	3	3
ADF	-2	-2	3	3
BCE	2	0	2	0
BCF	1	3	1	3
BDE	2	0	2	0
BDF	1	3	1	3

$\begin{array}{c} \text{Triangle} \\ (\Sigma_1) \end{array}$	Box (Σ ₂)
Ø	Ø
А	Х
В	Y
AC	Z
AD	W
BE	
BF	

- alternative representation of strategies
- $\sigma_i \in \Sigma_i$
- we use $\sigma_i a$ to denote executing an action a after the sequence σ_i

II EFGs - Sequences

$\begin{array}{c} \text{Triangle} \\ (\Sigma_1) \end{array}$	Box (Σ ₂)
Ø	Ø
А	Х
В	Y
AC	Z
AD	W
BE	
BF	

- extension of the utility function *g*
 - $g_i: \Sigma_1 \times \Sigma_2 \to \mathbb{R}$
- sequentially execute actions of the players
 - stop at either:
 - leaf $-z \in Z$ $g_i(\sigma_1, \sigma_2) = u_i(z)$
 - there is no applicable action $g_i(\sigma_1, \sigma_2) = 0$

- In EFGs with chance nodes
 - g corresponds to an expected utility of all reachable leafs (Z')
 - $g(\sigma_1, \sigma_2) = \sum_{z \in Z'} u_i(z) \gamma(z)$ where γ is the probability of Nature playing a sequence of actions reaching leaf $z \in Z'$

II EFGs - Sequences

$\begin{array}{c} \text{Triangle} \\ (\Sigma_1) \end{array}$	Box (Σ ₂)
Ø	Ø
А	Х
В	Y
AC	Z
AD	W
BE	
BF	

- Examples
 - $g_1(\emptyset, W) = 0$
 - $g_1(AC, W) = 0$
 - $g_1(BF, W) = 3$

•

...

- behavioral strategies represented as realization plans
 - probabilities over sequences of actions
 - assuming the opponent allows us to play the actions from the sequence

$\begin{array}{c} \text{Triangle} \\ (\Sigma_1) \end{array}$	Box (Σ ₂)
Ø	Ø
А	Х
В	Y
AC	Z
AD	W
BE	
BF	

- $r_1(\emptyset) = 1$
- $r_1(A) + r_1(B) = r_1(\emptyset)$
- $r_1(AC) + r_1(AD) = r_1(A)$
- $r_1(BE) + r_1(BF) = r_1(B)$

• $r_2(\emptyset) = 1$

•
$$r_2(X) + r_2(Y) = r_2(\emptyset)$$

•
$$r_2(Z) + r_2(W) = r_2(\emptyset)$$

network-flow perspective

II EFGs – Sequence Form LP

- NE of a zero-sum game can be found by solving sequence form LP
 - finding the best realization plan r_1 against a best-responding player 2
 - $\mathcal{I}(\sigma)$ information set, in which the last action of sequence σ was executed
 - seq(I) sequence leading to an information set I
 - v_I expected utility in an information set

$$\begin{aligned} \max_{r_1, v} v_{\mathcal{I}(\phi)} \\ r_1(\phi) &= 1, 0 \le r_1(\sigma) \le 1 \\ r_1(\sigma) &= \sum_{a \in \chi(I_{1,k})} r_1(\sigma a) \\ v_{\mathcal{I}(\sigma_2)} &\le \sum_{I_{2,j} \mid seq(I_{2,j}) = \sigma_2} v_{I_{2,j}} + \sum_{\sigma_1 \in \Sigma_1} g_1(\sigma_1, \sigma_2) r_1(\sigma_1) \quad \forall \sigma_2 \in \Sigma_2 \end{aligned}$$

 $\begin{aligned} v_{\mathcal{I}(X)} &\leq 0 + g(AC, X) \cdot r_1(AC) + g(AD, X) \cdot r_1(AD) \\ v_{\mathcal{I}(Y)} &\leq 0 + g(AC, Y) \cdot r_1(AC) + g(AD, Y) \cdot r_1(AD) \\ v_{\mathcal{I}(Z)} &\leq 0 + g(BE, Z) \cdot r_1(BE) + g(BF, Z) \cdot r_1(BF) \\ v_{\mathcal{I}(W)} &\leq 0 + g(BE, W) \cdot r_1(BE) + g(BF, W) \cdot r_1(BF) \end{aligned}$

• note that $\mathcal{I}(X) = \mathcal{I}(Y)$ and $\mathcal{I}(Z) = \mathcal{I}(W)$

-2

$$\begin{aligned} v_{\mathcal{I}(A)} &\geq v_{\mathcal{I}(AC)}, v_{\mathcal{I}(B)} \geq v_{\mathcal{I}(BD)} \\ v_{\mathcal{I}(AC)} &\geq g(AC, X) \cdot r_2(X) + g(AC, Y) \cdot r_2(Y) \\ v_{\mathcal{I}(AD)} &\geq g(AD, X) \cdot r_2(X) + g(AD, Y) \cdot r_2(Y) \\ v_{\mathcal{I}(BE)} &\geq g(BE, Z) \cdot r_2(Z) + g(BE, W) \cdot r_2(W) \\ v_{\mathcal{I}(BF)} &\geq g(BF, Z) \cdot r_2(Z) + g(BF, W) \cdot r_2(W) \end{aligned}$$

• note that $\mathcal{I}(A) = \mathcal{I}(B)$, $\mathcal{I}(AC) = \mathcal{I}(AD)$, and $\mathcal{I}(BE) = \mathcal{I}(BF)$

