Distributed Constraint Reasoning 1

Michal Jakob
Agent Technology Center,
Dept. of Computer Science and Engineering,
FEE, Czech Technical University

AE4M36MAS Autumn 2013 - Lecture 9
Where are We?

Agent architectures (inc. BDI architecture)
Logics for MAS
Non-cooperative game theory
Cooperative game theory
Auctions
Social choice

Distributed constraint reasoning
Introduction

Distributed Constraint Reasoning 1
Motivating Example: Meeting Scheduling

Window 13:00 – 20:00
Duration 1h

Better after 18:00

Window 15:00 – 18:00
Duration 2h

Formalization? Algorithms?
Constraint Reasoning

Constraints pervade our lives (time, money, ...) and usually perceived as elements that limit solutions to the problems we face.

From a computational point of view, they:

- reduce the space of possible solutions
- encode knowledge about the problem at hand
- are key components for efficiently solving hard problems

Hard computational problems can often be made tractable by carefully considering the constraints that define the structure of the problem.

- applies to planning and scheduling, operational research, automated reasoning and decision theory, computer vision... and multiagent systems
Focus on how **constraint reasoning** can be used to address **coordination and optimization** problems in MAS.

- Set of agents must come to some **agreement**, typically via some form of **negotiation**, about **which action** each agent should take in order to jointly obtain the **best solution** for the **whole system**.

We will consider **Distributed Constraint Reasoning Problems** where:

- Each agent **negotiates locally** with just a subset of other agents (usually called **neighbours**) that are those that can **directly influence** his/her behaviour.
Lecture Objectives

At the end of 2-lecture series you will

- will be able to express problems as distributed constraint reasoning problems
- will be able to use basic solution algorithms for constraint satisfaction and optimization
Lecture Outline

1. Introduction
2. Definitions and Examples
3. Solution Methods
4. Asynchronous Backtracking Algorithm
5. Summary and Outlook
Definitions

Distributed Constraint Reasoning 1
A constraint network \mathcal{N} is formally defined as a triple $\langle X, D, C \rangle$ where:

- $X = \{x_1, \ldots, x_n\}$ is a set of variables;
- $D = \{D_1, \ldots, D_n\}$ is a set of variable domains, which enumerate all possible values of the corresponding variables; and
- $C = \{C_1, \ldots, C_m\}$ is a set of constraints; where a constraint C_i is defined on a subset of variables $S_i \subseteq X$ which comprise the scope of the constraint
 - $r_i = |S_i|$ is the arity of constraint i
Hard constraint \(C^h_i \) is a Boolean predicate \(P_i \) that defines valid joint assignments of variables in the scope
\[
P_i : D_{i_1} \times \cdots \times D_{i_r} \rightarrow \{F, T\}
\]

Soft constraint \(C^s_i \) is a function \(F_i \) that maps every possible joint assignment of all variables in the scope to a real value
\[
F_i : D_{i_1} \times \cdots \times D_{i_r} \rightarrow \mathbb{R}
\]
Binary Constraint Networks

Binary constraint networks are those where each **constraint** (soft or hard) is defined over **two variables**.

Every constraint network can be mapped to a **binary** constraint network
- requires the addition of variables and constraints
- may add complexity to the model

Binary constraint networks can be represented by a **constraint graph**.
Types of Constraint Reasoning Problems

Constraint Satisfaction Problem (CSP)
- **Objective**: find an assignment for all the variables in the network that satisfies all constraints.

