# AE4M33RZN, Fuzzy logic: Tutorial examples 

Radomír Černoch<br>radomir.cernoch@fel.cvut.cz<br>Faculty of Electrical Engineering, CTU in Prague

2012

## Task 2

## Assignment

On the universe $\Delta=\{a, b, c, d\}$ there is a fuzzy set

$$
\mu_{A}=\{(\boldsymbol{a} ; 0.3),(b ; \mathbf{l}),(c ; 0.5)\} .
$$

Find its horizontal representation.

$$
\mathrm{R}_{A}(\alpha)= \begin{cases}\boldsymbol{X} & \alpha=0, \\ \{a, b, c\} & \alpha \in(0 ; 0.3\rangle, \\ \{b, c\} & \alpha \in(0.3 ; 0.5\rangle, \\ \{b\} & \alpha \in(0.5 ; 1\rangle .\end{cases}
$$

## Task 3

## Assignment

The fuzzy set $A$ has a horizontal representation

$$
\mathrm{R}_{A}(\alpha)= \begin{cases}\{a, b, c, d\} & \alpha \in\langle\mathbf{0}, 1 / 3\rangle \\ \{a, d\} & \alpha \in(1 / 3,1 / 2\rangle \\ \{d\} & \alpha \in(1 / 2,2 / 3\rangle \\ \varnothing & \alpha \in(2 / 3,1\rangle\end{cases}
$$

Find the vertical representation.

## Solution

$$
\begin{aligned}
\mu_{A}(a) & =\sup \left\{\alpha \in\langle 0,1\rangle: a \in R_{A}(\alpha)\right\}=\sup \langle 0,1 / 2\rangle=1 / 2 \\
\mu_{A}(b) & =1 / 3, \quad \mu_{A}(c)=1 / 3, \quad \mu_{A}(d)=2 / 3, \quad \text { therefore } \\
\mu_{A} & =\{(a, 1 / 2),(b, 1 / 3),(c, 1 / 3),(d, 2 / 3)\}
\end{aligned}
$$

## Task 5

## Assignment

On the universe $\Delta=\mathbb{R}$ there is a fuzzy set $A$ :

$$
\mu_{A}(x)= \begin{cases}x & x \in\langle 0 ; 1\rangle \\ 2-x & x \in(1 ; 1.5\rangle \\ 0 & \text { otherwise }\end{cases}
$$

Find its horizontal represenation.

## Solution

$$
\mathrm{R}_{\mathrm{A}}(\alpha)= \begin{cases}\mathbb{R} & \alpha=0 \\ \langle\alpha ; 1.5\rangle & \alpha \in(\mathbf{0} ; \mathbf{0} .5\rangle \\ \langle\alpha ; 2-\alpha\rangle & \alpha \in(0.5 ; 1\rangle\end{cases}
$$

## Task 7

## Assignment

The fuzzy set $A$ has a horizontal representation

$$
\mathrm{R}_{\mathrm{A}}(\alpha)= \begin{cases}\mathbb{R} & \alpha=\mathrm{o} \\ \left\langle\alpha^{2}, \mathbf{1}\right) & \text { otherwise }\end{cases}
$$

Find the vertical representation.

$$
\mu_{A}(x)= \begin{cases}\sqrt{x} & x \in(0,1) \\ 0 & \text { otherwise }\end{cases}
$$

## Task 8

## Assignment

Decide if the following function is a fuzzy conjunction.

$$
\alpha \wedge \beta= \begin{cases}\alpha & \beta=1 \\ \beta & \alpha=1 \\ \alpha \beta & \alpha \beta \geq 1 / 10, \max (\alpha, \beta)<1 \\ 0 & \text { otherwise }\end{cases}
$$

## Solution

The first two possibilities ensure the boundary condition. Comutativity and monotonicity are trivially satisfied. If one of the arguments is 1 , the associativity as well. For $\alpha, \beta, \gamma<1$ the associativity follows from

$$
\alpha \wedge(\beta \wedge \gamma)= \begin{cases}\alpha \beta \gamma & \alpha \beta \gamma \geq 1 / 10 \\ 0 & \text { otherwise }\end{cases}
$$

We get the same for $(\alpha \wedge \beta) \wedge \gamma$.
It is always a fuzzy conjunction (interpretable as an algebraic conjunction, in which we ignore small values, e.g. for filtering small values).

