Graphical probabilistic models – inference

Jiří Kléma

Department of Cybernetics, FEE, CTU at Prague

http://ida.felk.cvut.cz

Agenda

- Bayesian networks
 - fundamental tasks,
- inference and its complexity
 - straightforward enumeration
 - * easy to understand but inefficient computes joint probabilities,
 - * descends to the level of atomic events,
 - * acceleration by variable elimination,
 - limitations \times efficiency of algorithms,
 - exact \times approximate algorithms,
 - particular "fast" algorithms
 - * belief propagation,
 - * junction tree,
 - * arc reversal,
 - * Gibbs sampling.

Bayesian networks – fundamental tasks

- inference reasoning, deduction
 - from observed events assumes on probability of other events,
 - observations (\mathbf{E} a set of evidence variables, \mathbf{e} a particular event),
 - target variables (\mathbf{Q} a set of query variables, \mathbf{Q} a particular query variable),
 - $-Pr(\mathbf{Q}|\mathbf{e})$, resp. $Pr(Q \in \mathbf{Q}|\mathbf{e})$ to be found,
 - network is known (both graph and CPTs),
- learning network parameters from data
 - network structure (graph) is given,
 - "only" quantitative parameters (CPTs) to be optimized,
- learning network structure from data
 - propose an optimal network structure
 - * which edges of the complete graph shall be employed?,
 - too many arcs \rightarrow complicated model,
 - too few arcs \rightarrow inaccurate model.

Probabilistic network – inference by enumeration

- Let us observe the following events:
 - no barking heard,
 - the door light is on.
- What is the prob of family being out?
 - searching for $Pr(fo|lo, \neg hb)$.
- Will observation influence the target event?
 - light on supports departure hypothesis,
 - no barking suggests dog inside,
 - the dog is in house when it is
 - * rather healthy,
 - * the family is at home.

Probabilistic network - inference by enumeration

inference by enumeration

- conditional probs calculated by summing the elements of joint probability table,
- how to find the joint probabilities (the table is not given)?
 - BN definition suggests:

$$\begin{split} Pr(FO,BP,DO,LO,HB) = \\ = Pr(FO)Pr(BP)Pr(DO|FO,BP)Pr(LO|FO)Pr(HB|DO) \end{split}$$

- answer to the question?
 - conditional probability definition suggests:

$$Pr(fo|lo, \neg hb) = \frac{Pr(fo, lo, \neg hb)}{Pr(lo, \neg hb)}$$

— by joint prob marginalization we get:

$$\begin{split} & Pr(fo, lo, \neg hb) = \sum_{BP,DO} Pr(fo, BP, DO, lo, \neg hb) \\ & Pr(fo, lo, \neg hb) = Pr(fo, bp, do, lo, \neg hb) + Pr(fo, bp, \neg do, lo, \neg hb) + \\ & + Pr(fo, \neg bp, do, lo, \neg hb) + Pr(fo, \neg bp, \neg do, lo, \neg hb) = .15 \times .01 \times .99 \times .6 \times .3 + .15 \times .01 \times .01 \times .6 \times .99 + .15 \times .99 \times .9 \times .6 \times .3 + .15 \times .99 \times .1 \times .6 \times .99 = .033 \\ & Pr(lo, \neg hb) = Pr(fo, lo, \neg hb) + Pr(\neg fo, lo, \neg hb) = .066 \end{split}$$

Probabilistic network – inference by enumeration

— after substitution:

$$Pr(fo|lo, \neg hb) = \frac{Pr(fo,lo, \neg hb)}{Pr(lo, \neg hb)} = \frac{.033}{.066} = 0.5$$

- posterior probability $Pr(fo|lo, \neg hb)$ is higher then the prior Pr(fo) = 0.15.
- can we assume on complexity?
 - instead of $2^5 1$ =31 probs (either conditional or joint) 10 is needed only,
 - however, joint probs are enumerated to answer the query
 - * it is easy to show that inference remains a NP problem,
 - to simply move summations right-to-left makes a difference, but not a principal one
 - * see the evaluation tree on the next slide,

$$\begin{split} Pr(fo, lo, \neg hb) &= \sum_{BP,DO} Pr(fo, BP, DO, lo, \neg hb) = \\ &= Pr(fo) \sum_{BP} Pr(BP) \sum_{DO} Pr(DO|fo, BP) Pr(lo|fo) Pr(\neg hb|DO) \end{split}$$

- inference by enumeration is an intelligible, but unfortunately inefficient procedure,
- solution: minimize recomputations, special network types or approximate inference.