Constraint Optimization Problem (COP)
- **Objective**: find an assignment for all the variables in the network that satisfies all constraints and optimizes a global function.
- **Global function** = aggregation (typically sum) of constrain functions, i.e.,
 \[F = \sum F_i \]
When operating in a decentralized context:
- a set of agents control variables
- agents interact to find a solution to the constraint network
Distributed Constraint Reasoning Problem

A distributed constraint reasoning problem consists of a constraint network \(\langle X, D, C \rangle \) and a set of agents \(A = \{A_1, ..., A_k\} \) where each agent:

- **controls a subset** of the variables \(X_i \subseteq X \)
- is only **aware of constraints** that involve variable it controls
- communicates only with its **neighbours**
Types of DCR Problems

1. Distributed CSP (DCSP)
2. Distributed COP (DCOP)
Examples / Applications

Distributed Constraint Reasoning
Real World Applications

Many standard benchmark problems in computer science can be modeled using the DCOP framework:

- graph coloring

As can many real world applications:

- human-agent organizations (e.g. meeting scheduling)
- sensor networks and robotics (e.g. target tracking)
Graph Colouring

- Popular benchmark
- Simple formulation
- Complexity controlled with few parameters:
 - Number of available colors
 - Number of nodes
 - Density ($\#nodes/\#constraints$)
- Many versions of the problem:
 - CSP, MaxCSP, COP
Graph Colouring: CSP

- Nodes can take k colors
- Any two adjacent nodes should have different colors
 - If it happens this is a conflict
Graph Colouring: Max CSP

- Minimize the number of conflicts
Graph Colouring: COP

- Different **weights to violated constraints**
- Preferences for different colors
Graph Colouring: DCOP

- Each node:
 - controlled by one agent

- Each agent:
 - Preferences for different colors
 - Communicates with its direct neighbours in the graph

- A1 and A2 exchange preferences and conflicts
- A3 and A4 do not communicate
DCOP formalization
Channel Allocation in Sensor Networks

Find a **non-conflicting assignment** of communication channels assuming **local communication only**
DCSP Formalization of Channel Allocation

Agents $A = \{A_1, ..., A_n\}$ correspond to sensors.

Variables $X = \{X_1, ..., X_n\}$ correspond to selected broadcast channels: X_i is the channel on which the sensor A_i broadcasts.

Domains $D = \{D_1, ..., D_n\}$ correspond to available channels.

For each pair of sensors i, j that have overlapping broadcast ranges, there is a corresponding Boolean constraint $P_{i,j}$ so that

$$P_{i,j}(X_i, X_j) = T \text{ iff } X_i \neq X_j$$

i.e. sensors will overlapping ranges must use different channels.

Objective: Find a channel allocation where no overlapping sensors use the same channel.
Example: Meeting Scheduling

Window 13:00 – 20:00
Duration 1h

Better after 18:00

Window 15:00 – 18:00
Duration 2h

Meeting Scheduling Formalization

[13 – 20]

[15 – 18]

PL

BL

BC

[13 – 20]

PS

BS

No overlap (Hard)

Equals (Hard)

Preference (Soft)
Why to Apply DCSP/DCOP?

Hard-to bound problems
No agreement on a common model
No trusted third party / Privacy concerns
Resilience / Robustness
Dynamism

Efficiency typically not the reason!
Solution Approach: DCSP

Distributed Constraint Reasoning 1
Requirements on a Good Algorithm

Soundness/Correctness: the solution returned is valid

Termination: in a finite number of steps

Completeness: finds an (optimal) solution if it exists
DCSP Solution approaches

- Top-Down
 - Prunning (e.g. Filtering, Hyper-resolution)
 - Search (e.g. Asynchronous backtracking)

- Bottom-Up (e.g. Distributed breakout)
 - approximate but scalable
 - rarely produce a solution → used for preprocessing
 - complete but not scalable
Distributed Algorithms

Synchronous: agents take steps following some fixed order (or computing steps are done simultaneously, following some external clock).

Asynchronous: agents take steps in arbitrary order, at arbitrary relative speeds.