## Task 10

Assignment
Prove that the Sugeno class of negations are all fuzzy negations

$$
\overrightarrow{s_{\lambda}} \alpha=\frac{1-\alpha}{1+\lambda \alpha} \text { for } \lambda \in(-1, \infty,) .
$$

## Solution

When canceling out terms in a fraction, we use $1+\lambda \alpha>0$.

- Involutivity: Assuming $\lambda>-1$ :

$$
\overrightarrow{s_{\lambda}} \overrightarrow{s_{\lambda}} \alpha=\frac{1-\frac{1-\alpha}{1+\lambda \alpha}}{1+\lambda \frac{1-\alpha}{1+\lambda \alpha}}=\frac{1+\lambda \alpha-1+\alpha}{1+\lambda \alpha+\lambda-\lambda \alpha}=\frac{\alpha(\lambda+1)}{\lambda+1}=\alpha
$$

- Non-increasing: If $\alpha \leq \beta$, then

$$
\begin{aligned}
\frac{1-\alpha}{1+\lambda \alpha} & \geq \frac{1-\beta}{1+\lambda \beta} \\
(1+\lambda \beta)(1-\alpha) & \geq(1+\lambda \alpha)(1-\beta) \\
\beta & \geq \alpha
\end{aligned}
$$

## Task 12

## Assignment

Decide if the following function is a fuzzy conjunction.

$$
\alpha \diamond \beta= \begin{cases}\alpha \beta & \alpha \beta \geq \mathbf{0 , o 1} \text { or } \max (\alpha, \beta)=1 \\ \mathbf{0} & \text { otherwise }\end{cases}
$$

## Task 13

## Assignment

Decide if the following function is a fuzzy conjunction.
$\hat{o}$ : $\langle\mathbf{0}, \mathbf{1}\rangle^{\mathbf{2}} \rightarrow\langle\mathbf{0}, \mathbf{1}\rangle$

$$
\alpha \wedge \beta= \begin{cases}\min (\alpha, \beta) & \alpha+\beta \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

## Task 14

## Assignment

Decide, if for all $\alpha, \beta \in[0,1]$ holds $(\alpha \stackrel{\circ}{\vee} \beta) \hat{\mathrm{L}}\left(\alpha \stackrel{\circ}{\vee}{ }_{\mathrm{S}} \beta\right)=\alpha$, where the disjunction $\stackrel{\circ}{ }$ is

1. standard, $\stackrel{\stackrel{S}{ } \text {, }, \text {, } \text {, }}{ }$
2. algebraic, $\hat{v}$.
3. tukasiewicz, $\downarrow$,

## Solution

1. No. Counterexample: $\alpha=0.5, \beta=0.1$.
2. Yes: $\max (0,(\alpha+\beta-\alpha \beta)+(\alpha+(1-\beta)-\alpha(1-\beta))-1)=$

$$
=\max (\mathrm{o}, \alpha)=\alpha
$$

3. No. Counterexample: $\alpha=0.9, \beta=0.8$.

## Task 16

Assignment
Decide if the function $\wedge_{0}:\langle\mathbf{0}, \mathbf{1}\rangle^{2} \rightarrow\langle\mathbf{0}, \mathbf{1}\rangle$

$$
\alpha \wedge \beta= \begin{cases}\alpha \beta & \alpha+\beta \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

is a fuzzy conjunction.

## Task 17

## Assignment

Decide if the $(\alpha \wedge \alpha) \vee(\alpha \wedge \alpha) \leq \alpha$ holds for

1. standard, $\stackrel{S}{ }$
2. algebraic, $\stackrel{\rightharpoonup}{ }$
3. Łukasiewicz, $\downarrow$

## Task 18

## Assignment

Decide, which equalities hold:

1. $(\alpha \hat{\mathrm{S}} \alpha) \downarrow\left(\alpha \hat{\mathrm{S}}^{\mathrm{L}} \beta\right)=\alpha \hat{\mathrm{s}}(\alpha \downarrow \beta)$
2. $(\alpha \underset{\mathrm{L}}{\wedge} \alpha) \stackrel{\mathrm{S}}{\vee}(\alpha \underset{\mathrm{L}}{\wedge} \beta)=\alpha \underset{\mathrm{L}}{\wedge}(\alpha \stackrel{\mathrm{S}}{\vee} \beta)$
3. $\alpha \stackrel{\mathrm{S}}{\vee}\left(\alpha \hat{\mathrm{L}}^{\wedge} \beta\right)=\alpha \hat{\mathrm{L}}^{(\alpha \stackrel{\mathrm{S}}{\vee} \beta)}$

Justify your conclusions.