Inference by enumeration – evaluation tree

- Complexity: time $\mathcal{O}(n2^d)$, memory $\mathcal{O}(n)$
 - -n ... the number of variables, e ... the number of evidence variables, d=n-e,
- resource of inefficiency: recomputations $(Pr(lo|fo) \times Pr(\neg hb|DO)$ for each BP value)
 - variable ordering makes a difference Pr(lo|fo) shall be moved forward.

Inference by enumeration – straightforward improvements

variable elimination procedure

- 1. pre-computes factors to remove the inefficiency shown in the previous slide
 - factors serve for recycling the earlier computed intermediate results,
 - some variables are eliminated by summing them out,

$$\sum_{P} f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \times \sum_{P} f_{i+1} \times \cdots \times f_k = f_1 \times \cdots \times f_i \times f_{\bar{P}}$$
, assumes that f_1, \ldots, f_i do not depend on P ,

when multiplying factors, the pointwise product is computed

$$f_1(x_1, ..., x_j, y_1, ..., y_k) \times f_2(y_1, ..., y_k, z_1, ..., z_l) = f(x_1, ..., x_j, y_1, ..., y_k, z_1, ..., z_l)$$

eventual enumeration over P_1 variable, which takes all (two) possible values $f_{\bar{P}_1}(P_2,...,P_k) = \sum_{P_1} f_1(P_1,P_2,...,P_k)$,

execution efficiency is influenced by the variable ordering when computing,
 (finding the best order is NP-complete problem, can be optimized heuristically too),

Inference by enumeration – straightforward improvements

- variable elimination procedure
 - 2. does not consider variables irrelevant to the query
 - all the leaves that are neither query nor evidence variable,
 - the rule can be applied recursively.

- example: Pr(lo|do)
 - what is prob that the door light is shining if the dog is in the garden?
 - we will enumerate Pr(LO, do), since:

$$Pr(lo|do) = \frac{Pr(lo,do)}{Pr(do)} = \frac{Pr(lo,do)}{Pr(lo,do) + Pr(\neg lo,do)}$$

Inference by enumeration – variable elimination

HB is irrelevant to the particular query, why?

$$\sum_{HB} Pr(HB|do) = 1$$

$$\begin{split} Pr(LO,do) &= \sum_{FO,BP,HB} Pr(FO)Pr(BP)Pr(do|FO,BP)Pr(LO|FO)Pr(HB|do) = \\ &= \sum_{HB} Pr(HB|do) \sum_{FO} Pr(FO)Pr(LO|FO) \sum_{BP} Pr(BP)Pr(do|FO,BP) \end{split}$$

after omitting the first invariant, factorization may take place

$$\begin{split} Pr(LO,do) &= \sum_{FO} Pr(FO) Pr(LO|FO) \sum_{BP} Pr(BP) Pr(do|FO,BP) = \\ &= \sum_{FO} Pr(FO) Pr(LO|FO) f_{\overline{BP}}(do|FO) = \sum_{FO} f_{\overline{BP},do}(FO) Pr(LO|FO) = \\ &= f_{\overline{FO},\overline{BP},do}(LO) \end{split}$$

having the last factor (a table of two elements), one can read

$$Pr(lo|do) = \frac{f_{\overline{FO},\overline{BP},do}(lo)}{f_{\overline{FO},\overline{BP},do}(lo) + f_{\overline{FO},\overline{BP},do}(\neg lo)} = \frac{0.0941}{0.0941 + 0.3017} = \frac{0.0941}{0.3958} = 0.24$$

Variable elimination – factor computations

factors are enumerated from CPTs by summing out variables

- sum out BP:
$$CPT(DO)$$
 & $CPT(BP) \rightarrow f_{\overline{BP}}(do|FO)$

- reformulate into:
$$CPT(FO)$$
 & $f_{\overline{BP}}(do|FO) \rightarrow f_{\overline{BP},do}(FO)$

$$-$$
 sum out FO: $f_{\overline{BP},do}(FO)$ & $CPT(LO) \rightarrow f_{\overline{FO},\overline{BP},do}(LO)$

Inference by enumeration – comparison of the number of operations

- let us take the last example
 - namely the total number of sums and products in Pr(LO, do),
 - (the final Pr(lo|do) enumaretion is identical for all procedures),
- naïve enumeration, no evaluation tree
 - 4 products (5 vars) $\times 2^4$ (# atomic events on unevidenced variables) + $2^4 1$ sums,
 - in total 79 operations,
- using evaluation tree and a proper reordering of variables
 - in total 33 operations,
- with variable elimination on top of that
 - in total 14 operations (6 in Tab1, 2 in Tab2, 6 in Tab3).