Partially synchronous: there are some restrictions in the relative timing of events
Synchronous vs Asynchronous

Synchronous
- A few agents are active, most are waiting
- Active agents take decisions with updated information
- Low degree of concurrency / poor robustness
- Algorithms: direct extensions of centralized ones

Asynchronous
- All agents are active simultaneously
- Information is less updated, obsolescence appears
- High degree of concurrency / robust approaches
- Algorithms: new approaches
Asynchronous Backtracking: Assumptions

1. Agents communicate by sending messages
2. An agent can send messages to others, iff it knows their identifiers (directed communication / no broadcasting)
3. The delay transmitting a message is finite but random
4. For any pair of agents, messages are delivered in the order they were sent
5. Agents know the constraints in which they are involved, but not the other constraints
6. Each agent owns a single variable (agents = variables)
7. Constraints are binary (2 variables involved)
Asynchronous Backtracking Algorithm (ABT)

Distributed Constraint Reasoning 1
Synchronous Backtracking

Agents agree on an variable order and repeat:
1. send partial solution up to \(X_{k-1} \) to \(k \)-th agent.
2. \(k \)-th agent generates the next extension to this partial solution.
3. if the solution cannot be extended consistently: \(k \leftarrow k - 1 \) (backtrack control to previous agent).
4. if solution can be extended consistently, \(k \leftarrow k + 1 \) (pass control to the next agent)
5. if \(k < 1 \): stop \(\rightarrow \) unsolvable.
6. if \(k > n \): stop \(\rightarrow \) assignment = solution

Problem: Only one agent working at a time \(\Rightarrow \) very inefficient
Backtracking Illustration
Asynchronous Backtracking (ABT)

Revolutionary idea in 1998

Fully asynchronous algorithm
- all agents active, take a value and inform
- no agent has to wait for other agents

Total order among agents (to avoid cycles) \Rightarrow priorities

Constraints are directed: from higher-priority to lower-priority agents

ABT plays in asynchronous distributed context the same role as backtracking in centralized
ABT: Core Principles

High-priority agents decide on assignment, lower-priority have to **accommodate** or say they cannot.

Higher-priority agent (j) informs a lower-priority agent (k) of its assignment

Lower-priority agent (k) evaluates the constraint with its own assignment

- If permitted \(\rightarrow\) no action
- else \(\rightarrow\) look for a value consistent with j
 - If it exists \(\rightarrow\) k takes that value
 - else \(\rightarrow\) the agent view of k is a **nogood** \(\rightarrow\) distributed backtrack
ABT: NoGoods

Nogood: conjunction of (variable, value) pairs of higher priority agents, which removes a value of the current one

Example: $x \neq y, D_x = D_y = \{a, b\}$, x higher-priority than y:
- when x assumes a and a message $[x \leftarrow a]$ arrives to y, the agent y generates the nogood $x = a \Rightarrow y \neq a$ that removes value a of D_y.
- if x changes value, when $[x \leftarrow b]$ arrives to y, the no good $x = a \Rightarrow y \neq a$ is eliminated, value a is available again and a new nogood removing b is generated

Nogoods are required to ensure systematic traversal of search space in asynchronous, distributed context
When all values of variable y are removed, the conjunction of the left-hand sides of its nogoods is also a nogood.

Resolution: the process of generating a new nogood that is a logical consequence of existing ones.

Example:

$x \neq y, \ z \neq y, D_x = D_y = D_z = \{a, b\}, \ x, z \text{ higher priority than } y$

assume: $x = a \Rightarrow y \neq a; \ z = b \Rightarrow y \neq b; \ i.e., \ all \ values \ for \ y \ ruled \ out$

then: $x = a \land z = b$ is a nogood

i.e. in a directed form: $x = a \Rightarrow z \neq b$ (assuming x higher-priority than z)
Asynchronous action; spontaneous assignment

Four operations:

- **Assignment**: j takes value a: j informs lower priority agents
- **Backtrack**: k has no consistent values with higher-priority agents: k resolves nogoods and sends a a backtrack (nogood) message
- **New links**: j receives a nogood mentioning i, unconnected with j: j asks i to set up a link
- **Stop**: “no solution” (empty nogood) detected by an agent: stop