## Task 19

## Assignment

Decide, which equalities hold:

1. $(\alpha \wedge \hat{\mathrm{S}} \beta) \hat{\mathrm{L}}^{\wedge} \gamma=\alpha \wedge_{\mathrm{S}}\left(\beta \wedge_{\mathrm{L}} \gamma\right)$
2. $\neg(\alpha \stackrel{\wedge}{\mathrm{s}} \beta)=\stackrel{\neg}{\mathrm{s}} \alpha \hat{\mathrm{L}} \mathrm{s}^{\wedge} \beta$
3. $(\alpha \underset{\mathrm{L}}{\wedge} \alpha) \stackrel{\mathrm{L}}{\stackrel{\mathrm{s}}{ }} \alpha=(\underset{\mathrm{s}}{\neg} \alpha \hat{\mathrm{L}} \stackrel{\mathrm{s}}{ } \alpha) \stackrel{\mathrm{L}}{ } \alpha$

Justify your conclusions.

## Task 20

Assignment
Verify that $\alpha \wedge(\alpha \stackrel{R}{\rho} \beta)=\alpha \hat{\mathrm{s}}$ $\beta$ holds for

1. algebraic ops.
2. standard ops.

## Solution

We will show the solution for algebraic operations. The other ones are similar.

$$
\alpha \underset{\mathrm{A}}{\wedge}(\alpha \underset{\mathrm{~A}}{\mathrm{R}} \beta)=\left\{\begin{array}{c}
\alpha \cdot \mathbf{1}=\alpha \text { for } \alpha \leq \beta \\
\alpha \cdot \frac{\beta}{\alpha}=\beta \text { for } \alpha>\beta
\end{array}\right\}=\min (\alpha, \beta)=\alpha \hat{\mathrm{S}}^{\beta}
$$

## Task 22

## Assignment

Complete the table, so that $R$ is a S-partial order.

| $R$ | $a$ | $b$ | $c$ | $d$ |
| :---: | :---: | :---: | :---: | :---: |
| $a$ |  |  |  |  |
| $b$ | 0.5 |  |  |  |
| $c$ |  | 0.3 |  |  |
| $d$ |  | 0.2 |  |  |

## Solution

Reflexivity implies r's on the diagonal. S-partial order implies o's to non-zero elements symmetric over the main diagonal.

| $R$ | $a$ | $b$ | $c$ | $d$ |
| :---: | :---: | :---: | :---: | :---: |
| $a$ | 1 | 0 | $x^{\prime}$ | $y^{\prime}$ |
| $b$ | 0.5 | 1 | 0 | 0 |
| $c$ | $x$ | 0.3 | 1 | $z^{\prime}$ |
| $d$ | $y$ | 0.2 | $z$ | 1 |

The transitivity implies e.g. $R(3,2) \wedge R(2,1) \leq R(3,1)$, which translates into a condition $\min (0.3,0.5) \leq x$
Using this and similar conditions, we derive the subspace of all solutions: $z \leq 0.2, x \geq 0.3, y \geq 0.2, \min \left(y, z^{\prime}\right) \leq a, x^{\prime}=y^{\prime}=0$.

## Ex: Jim revisited

We will use the Lukasiewicz logic in the following examples ( $\square=\Gamma_{\mathrm{L}}, \ldots$ ).

$$
\begin{array}{r}
\langle j i m: \text { Male } \mid 0.9\rangle \\
\langle j i m: \text { Female } \mid 0.2\rangle \\
\langle\text { Male } \sqcap \text { Female } \sqsubseteq \perp \mid 1\rangle \tag{3}
\end{array}
$$

The interpretation domain is $\Delta^{\mathscr{I}_{1}}=\Delta^{\mathscr{I}_{2}}=\{j\}$, jim $_{\mathscr{F}_{1}}=$ jim $_{\mathscr{F}_{2}}=j$.

