Solving Extensive-Form Games

Extensive-Form Games

Perfect-Information Games
Perfect-Information Games with Chance
Imperfect-Information Games
Solving Zero-Sum Games
Solving General-Sum Games
Approximate Solutions to Large Zero-Sum Games

Imperfect Information EFGs

Utility

Solving II Zero-Sum EFGs with perfect recall

Exact algorithms:

- Why backward induction does not work?
- Transformation to the normal form
- Using the sequence form (Koller et al. 1996, von Stengel 1996)
- Iterative extensions (a.k.a. double-oracle algorithms (McMahan et al. 2006)) of the sequence form (Bosansky et al. 2014)

Approximate algorithms:

- Counterfactual Regret Minimization (Zinkevich et al. 2008, Lanctot et al. 2009, Bowling et al. 2015)
- Excessive Gap Technique (Hoda et al. 2010, Waugh et al. 2015)

Imperfect Information Zero-Sum EFG

Imperfect Information Zero-Sum EFG

- alternative representation of strategies
- $\sigma_{i} \in \Sigma_{i}$
- we use $\sigma_{i} a$ to denote executing an action a after the sequence σ_{i}
II EFGs - Sequences

Triangle $\left(\boldsymbol{\Sigma}_{1}\right)$	Box $\left(\boldsymbol{\Sigma}_{2}\right)$
\emptyset	\emptyset
A	X
B	Y
AC	Z
AD	W
BE	
BF	

- extension of the utility function g
- $g_{i}: \Sigma_{1} \times \Sigma_{2} \rightarrow \mathbb{R}$
- sequentially execute actions of the players
- stop at either:
- leaf - $\mathrm{z} \in Z \quad g_{i}\left(\sigma_{1}, \sigma_{2}\right)=u_{i}(z)$
- there is no applicable action $g_{i}\left(\sigma_{1}, \sigma_{2}\right)=0$

II EFGs - Sequences

Triangle $\left(\boldsymbol{\Sigma}_{1}\right)$	Box $\left(\boldsymbol{\Sigma}_{2}\right)$
\emptyset	\emptyset
A	X
B	Y
AC	Z
AD	W
BE	
BF	

- In EFGs with chance nodes
- g corresponds to an expected utility of all reachable leafs (Z^{\prime})
- $g\left(\sigma_{1}, \sigma_{2}\right)=\sum_{z \in Z^{\prime}} u_{i}(z) \gamma(z)$
where γ is the probability of Nature playing a sequence of actions reaching leaf $z \in Z^{\prime}$

II EFGs - Sequences

Triangle $\left(\boldsymbol{\Sigma}_{1}\right)$	Box $\left(\boldsymbol{\Sigma}_{2}\right)$
\emptyset	\emptyset
A	X
B	Y
AC	Z
AD	W
BE	
BF	

- Examples
- $g_{1}(\emptyset, W)=0$
- $g_{1}(A C, W)=0$
- $g_{1}(B F, W)=3$
- ...

- behavioral strategies represented as realization plans
- probabilities over sequences of actions
- assuming the opponent allows us to play the actions from the sequence

II EFGs - Realization Plans

Triangle $\left(\boldsymbol{\Sigma}_{1}\right)$	Box $\left(\boldsymbol{\Sigma}_{\mathbf{2}}\right)$
\emptyset	\emptyset
A	X
B	Y
AC	Z
AD	W
BE	
BF	

- $r_{1}(\varnothing)=1$
- $r_{1}(A)+r_{1}(B)=r_{1}(\varnothing)$
- $r_{1}(A C)+r_{1}(A D)=r_{1}(A)$
- $r_{2}(\varnothing)=1$
- $r_{2}(X)+r_{2}(Y)=r_{2}(\varnothing)$
- $r_{2}(Z)+r_{2}(W)=r_{2}(\varnothing)$
- $r_{1}(B E)+r_{1}(B F)=r_{1}(B)$
- network-flow perspective

II EFGs - Sequence Form LP

- NE of a zero-sum game can be found by solving sequence form LP
- finding the best realization plan r_{1} against a best-responding player 2
- J(σ) - information set, in which the last action of sequence σ was executed
- seq(I) - sequence leading to an information set I
- v_{I} - expected utility in an information set

$$
\begin{array}{lr}
r_{1}(\varnothing)=1,0 \leq r_{1}(\sigma) \leq 1 & \max _{\mathrm{r}_{1}, v} v_{\mathcal{J}(\varnothing)} \\
r_{1}(\sigma)=\sum_{a \in \chi\left(I_{1, k}\right)}^{r_{1}(\sigma a)} \quad \forall \sigma \in \Sigma_{1} \\
v_{\mathcal{J}\left(\sigma_{2}\right)} \leq \sum_{I_{2, j} \mid s e q\left(I_{2, j}\right)=\sigma_{2}} v_{I_{2, j}}+\sum_{\sigma_{1} \in \Sigma_{1}} g_{1}\left(\sigma_{1}, \sigma_{2}\right) r_{1}\left(\sigma_{1}\right) \quad \forall \sigma_{2} \in \Sigma_{2}
\end{array}
$$