Inference in networks without undirected cycles

polytree (singly connected network, directed graph without undirected cycles),

- belief propagation or polytree algorithm J. Pearl
 - exact algorithm,
 - time complexity proportional with network diameter
 - * and thus polynomial with the number of variables at worst,
 - * and linear wrt the number of network parameters (CPTs).

Belief propagation

- local evidence in V node changes Pr(V) to $Pr^*(V)$, network needs to be updated,
- each evidence node sends a message about the evidence to its children and parents,
- every node updates its belief in all of its possible values based on the neighbor messages and further sends this evidence to its neighbors,
- two reasoning types can be distinguished
 - causal (π) evidence is propagated from ancestor nodes,
 - diagnostic (λ) evidence is propagated from descendant nodes,
- object-oriented method
 - nodes = objects, edges = communication channels,
 - time stamps on variable (node) states needed (an iteration index must be concerned).

Belief propagation – causal evidence message passing

$$Pr(fo)=.15$$

 $Pr(\neg fo)=1-Pr(fo)$

 $Pr(lo|\neg fo)=.05$ $Pr(\neg lo|fo)=1-Pr(lo|fo)$ $Pr(\neg lo|\neg fo)=1-Pr(lo|\neg fo)$

- Aim: find prob, that light is on in the trivial network on the left
 - neither Pr(lo) (nor $\neg Pr(lo)$) can be computed from local data purely,

$$-Pr(lo) = Pr(lo|fo) \times Pr(fo) + Pr(lo|\neg fo) \times Pr(\neg fo),$$

- FO node must pass a message to LO: $\pi_{LO}^{FO}(FO) = Pr(FO)$
 - provided FO is not an evidence node, it sends its prior prob

$$-\pi_{LO}^{FO}(fo) = Pr(fo), \ \pi_{LO}^{FO}(\neg fo) = Pr(\neg fo),$$

$$-Pr(lo) = Pr(lo|fo)\pi_{LO}^{FO}(fo) + Pr(lo|\neg fo)\pi_{LO}^{FO}(\neg fo)$$

$$-Pr(lo) = .6 \times .15 + .05 \times .85 = .1325$$

Belief propagation – causal evidence message passing

$$Pr*(fo)=1$$

 $Pr*(\neg fo)=0$

 $Pr(lo|\neg fo)=.05$ $Pr(\neg lo|fo)=1-Pr(lo|fo)$ $Pr(\neg lo|\neg fo)=1-Pr(lo|\neg fo)$

- Aim: find prob, that light is on in the trivial network on the left
 - neither Pr(lo) (nor $\neg Pr(lo)$) computable from local data purely,

$$-Pr(lo) = Pr(lo|fo) \times Pr(fo) + Pr(lo|\neg fo) \times Pr(\neg fo),$$

- FO node must pass a message to LO: $\pi_{LO}^{FO}(FO) = Pr(FO)$
 - knowing that family left the house, FO node sends $\pi_{LO}^{FO}(fo) = Pr^*(fo) = 1, \pi_{LO}^{FO}(\neg fo) = Pr^*(\neg fo) = 0$

$$-Pr^*(lo) = Pr(lo|fo) = .6$$

$$-Pr^*(\neg lo) = Pr(\neg lo|fo) = .4$$

Belief propagation – diagnostic evidence message passing

Pr(lo|fo)=.6 $Pr(lo|\neg fo)=.05$ $Pr(\neg lo|fo)=1-Pr(lo|fo)$ $Pr(\neg lo|\neg fo)=1-Pr(lo|\neg fo)$

- Aim: find prob that family is out in the trivial net on the left
- let us take the situation when the child node is not observed
 - neither Pr(fo) (nor $\neg Pr(fo)$) is a function of Pr(lo),
 - LO passes $\lambda_{LO}^{FO}(FO)=1$ (invariant in further computations).