$$
\begin{array}{lc}
\text { Male }^{\mathscr{S}_{1}}=\{(j ; 0.9)\} & \text { Male }^{\mathscr{S}_{2}}=\{(j ; 0.9)\} \\
\text { Female }^{\mathscr{I}_{1}}=\{(j ; o)\} & \text { Female }^{\mathscr{I}_{2}}=\{(j ; 0.2)\}
\end{array}
$$

## Ex: Jim revisited (check your knowledge)

Let's check the interpretation against the definitions...

| $\mathscr{J} \vDash \tau$ | $\tau_{(1)}$ | $\tau_{(2)}$ | $\tau_{(3)}$ |
| :---: | :---: | :---: | :---: |
| $\mathscr{J}_{1}$ | $\operatorname{sə\kappa }$ | ou | səK |
| $\mathscr{J}_{2}$ | əsK | sə $K$ | ou |

## Ex: Jim revisited (in fuzzyDL)

Let's change the weights and encode the example in fuzzyDL:

```
(instance jim Male 0.4)
(instance jim Female 0.2)
(l-implies (and Male Female) *bottom* 0.9)
(min-instance? jim Male)
(max-instance? jim Male)
(min-instance? jim Female)
(max-instance? jim Female)
```

Let $\langle j i m$ : Male $\mid \alpha\rangle$ and $\langle j i m$ : Female $\mid \beta\rangle$, what are the bounds on $\alpha$ and $\beta$ ? fuzzyDL shows that $0.4 \leq \alpha \leq 0.9$ and $0.2 \leq \beta \leq 0.7$. Why?

## Ex: Smokers

Recall the motivational example from the first lecture:

$$
\begin{array}{r}
\langle\text { symmetric }(\text { friend })\rangle \\
\langle(\text { anna, bill }): \text { friend } \mid 1\rangle \\
\langle(\text { bill, cloe }): \text { friend } \mid 1\rangle \\
\langle(\text { cloe, dirk }): \text { friend } \mid 1\rangle \\
\langle\text { anna }: \text { Smoker } \mid 1\rangle \\
\langle\exists \text { friend } \cdot \text { Smoker } \sqsubseteq \text { Smoker } \mid 0.7\rangle
\end{array}
$$

What are the bounds on $\langle i$ : Smoker〉 for $i \in\{$ anna, bill, cloe, dirk $\}$ ?

## Ex: Smokers

What changes if we add

$$
\begin{equation*}
\langle\operatorname{dirk}: \neg \text { Smoker } \mid 0.7\rangle \tag{10}
\end{equation*}
$$

(11)

What are the bounds on $\langle i: \neg$ Smoker $\rangle$ for $i \in\{$ anna, bill, cloe, dirk $\}$ ?

## Ex: Smokers (in fuzzyDL)

```
(implies (some friendOf Smoker) Smoker 0.7)
(symmetric friendOf)
(related anna bill friendOf)
(related bill cloe friendOf)
(related cloe dirk friendOf)
(instance anna Smoker)
(instance dirk (not Smoker) 0.7)
(min-instance? anna Smoker)
(min-instance? bill Smoker)
(min-instance? cloe Smoker)
(min-instance? dirk Smoker)
(max-instance? anna Smoker)
(max-instance? bill Smoker)
(max-instance? cloe Smoker)
(max-instance? dirk Smoker)
```


## Concrete data types

The domain $\Delta^{\mathscr{F}}$ is an unordered set. This is good for modelling cathegorical data: e.g. colors, people, ...

## General idea: Extended interpretation

But we also need to include real numbers $\mathbb{R}$. The fuzzy description logic with concrete datatypes $\mathcal{R G \mathcal { H }}$ —@Ses "abstract objects" and "concrete objects":

$$
\Delta^{\mathscr{G}}=\Delta_{a}^{\mathscr{G}} \cup \mathbb{R}
$$

## Concrete data types

- Concrete individuals, are interpreted as objects from $\mathbb{R}$.
- Concrete concepts, are interpreted as subsets from $\mathbb{R}$.
- Concrete roles, are interpreted as subsets from $\left(\Delta_{a}^{\mathscr{G}} \times \mathbb{R}\right)$.

All non-concrete notions are called abstract.

## Concrete data types: New concepts



Fig. 1. (a) Trapezoidal function; (b) Triangular function; (c) $L$-function; (d) $R$-function; (e) Crisp interval; (f) Linear function.