Sequence Form LP (example)

$$
\begin{aligned}
& \max _{\mathrm{r}_{1}, v} v_{\mathcal{J}(X)}+v_{\mathcal{J}(Z)} \\
& r_{1}(\varnothing)=1, r_{1}(A)+r_{1}(B)=r_{1}(\varnothing), \\
& r_{1}(A)=r_{1}(A C)+r_{1}(A D) \\
& r_{1}(B)=r_{1}(B E)+r_{1}(B F)
\end{aligned}
$$

$v_{\jmath_{(X)}} \leq 0+g(A C, X) \cdot r_{1}(A C)+g(A D, X) \cdot r_{1}(A D)$
$v_{\mathcal{J}(Y)} \leq 0+g(A C, Y) \cdot r_{1}(A C)+g(A D, Y) \cdot r_{1}(A D)$
$v_{J(Z)} \leq 0+g(B E, Z) \cdot r_{1}(B E)+g(B F, Z) \cdot r_{1}(B F)$
$v_{\mathcal{J}(W)} \leq 0+g(B E, W) \cdot r_{1}(B E)+g(B F, W) \cdot r_{1}(B F)$

- note that $\mathcal{J}(X)=\mathcal{J}(Y)$ and $\mathcal{J}(Z)=\mathcal{J}(W)$

Sequence Form LP (example)

$$
\begin{aligned}
& \min _{r_{2}, v} v_{\jmath_{(A)}} \\
& r_{2}(\phi)=1, r_{2}(X)+r_{2}(Y)=r_{2}(\phi), \\
& r_{2}(Z)+r_{2}(W)=r_{2}(\varnothing)
\end{aligned}
$$

Max

$$
v_{J_{(A)}} \geq v_{\gamma_{(A C)},}, v_{\text {JB) }} \geq v_{\jmath_{(B D)}}
$$

$$
v_{J_{(A C)}} \geq g(A C, X) \cdot r_{2}(X)+g(A C, Y) \cdot r_{2}(Y)
$$

$$
v_{\gamma(A D)} \geq g(A D, X) \cdot r_{2}(X)+g(A D, Y) \cdot r_{2}(Y)
$$

$$
v_{g(B E)} \geq g(B E, Z) \cdot r_{2}(Z)+g(B E, W) \cdot r_{2}(W)
$$

$$
v_{J(B F)} \geq g(B F, Z) \cdot r_{2}(Z)+g(B F, W) \cdot r_{2}(W)
$$

- note that $\mathcal{J}(A)=\mathcal{J}(B), \mathcal{J}(A C)=\mathcal{J}(A D)$, and $\mathcal{J}(B E)=\mathcal{J}(B F)$

Extensive-Form Games

Perfect-Information Games
Perfect-Information Games with Chance
Imperfect-Information Games
Solving Zero-Sum Games
Solving General-Sum Games
Approximate Solutions to Large Zero-Sum Games

General Sum EFGs - Sequence Form LCP

- NE of a general-sum game can be found by solving a sequence form LCP (linear complementarity problem)
- satisfiability program
- realization plans for both players
- connection between realization plans and best responses via complementarity constraints
- best-response inequalities are rewritten using slack variables

$$
\begin{array}{rlr}
r_{i}(\varnothing)=1,0 \leq r_{i}\left(\sigma_{i}\right) \leq 1 & \forall i \in N, \forall \sigma_{i} \in \Sigma_{i} \\
r_{i}\left(\sigma_{i}\right)=\sum_{\left\{a \in \chi\left(I_{i, j}\right)\right\}} r_{i}\left(\sigma_{i} a\right) & \forall i \in N, \forall I_{i, j} \in I_{i}, \sigma_{i}=\operatorname{seq}\left(I_{i, j}\right) \\
v_{\mathcal{J}\left(\sigma_{i}\right)}=s_{\sigma_{i}}+\sum_{\left\{I_{i, j}: \operatorname{seq}\left(I_{i, j}\right)=\sigma_{i}\right\}} v_{I_{i, j}}+\sum_{\sigma_{-i} \in \Sigma_{-i}} g_{i}\left(\sigma_{i}, \sigma_{-i}\right) r_{i}\left(\sigma_{i}\right) \quad \forall i \in N, \forall \sigma_{i} \in \Sigma_{i} \\
r_{i}\left(\sigma_{i}\right) \cdot s_{\sigma_{i}}=0 & \forall i \in N, \forall \sigma_{i} \in \Sigma_{i} \\
0 \leq s_{\sigma_{i}} & \forall i \in N, \forall \sigma_{i} \in \Sigma_{i}
\end{array}
$$