Belief propagation – diagnostic evidence message passing

- Aim: find prob that family left the house in the trivial net on the left
- provided that $Pr^*(lo) = 1$ is given
 - we search for $Pr^*(fo) = Pr(fo|lo)$,
 - from Bayes theorem $Pr(fo|lo) = \frac{Pr(lo|fo)Pr(fo)}{Pr(lo)}$
 - two values are actually needed: Pr(lo|fo) and Pr(lo)
 - however, Pr(lo) is unknown (only $Pr^*(lo) = 1$)
 - LO passes $\lambda_{LO}^{FO}(fo) = Pr(lo|fo)$ and $\lambda_{LO}^{FO}(\neg fo) = Pr(lo|\neg fo)$
 - and makes use of normalization $Pr^*(fo) + Pr^*(\neg fo) = 1$

$$Pr^*(fo) = \alpha \lambda_{LO}^{FO}(fo) Pr(fo) = \alpha \times .6 \times .15 = .09\alpha$$

$$Pr^*(\neg fo) = \alpha \lambda_{LO}^{FO}(\neg fo) Pr(\neg fo) = \alpha \times .05 \times .85 = .0425\alpha$$

$$Pr^*(fo) + Pr^*(\neg fo) = 1 \rightarrow .09\alpha + .0425\alpha = 1$$

 $\alpha = 1/.1325 \cong 7.55$

- it can be inferred that $\alpha = \frac{1}{Pr(lo)}$
- $-Pr^*(fo) = 0.68, Pr^*(\neg fo) = 0.32$

Pr*(lo)=1 $Pr*(\neg lo)=0$

Belief propagation – combined propagation

- Aim: find prob that the dog is out knowing it barks,
- child is observed, parent is unobserved,
- finding $Pr^*(DO)$ asks both for causal and diagnostic inference $\pi_{DO}^{FO}(fo) = Pr(fo), \ \pi_{DO}^{FO}(\neg fo) = Pr(\neg fo)$ $\lambda_{HB}^{DO}(do) = Pr(hb|do), \ \lambda_{HB}^{DO}(\neg do) = Pr(hb|\neg do)$

$$Pr^*(do) = \alpha \lambda_{HB}^{DO}(do)[Pr(do|fo)\pi_{DO}^{FO}(fo) + Pr(do|\neg fo)\pi_{DO}^{FO}(\neg fo)] =$$

= $.7\alpha[.9 \times .15 + .3 \times .85] = \alpha \times .7 \times .39 = .273\alpha$

$$Pr^*(\neg do) = \text{analogically} = 6.1 \times 10^{-3} \alpha$$

 $\alpha \cong 3.58$, $Pr^*(do) \cong .98$, $Pr^*(\neg do) \cong .02$

if we generalize

$$-Pr^*(DO) = Pr(DO|Evidence) = \alpha \times \pi(DO) \times \lambda(DO)$$

- $-\alpha$ normalization constant,
- $-\pi(DO)$ compound causal parameter,
- $-\lambda(DO)$ **compound** diagnostic parameter.

Belief propagation – combined propagation

- lacksquare the evidence set with respect to V_i : $E=E^+(V_i)\cup E^-(V_i)$
 - causal $(E^+(V_i))$ and diagnostic $(E^-(V_i))$ observations,
 - polytree \to it holds $E^+(V_i) \perp \!\!\! \perp E^-(V_i)|V_i$,
 - the only path connecting a causal and a diagnostic node leads through V_i .
- this separation can be used when computing probs $Pr^*(V_i)$

$$Pr^{*}(V_{i}) = Pr(V_{i}|E) = Pr(V_{i}|E^{+}(V_{i}), E^{-}(V_{i})) =$$

$$= \alpha' \times Pr(E^{+}(V_{i}), E^{-}(V_{i})|V_{i}) \times Pr(V_{i}) =$$

$$= \alpha' \times Pr(E^{-}(V_{i})|V_{i}) \times Pr(E^{+}(V_{i})|V_{i}) \times Pr(V_{i}) =$$

$$= \alpha \times Pr(E^{-}(V_{i})|V_{i}) \times Pr(V_{i}|E^{+}(V_{i})) =$$

$$= \alpha \times \lambda(V_{i}) \times \pi(V_{i}) = bel(V_{i})$$

lacktriangle compound causal $\pi(V_i)$ and diagnostic $\lambda(V_i)$ parameter

$$\pi(V_i) = \sum_{V_{p1}, \dots, V_{pn}} Pr(V_i | V_{p1}, \dots, V_{pn}) \prod_{j=1}^n \pi_{V_i}^{V_{pj}}(V_{pj}) \qquad \qquad \lambda(V_i) = \prod_{j=1}^m \lambda_{V_{cj}}^{V_i}(V_i)$$