Solution: when agents are silent for a while (quiescence), every constraint is satisfied => solution;
- detected by specialized algorithms outside ABT
ABT: Messages

Ok?(i → k, a): higher-priority agent i informs lower-priority agent k that it takes value a

NoGood(k → j, i = a ⇒ j ≠ b):
- when all k’s values are forbidden:
- k requests j (the nearest higher-priority agent in the nogood) to backtrack
- then: k forgets j’s value, k takes some value
- j may detect obsolescence of the NoGood message

AddLink(j → i): set a link from i to j, to know i value

Stop: there is no solution
Current context / agent view: values of higher-priority constrained agents

NoGood store: each removed value has a *justifying* nogood

\[x_i = a \land x_j = b \Rightarrow x_k \neq c \]

- Stored nogoods must be **active**: left-hand side of the nogood satisfied in the current context
- If a nogood is no longer active, it is removed (and the value is available again)
ABT: Graph Coloring Example

Variables x_1, x_2, x_3; $D_1 = \{b, a\}, D_2 = \{a\}, D_3 = \{a, b\}$

3 agents, lex ordered:

Agent 1 \rightarrow Agent 2 \rightarrow Agent 3

2 difference constraints: c_{13} and c_{23}

Constraint graph:

Value-sending agents: x_1 and x_2

Constraint-evaluating agent: x_3

Each agent checks constraints of incoming links: $Agent_1$ and $Agent_2$ check nothing, $Agent_3$ checks c_{13} and c_{23}
ABT Example

1. $D_1 = \{b, a\}$
 - $x_1 = b$
 - $D_2 = \{a\}$
 - $x_2 = a$
 - $D_3 = \{a, b\}$

2. $D_1 = \{b, a\}$
 - $x_1 = b$
 - $D_2 = \{a\}$
 - $x_2 = a$
 - $D_3 = \{a, b\}$

3. A link request

4. $D_1 = \{b, a\}$
 - $x_1 = b$
 - $D_2 = \{a\}$
 - $x_2 = a$
 - $D_3 = \{a, b\}$

5. $D_1 = \{b, a\}$
 - $x_1 = a$
 - $D_2 = \{a\}$
 - $x_2 = a$
 - $D_3 = \{a, b\}$

6. $D_1 = \{b, a\}$
 - $x_1 = a$
 - $D_2 = \{a\}$
 - $x_2 = a$
 - $D_3 = \{a, b\}$

$X_1 = b \implies X_2 \neq a$
Imagine ABT without AddLink message:

x_2 rejects Nogood message as obsolete (because it does not know the value of x_1), x_3 keeps on sending it => infinite loop!!

AddLink avoids it: obsolete info is removed in finite time
ABT Properties

Soundness/Correctness
- silent network \iff all constraints are satisfied

Completeness
- ABT performs an *exhaustive traversal* of the search space
- Parts not searched: those eliminated by nogoods
- Nogoods are legal: *logical consequences* of constraints
- Therefore, either there is no solution \Rightarrow ABT generates the empty nogood, or it finds a solution if it exists

Termination
- there is no infinite loop (by induction in the depth of the agent)
Asynchronous Weak-Commitment Search (AWC)

ABT problem: highly constraint variables can be assigned very late

Solution: Use dynamic priorities

Change ok? messages to include agent’s current priority

Use min-conflict heuristic: choose assignment minimizing the number of violations
Distributed Breakout Algorithm
Uneven division of labor: lowest-priority agents do most of the work

Generating nogoods is complex and computationally expensive operation (also for AWC)

Cannot scale to large problems (100’s of variables at most)

⇒ What if we sacrifice completeness?
Hill Climbing
Hill Climbing

Agents asynchronously change their assignments so that they reduce the number of their violated constraints.

Can get **stuck in local optima** \(\Rightarrow\) use techniques to escape local optima.