Extensive-Form Games

Perfect-Information Games

Perfect-Information Games with Chance

Imperfect-Information Games

Solving Zero-Sum Games

Solving General-Sum Games

Approximate Solutions to Large Zero-Sum Games

General Sum EFGs – Sequence Form LCP

- NE of a general-sum game can be found by solving a sequence form LCP (linear complementarity problem)
 - satisfiability program
 - realization plans for both players
 - connection between realization plans and best responses via complementarity constraints
 - best-response inequalities are rewritten using slack variables

$$\begin{split} r_{i}(\emptyset) &= 1, 0 \leq r_{i}(\sigma_{i}) \leq 1 & \forall i \in N, \forall \sigma_{i} \in \Sigma_{i} \\ r_{i}(\sigma_{i}) &= \sum_{\{a \in \chi(I_{i,j})\}} r_{i}(\sigma_{i}a) & \forall i \in N, \forall I_{i,j} \in I_{i}, \sigma_{i} = seq(I_{i,j}) \\ \nu_{\mathcal{I}(\sigma_{i})} &= s_{\sigma_{i}} + \sum_{\{I_{i,j}: seq(I_{i,j}) = \sigma_{i}\}} \nu_{I_{i,j}} + \sum_{\sigma_{-i} \in \Sigma_{-i}} g_{i}(\sigma_{i}, \sigma_{-i})r_{i}(\sigma_{i}) & \forall i \in N, \forall \sigma_{i} \in \Sigma_{i} \\ r_{i}(\sigma_{i}) \cdot s_{\sigma_{i}} &= 0 & \forall i \in N, \forall \sigma_{i} \in \Sigma_{i} \\ 0 \leq s_{\sigma_{i}} & \forall i \in N, \forall \sigma_{i} \in \Sigma_{i} \end{split}$$

General Sum EFGs – practical algorithms

- computing one (any) NE
 - Lemke algorithm
- computing some specific NE
 - e.g., maximizing welfare, maximizing utility for some player, ...
 - MILP reformulations (Sandholm et al. 2005, Audet et al. 2009)
 - complementarity constraints can be replaced by using a binary variable that represents whether a sequence is used in a strategy with a non-zero probability
 - big-M notation
 - poor performance (10⁴ nodes) using state-of-the-art MILP solvers (e.g., IBM CPLEX, ...)

Extensive-Form Games

Perfect-Information Games

Perfect-Information Games with Chance

Imperfect-Information Games

Solving Zero-Sum Games

Solving General-Sum Games

Approximate Solutions to Large Zero-Sum Games

Approximate algorithms - CFR

- we can learn the best strategy to play
- learning is done via repeated self-play
- under certain conditions we approximate the optimal (NE) strategy

- we restrict to zero-sum games
- no-regret learning
- construct the complete game tree
 - in each iteration traverse through the game tree and adapt the strategy in each information set according to the learning rule
 - this learning rule minimizes the (counterfactual) regret
 - the algorithm minimizes the overall regret in the game
 - the average strategy converges to the optimal strategy

Regret and Counterfactual Regret

• player *i*'s regret for not playing an action a'_i against the opponent's action a_{-i}

$$u_i(a'_i, a_{-i}) - u_i(a_i, a_{-i})$$

• in extensive-form games we need to evaluate the value for each action in an information set (**counterfactual value**):

$$v_i(s,I) = \sum_{z \in Z_I} \pi^s_{-i}(z[I]) \pi^s_i(z|z[I]) u_i(z)$$

- Z_I are the leafs reachable from I
- z[I] is the history prefix of z in I
- $\pi_i^s(\mathbf{h})$ is the probability of player *i* reaching node *h* following strategy *s*

Regret and Counterfactual Regret

- counterfactual value for one deviation in information set *I*; strategy *s* is altered in information set *I* by playing action $a: v_i(s_{I \rightarrow a}, I)$
- at a time step t, the algorithm computes counterfactual regret for current strategy

$$r_i^t(I,a) = v_i(s_{I \to a}^t, I) - v_i(s^t, I)$$

• the algorithm calculates the **cumulative regret**

$$R_i^T(I,a) = \sum_{t=1}^T r_i^t(I,a), \qquad R_i^{T,+}(I,a) = \max\{R_i^T(I,a), 0\}$$

• strategy for new iteration is selected using **regret matching**

$$s_{i}^{t+1}(I,a) = \begin{cases} \frac{R_{i}^{T,+}(I,a)}{\sum_{a' \in \chi(I)} R_{i}^{T,+}(I,a')} \\ \frac{1}{|\chi(I)|} \end{cases}$$

if the denominator is positive

otherwise

Regret and Counterfactual Regret

• average cumulative regret converges to zero with iterations

$$\bar{R}_{i}^{T} \leq \frac{\Delta_{i,u} |I_{i}| \sqrt{\max_{k} |\chi(I_{i,k})|}}{\sqrt{T}}$$

- average strategy converges to optimal strategy
- many additional improvements (sampling, MC versions, ...)
- for details see PhD thesis by Marc Lanctot (2013)
- modification of CFR (CFR+) was used to solve two-player limit poker (Bowling et al. 2015)
 - uses only positive updates of regret
 - instead of the average strategy the algorithm uses the immediate (or current) strategy
 - the immediate strategy does not (provably) converge to NE

Comparison SQF vs. CFR

SQF (and iterative variants) C

- the leading exact algorithm
- suffers from memory requirements
- memory is reduced with double-oracle variants
- these work best for games with small support

CFR

- leading algorithm in practice
- memory-efficient
- robust and applicable in more general settings
- average strategy converges slowly

Open Questions in EFGs

- very active and challenging sub-field of computational game theory
 - When does the current strategy in CFR+ converge in zero-sum EFGs?
 - What is the expected number of iterations of double-oracle algorithms?
 - How to solve games with imperfect recall?
 - What is the optimal strategy to use in general-sum EFGs? (opponent modeling)
 - •