
Querying Description Logics

Petr Křemen

1 SPARQL and Ontology Querying

SPARQL Language [SS13] is aimed at querying RDF(S) [GB04] documents. As OWL 2 [MPSP09]
is an extension of RDF(S), we will use it here as a syntax for OWL 2 conjunctive queries.
We will use SPARQL queries of the form

PREFIX <prefix1>:<URI1>

PREFIX <prefix2>:<URI2>

SELECT <vars>

WHERE {

<triple1> .

<triple2> .

...

<tripleN> .

}

where <vars> is a list of variables (identifier started with a sign “?”) delimited with
spaces and <tripleI> is a triple of the form subj pred obj, where each subj, pred and
obj is either a variable, or individual URI (also in a shortened form using a PREFIX).
Additionally, obj can be literal (string in double-quotes).

Example 1.1. Consider a conjunctive query (without full URIs)

Q1(?X, ?Y )← Professor(?X), worksFor(?X,CV UT ), name(?X, ?Y ). (1)

Its SPARQL counterpart is :

PREFIX u: <http://krizik.felk.cvut.cz/university.owl#>

SELECT ?X ?Y

WHERE {

?X a u:Professor .

?X u:worksFor u:CVUT .

?X u:name ?Y .

}

1



If we are not interested in the binding of the particular name Y , we would pose a
conjunctive query

Q2(?X)← Professor(?X), worksFor(?X,CV UT ), name(?X, ?Y ) (2)

To reflect this change in SPARQL, we could simply remove the variable from the SE-
LECT clause, obtaining:

PREFIX u: <http://krizik.felk.cvut.cz/university.owl#>

SELECT ?X

WHERE {

?X a u:Professor .

?X u:worksFor u:CVUT .

?X u:name ?Y .

}

However, this SPARQL query doesn’t return individuals (bindings for ?X) for which
there is no name known, but their existence is inferred (e.g. i in axiom (∃name · >)(i)).
To capture all cases, we need to use a bnode instead of the (distinguished) variable:

PREFIX u: <http://krizik.felk.cvut.cz/university.owl#>

SELECT ?X

WHERE {

?X a u:Professor .

?X u:worksFor u:CVUT .

?X u:name _:Y .

}

2 Conjunctive Queries Practically

1. Download the Pellet 2.3.1 (e.g. from the seminar web pages, or through http:

//clarkparsia.com/pellet/download/pellet-2.3.1).

2. Pellet is a command-line tool. Use ./pellet.sh help command to find out details
about its usage.

3. Download the wine ontology from http://www.w3.org/TR/owl-guide/wine.rdf

and save it into the Pellet home directory.

4. Open the wine ontology in Protege and insert a new instance of Wine into the
ontology.

5. Download an example query from the seminar web pages. This query finds all
regions (instancec of Region) :

2



pellet.bat query -q <file-with-query> <file-with-ontology>

6. In the file with a query, replace the distinguished variable ?Y with an undistingu-
ished variable :Y and compare results (use the --bnode switch for Pellet)

7. Check that you got the same result as in the DL-query tab (How to formulate such
query ?).

8. Formulate and evaluate a query that

• finds all regions in USA together with dry wines produced in these regions.

• finds all regions in USA that produce both dry and sweet wines.

9. Insert a new type locatedIn some Region to the individual ItalianRegion.
Then, formulate a query that finds all wines that are produced in some (ar-
bitrary) super-region of Italy (i.e. region in which ItalianRegion is located in
(locatedIn)). Use the --bnode parameter in the Pellet command line to correctly
evaluate the query.

Reference

[GB04] Ramanathan V. Guha and Dan Brickley. RDF Vocabulary Description
Language 1.0: RDF Schema [online]. W3C Recommendation, W3C, 2004.
Available at http://www.w3.org/TR/2004/REC-rdf-schema-20040210,
cit. 11/1/2012.

[MPSP09] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL 2 Web Onto-
logy Language Structural Specification and Functional-Style Syntax [online].
W3C Recommendation, W3C, 2009. Available at http://www.w3.org/TR/

2009/REC-owl2-syntax-20091027, cit. 11/1/2012.

[SS13] Andy Seaborne and Harris Steve. SPARQL 1.1 query language [online].
W3C Recommendation, W3C, 2013. Available at http://www.w3.org/TR/

sparql11-query, cit. 1/4/2013.

3