But: **detection** of local optima **expensive** in a distributed system.
Quasi-Local Minimum

Definition (Quasi-local minimum)
An agent is in a quasi-local minimum if it is violating some constraint and neither it nor any of its neighbors can make a change that results in lower cost for all.

Quasi-local minimum can be **detected locally**
Distributed Breakout Algorithm

Key idea: If in a quasi-local minimum, increase the weight of violated constraints

Messages:
- \text{HANDLE-OK}((i \rightarrow j, x_i)) where \(i\) is the agent and \(x_i\) is its current value
- \text{HANDLE-IMPROVE}(i, \text{improve}) where \text{improve} is the maximum \(i\) could gain by changing to some other color
\texttt{HANDLE-OK?}(j, x_j) \\
1 \hspace{1em} \texttt{received-ok}[j] \leftarrow \text{TRUE} \\
2 \hspace{1em} \texttt{agent-view} \leftarrow \texttt{agent-view} + (j, x_j) \\
3 \hspace{1em} \textbf{if} \ \forall_{k \in \text{neighbors}} \ \texttt{received-ok}[k] = \text{TRUE} \\
4 \hspace{1em} \textbf{then} \ \texttt{SEND-IMPROVE}() \\
5 \hspace{1em} \forall_{k \in \text{neighbors}} \ \texttt{received-ok}[k] \leftarrow \text{FALSE}
SEND-IMPROVE()

1. \(\text{cost} \leftarrow \text{evaluation of } x_i \text{ given current weights and values.} \)
2. \(\text{my-improve} \leftarrow \text{possible maximal improvement} \)
3. \(\text{new-value} \leftarrow \text{value that gives maximal improvement} \)
4. \(\forall_{k \in \text{neighbors}} k.\text{HANDLE-IMPROVE}(i, \text{my-improve}, \text{cost}) \)
HANDLE-IMPROVE\((j, improve, eval)\)

1. \(\text{received-improve}[j] \leftarrow \text{improve}\)
2. \textbf{if} \(\forall_{k \in \text{neighbors}} \text{received-improve}[k] \neq \text{NONE}\)
3. \textbf{then} \text{SEND-OK}
4. \(\text{agent-view} \leftarrow \emptyset\)
5. \(\forall_{k \in \text{neighbors}} \text{received-improve}[k] \leftarrow \text{NONE}\)
SEND-OK()

1. if $\forall_{k \in \text{neighbors}} \text{my-improve} \geq \text{received-improve}[k]$
2. then $x_i \leftarrow \text{new-value}$
3. if $\text{cost} > 0 \land \forall_{k \in \text{neighbors}} \text{received-improve}[k] \leq 0$ \triangleright quasi-local opt.
4. then increase weight of constraint violations
5. $\forall_{k \in \text{neighbors}} k \cdot \text{HANDLE-OK}(i, x_i)$
Distributed Breakout Example
Properties

Theorem (Distributed Breakout is not Complete)
Distributed breakout can get stuck in local minimum. Therefore, there are cases where a solution exists and it cannot find it.
Why to use DCOPs?

Well-defined problem

- Clear formulation that captures most important aspects
- Many solution techniques
 - Optimal: ABT, ADOPT, DPOP, ...
 - Approximate: DSA, MGM, Max-Sum, ...

Solution techniques that can handle large problems

- approximate
Conclusions

(Distributed) **constraint satisfaction** (CSP) is a **general**, widely applicable framework to model problems in terms of Boolean constraints over variables.

Distributed CSP is required if there are **constraints** on communication or disclosure of **private** information, problem is difficult to formalize centrally or the system needs to be resilient.

Top-down and **bottom-up** techniques exist

- top-down are complete but computationally more intensive on most problems
- bottom-up are faster but can get stuck in local minima

Very active areas of research with a lot of progress – new algorithms emerging frequently.

Reading: [Vidal] – Chapter 2, [Shoham] – Chapter 1, IJCAI 2011 Optimization in Multi-Agent Systems tutorial, Part 2, 0-35min, prof. Faltings lecture