General Sum EFGs - practical algorithms

- computing one (any) NE
- Lemke algorithm
- computing some specific NE
- e.g., maximizing welfare, maximizing utility for some player, ...
- MILP reformulations (Sandholm et al. 2005, Audet et al. 2009)
- complementarity constraints can be replaced by using a binary variable that represents whether a sequence is used in a strategy with a non-zero probability
- big-M notation
- poor performance (10^{4} nodes) using state-of-the-art MILP solvers (e.g., IBM CPLEX, ...)

Extensive-Form Games

Perfect-Information Games
Perfect-Information Games with Chance
Imperfect-Information Games
Solving Zero-Sum Games
Solving General-Sum Games
Approximate Solutions to Large Zero-Sum Games

Approximate algorithms - CFR

- we can learn the best strategy to play
- learning is done via repeated self-play
- under certain conditions we approximate the optimal (NE) strategy
- we restrict to zero-sum games
- no-regret learning
- construct the complete game tree
- in each iteration traverse through the game tree and adapt the strategy in each information set according to the learning rule
- this learning rule minimizes the (counterfactual) regret
- the algorithm minimizes the overall regret in the game
- the average strategy converges to the optimal strategy

Regret and Counterfactual Regret

- player i 's regret for not playing an action a_{i}^{\prime} against the opponent's action a_{-i}

$$
u_{i}\left(a^{\prime}{ }_{i}, a_{-i}\right)-u_{i}\left(a_{i}, a_{-i}\right)
$$

- in extensive-form games we need to evaluate the value for each action in an information set (counterfactual value):

$$
v_{i}(s, I)=\sum_{z \in Z_{I}} \pi_{-i}^{s}(z[I]) \pi_{i}^{S}(z \mid z[I]) u_{i}(z)
$$

- Z_{I} are the leafs reachable from I
- $z[I]$ is the history prefix of z in I
- $\pi_{i}^{S}(\mathrm{~h})$ is the probability of player i reaching node h following strategy s

Regret and Counterfactual Regret

- counterfactual value for one deviation in information set I; strategy s is altered in information set I by playing action a : $v_{i}\left(s_{I \rightarrow a}, I\right)$
- at a time step t, the algorithm computes counterfactual regret for current strategy

$$
r_{i}^{t}(I, a)=v_{i}\left(s_{I \rightarrow a}^{t}, I\right)-v_{i}\left(s^{t}, I\right)
$$

- the algorithm calculates the cumulative regret

$$
R_{i}^{T}(I, a)=\sum_{t=1}^{T} r_{i}^{t}(I, a), \quad R_{i}^{T,+}(I, a)=\max \left\{R_{i}^{T}(I, a), 0\right\}
$$

- strategy for new iteration is selected using regret matching

$$
s_{i}^{t+1}(I, a)=\left\{\begin{array}{cl}
\frac{R_{i}^{T,+}(I, a)}{\sum_{a^{\prime} \in \chi(I)}^{R_{i}^{T,+}\left(I, a^{\prime}\right)}} & \text { if the denominator is positive } \\
\frac{1}{|\chi(I)|} & \text { otherwise }
\end{array}\right.
$$

Regret and Counterfactual Regret

- average cumulative regret converges to zero with iterations

$$
\bar{R}_{i}^{T} \leq \frac{\Delta_{i, u}\left|I_{i}\right| \sqrt{\max _{k}\left|\chi\left(I_{i, k}\right)\right|}}{\sqrt{T}}
$$

- average strategy converges to optimal strategy
- many additional improvements (sampling, MC versions, ...)
- for details see PhD thesis by Marc Lanctot (2013)
- modification of CFR (CFR+) was used to solve two-player limit poker (Bowling et al. 2015)
- uses only positive updates of regret
- instead of the average strategy the algorithm uses the immediate (or current) strategy
- the immediate strategy does not (provably) converge to NE

Comparison SQF vs. CFR

SQF (and iterative variants) CFR

- the leading exact algorithm
- suffers from memory requirements
- memory is reduced with double-oracle variants
- these work best for games with small support
- leading algorithm in practice
- memory-efficient
- robust and applicable in more general settings
- average strategy converges slowly

Open Questions in EFGs

- very active and challenging sub-field of computational game theory
- When does the current strategy in CFR+ converge in zero-sum EFGs?
- What is the expected number of iterations of double-oracle algorithms?
- How to solve games with imperfect recall?
- What is the optimal strategy to use in general-sum EFGs? (opponent modeling)