## Ex: Age of parents

```
(related adam bob parent) (related adam eve parent)
(define-fuzzy-concept around23 triangular(0,100, 18,23,26))
(define-fuzzy-concept moreTh17 right-shoulder(0,100, 13,21))
(instance bob (some age around23) 0.9)
(instance eve (some age moreTh17))
(define-fuzzy-concept young left-shoulder(0,100, 17,25))
(define-concept YoungPerson (some age young))
(min-instance? eve YoungPerson) (max-instance? eve YoungPerson)
(min-instance? bob YoungPerson) (max-instance? bob YoungPerson)
(min-instance? adam (all parent YoungPerson))
(max-instance? adam (all parent YoungPerson))
(min-instance? adam (some parent YoungPerson))
(max-instance? adam (some parent YoungPerson))
```


## Ex: Age of parents

1. What are the bounds on $\alpha$ from $\langle$ eve : YoungPerson $\mid \alpha\rangle$ ?

Start by drawing the concept around 23 , then construct an interpretation. How much freedom do you have when constructing the interpretation?
2. Let fuzzyDL reasoner give you both bounds on $\left\langle i:\right.$ YoungPerson $\left.\mid \beta_{i}\right\rangle$ for $i \in\{$ eve, bob $\}$.

How do you infer the bounds on $\langle$ adam : YoungPerson $\mid \gamma\rangle$ ?

## Ex: Car dealing

1. The buyer wants a passenger that costs less than $€ \mathbf{2 6 0 0 0}$.
2. If there is an alarm system in the car, then he is satisfied with paying no more than $€ 22300$, but he can go up to $€ 22750$ with a lesser degree of satisfaction.
3. The driver insurance, air conditioning and the black color are important factors.
4. Preferably the price is no more than $€ 22000$, but he can go to $€ 24000$ to a lesser degree of satisfaction.

## Ex: Car dealing

1. The seller wants to sell no less than $€ 22000$.
2. Preferably the buyer buys the insurance plus package.
3. If the color is black, then it is highly possible the car has an air-conditioning.

This can be formalized in fuzzy description logic.
We have the background knowledge:

$$
\begin{array}{r}
\langle\text { Sedan } \sqsubseteq \text { PassengerCar } \mid \mathbf{1}\rangle \\
\langle\text { InsurancePlus }=\text { DriverInsurance } \sqcap \text { TheftInsurance } \mid \mathbf{1}\rangle
\end{array}
$$

## Ex: Car dealing

The buyer's preferences:

1. $B=$ PassengerCar $\sqcap \exists$ price $\cdot \leq \mathbf{2 6 0 0 0}$
2. $B_{1}=$ AlarmSystem $\mapsto \exists$ price $\cdot$ l.sh. $(22300, \mathbf{2 2 7 5 0})$
3. $B_{2}=$ DriverInsurance, $B_{3}=$ AirCondition,$B_{4}=\exists$ color $\cdot$ Black
4. $B_{5}=\exists$ price $\cdot$ l.sh. $(22000,24000)$

The buyer's preferences:

1. $S=$ PassengerCar $\sqcap \exists$ price $\cdot \geq \mathbf{2 2 0 0 0}$
2. $S_{1}=$ InsurancePlus
3. $S_{2}=(\mathrm{o} .5$ ( $\exists$ color $\cdot$ Black $) \mapsto$ AirCondition $)$

## Ex: Car dealing

We know that $S$ and $B$ are hard constraints and $B_{1.55}$ and $S_{1 . .2}$ are soft preferences. All the concepts can be "summed up":

$$
\text { Buy }=B \sqcap\left(0.1 B_{1}+0.2 B_{2}+0.1 B_{3}+0.4 B_{4}+0.2 B_{5}\right)
$$

and

$$
\text { Sell }=S \sqcap\left(0.6 S_{1}+0.4 S_{2}\right)
$$

A good choice of $\sqcap$ can make $B$ a hard constraint.

## Ex: Car dealing

## Optimal match

$$
b s b(\kappa, \text { Buy } \sqcap \text { Sell })
$$

Finds the optimal match between a seller and a buyer. (Finds an ideal, imaginary car that maximizes satisfaction of both parties.)

Particular car

$$
b d b(K,\langle\text { audiTT }: \text { Buy } \sqcap \text { Sell }\rangle)
$$

Finds the degree of satisfaction for a particuklar car auditT.

