
ADVANCED JASON

AE4M36MAS - Multiagent systems

LAST TUTORIAL ISSUES

Malfunctioning Jason

Hopefully resolved (if not, tell me about that!)

� Caused mainly by the absence of properly installed JDK

3/33

Ordering of plans

� Source file is scanned top down

� First applicable plan is executed

+!step <- !random move ; !step.

+!step : cell(X,Y,gold) <- +gold(X,Y) ; !step. ← unreachable

+!step : cell(X,Y,gold) <- +gold(X,Y) ; !step. ← “infinite loop”

+!step <- !random move ; !step.

4/33

Ordering of plans

� Source file is scanned top down

� First applicable plan is executed

+!step <- !random move ; !step.

+!step : cell(X,Y,gold) <- +gold(X,Y) ; !step. ← unreachable

+!step : cell(X,Y,gold) <- +gold(X,Y) ; !step. ← “infinite loop”

+!step <- !random move ; !step.

4/33

Ordering of plans

� Source file is scanned top down

� First applicable plan is executed

+!step <- !random move ; !step.

+!step : cell(X,Y,gold) <- +gold(X,Y) ; !step. ← unreachable

+!step : cell(X,Y,gold) <- +gold(X,Y) ; !step. ← “infinite loop”

+!step <- !random move ; !step.

4/33

ASSIGNMENT

Mining world

Find, collect and carry all gold stones from their location to a

depot!

� Miners do not know positions of gold stones and depots —

they must find them

� They may carry at most one gold stone at a time

� They have limited range of sight (8-neighbourhood)

6/33

Mining world — percepts

� pos(X,Y) — (X ,Y) position of the miner

� name(N) — name of the current miner

� gsize(,W,H) — width and height of current map

� cell(X,Y,gold), cell(X,Y,depot), cell(X,Y,ally),

cell(X,Y,obstacle)

� carrying gold

7/33

Mining world — percepts

cell(2,2,gold).

cell(1,0,depot).

No cell percepts!

8/33

Mining world — actions

� do(left), do(right), do(up), do(down) — movement in

the grid

� do(pick), do(drop) — manipulating gold stones

� do(skip) — use it to update your percepts (nearly no delay)

9/33

Mining world — Problem 1

Gold stones are heavy.

→ there must be another miner in 4-neighbourhood for do(pick)

do(pick) succeeds do(pick) fails

10/33

Mining world — Scenario 1

Gold stones are added in runtime

→ Your miners must be able to find

them at any time

2 points

11/33

Mining world — Scenario 2

� You are racing the time now

� Your miners should not be

much slower than (inefficient)

reference solution

2 points

12/33

Mining world — Scenario 3

Beware of obstacles

→ Your team should make the way

through the mine in time again

2 points

13/33

Mining world — Scenario 4

Pairs of your miners got separated

→ Hardcoded pairs helper–carrier

will get into troubles

2 points

14/33

Mining world — Scenario 5

The final blow, is it?

(there might be multiple depots)

1 point

15/33

Mining world — Competition

You can get 1 more point for implementing a fast mining team.

A competition between your submissions will be held

→ Results from multiple runs on Scenarios 3–5 will be averaged
(Average of values containing ∞ is infinite)

16/33

Mining world — Evaluation

Mines used for evaluation will not be identical to the public

instances!

Instances used for evaluation will be neither much easier nor much

more difficult in comparison with the public ones.

17/33

Report

You are asked to submit a short report:

� What approach have you used for discovering gold stones and

depots?

� How have you solved synchronization problems?

� What issues have you encountered and how have you

overcome them?

Reward: 1 point

18/33

Too easy?

Advanced solvers are encouraged to try to deal with more difficult

setups...

� Narrow passages

� Deadends

� Complex shapes of obstacles

� ...

Possible reward: extra points

(number of your points from tutorials can be at most 40 unfortunately)

19/33

ADVANCED JASON

Test goals

+!say hello(N) <- ?greeting(G) ; .print(G," ",N).

1. greeting(G) matches the belief base → G gets unified

2. A plan for +?greeting(G) is executed

→ G gets unified with applicable value

3. A failure plan for -?greeting(G) is applied

21/33

Test goals

Example:

+?random move(left) : math.random < 0.25.

+?random move(right) : math.random < 0.33.

+?random move(up) : math.random < 0.5.

+?random move(down).

+!step <- ?random move(D) ; do(D).

22/33

Communication

Talking with one colleague:

.send(Rcpt, ilf, Message)

ilf ∈ {tell, untell, achieve, askOne, . . .}

� tell — adds belief Message to Rcpt’s belief base

� untell — removes a belief previously told

� achieve — adds intention !Message for Rcpt

23/33

Communication

Example:

+!run <- ?name(N) ; .send(miner1, achieve,

say hello(N)).

+!say hello(N) <- .print("Hello from ",N).

24/33

Communication

The askOne variant of .send:

.send(Rcpt, askOne, Goal, Result)

Similar to achieve — ?Goal test goal is added.

Execution of the intention is paused until the ?Goal is

(un)satisfied.

� ?Goal unsatisfiable — Result=false

� otherwise — Result contains Goal with all free variables

unified

25/33

Communication

Example

26/33

Lists

X = [1, 2, 3]

� Prepending element into list:

[0 | X] = [0, 1, 2, 3]

27/33

Lists

X = [1, 2, 3]

� Prepending element into list:

[0 | X] = [0, 1, 2, 3]

27/33

Advanced unification

Variables can get unified for more complex terms, e.g.:

!greet(greeting("Hello ", "! How are you?"), "Bob").

+!greet(greeting(Before,After), Who) <- .print(Before,Who,After).

!first([1, 2, 3]).

+!first([X | Xs]) <- .print(X).

Question: What happens if !first([]) is requested?

Task: Write plans for !print all([1,2,3]) intention that lists

all elements of the list.

28/33

Prolog–style beliefs

Example:

valid(X,Y) :- gsize(,W,H) & X>=0 & X<W & Y>=0 & Y<H.

29/33

Atomic plans

An atomic plan is executed intact.

→ No other plan can interfere with actions from the atomic plan

Example:

@pickGoldPlan[atomic]

+?pick gold(X,Y) <- !go to(X,Y) ; do(pick) ; ...

Disclaimer: Beware of deadlocks!

30/33

TIPS

Possible caveats

� Helping miners leaving their square before the do(pick)

action is fully executed

� Miners blocking the way of other miners

� ...

Try to anticipate possible caveats before you encounter them.

→ It will be easier to deal with them

32/33

Tips

� Think before implementation

� Decompose the problem into simple problems (∼ intentions)

first → It will just remain to implement and debug them

� Be prepared for possible issues!

33/33

Tips

� Think before implementation

� Decompose the problem into simple problems (∼ intentions)

first → It will just remain to implement and debug them

� Be prepared for possible issues!

33/33

Tips

� Think before implementation

� Decompose the problem into simple problems (∼ intentions)

first → It will just remain to implement and debug them

� Be prepared for possible issues!

33/33

	Last tutorial issues
	Malfunctioning Jason
	Ordering of plans

	Assignment
	Mining world
	Mining world — percepts
	Mining world — actions
	Mining world — Problem 1
	Mining world — Scenario 1
	Mining world — Scenario 2
	Mining world — Scenario 3
	Mining world — Scenario 4
	Mining world — Scenario 5
	Mining world — Competition
	Mining world — Evaluation
	Report
	Too easy?

	Advanced Jason
	Test goals
	Communication
	Lists
	Advanced unification
	Prolog–style beliefs
	Atomic plans

	Tips
	Possible caveats
	Tips