Belief propagation – combined propagation

 $\blacksquare \text{ Let us search for } Pr^*(FO) \text{ again: } Pr^*(fo) = Pr(fo|lo, \neg hb) \text{ a } Pr^*(\neg fo) = Pr(\neg fo|lo, \neg hb) \text{ and } Pr^*(\neg fo|lo, \neg hb)$

$$-\operatorname{Pr}^*(FO) = \alpha \times \lambda(FO) \times \pi(FO) = \alpha \times \lambda_{LO}^{FO}(FO) \times \lambda_{DO}^{FO}(FO) \times \operatorname{Pr}(FO),$$

- ullet λ messages from evidence nodes:
 - simple, follows from earlier examples,
 - light on $Pr^*(lo) = 1$

$$* \lambda_{LO}^{FO}(fo) = Pr(lo|fo) = 0.6,$$

$$*\lambda_{LO}^{FO}(\neg fo) = Pr(lo|\neg fo) = 0.05$$
,

- no barking heard $Pr^*(hb) = 0$,
 - * $\lambda_{HB}^{DO}(do) = Pr(\neg hb|do) = 0.3$,
 - * $\lambda_{HB}^{DO}(\neg do) = Pr(\neg hb|\neg do) = 0.99$,
- ullet π message from BP node carries the priors:

$$-\pi_{DO}^{BP}(bp)=0.01$$
, $\pi_{DO}^{BP}(\neg bp)=0.99$,

- it is more difficult to quantify $\lambda_{DO}^{FO}(FO)$.
 - it equals $Pr^*(DO|FO)$.

Belief propagation - combined propagation

• In general, V_i sends messages as follows

$$\begin{split} & - \pi^{V_i}_{V_{cj}}(V_i) = \alpha \pi(V_i) \prod_{k=1...m}^{k \neq j} \lambda^{V_{ck}}_{V_i}(V_i), \\ & - \lambda^{V_{pj}}_{V_i}(V_{pj}) = \sum_{v_i} \lambda(V_i) \sum_{V_{p1},...,V_{pn}} Pr(V_i|V_{p1},\ldots,V_{pn}) \prod_{k=1...n}^{k \neq j} \pi^{V_k}_{V_i}(V_k), \end{split}$$

DO node passes to FO node

$$\lambda_{DO}^{FO}(fo) = \lambda_{HB}^{DO}(do) \left[Pr(do|fo, bp) \pi_{DO}^{BP}(bp) + Pr(do|fo, \neg bp) \pi_{DO}^{BP}(\neg bp) \right]$$

$$+ \lambda_{HB}^{DO}(\neg do) \left[Pr(\neg do|fo, bp) \pi_{DO}^{BP}(bp) + Pr(\neg do|fo, \neg bp) \pi_{DO}^{BP}(\neg bp) \right] =$$

$$= .3(.99 \times .01 + .9 \times .99) + .99(.01 \times .01 + .1 \times .99) = .27 + .098 = 0.368$$

$$\lambda_{DO}^{FO}(\neg fo) = \lambda_{HB}^{DO}(do) \left[Pr(do|\neg fo, bp) \pi_{DO}^{BP}(bp) + Pr(do|\neg fo, \neg bp) \pi_{DO}^{BP}(\neg bp) \right]$$

$$+ \lambda_{HB}^{DO}(\neg do) \left[Pr(\neg do|\neg fo, bp) \pi_{DO}^{BP}(bp) + Pr(\neg do|\neg fo, \neg bp) \pi_{DO}^{BP}(\neg bp) \right] =$$

$$= .3(.97 \times .01 + .3 \times .99) + .99(.03 \times .7 + .1 \times .99) \cong .092 + .686 = 0.778$$

• next, $Pr^*(FO)$ can be computed

$$Pr^*(fo) = \alpha \times \lambda_{LO}^{FO}(fo) \times \lambda_{DO}^{FO}(fo) \times Pr(fo) =$$

$$= \alpha \times .6 \times .368 \times .15 = .033\alpha$$

$$Pr^*(\neg fo) = \alpha \times \lambda_{LO}^{FO}(\neg fo) \times \lambda_{DO}^{FO}(\neg fo) \times Pr(\neg fo) =$$

$$= \alpha \times .05 \times .778 \times .85 = .033\alpha$$

 $Pr^*(fo) + Pr^*(\neg fo) = 1 \to \alpha = \frac{1}{.066} = 15.15 \to Pr^*(fo) = Pr^*(\neg fo) = 0.5$

Belief propagation – summary

Initialization step

- each observed node sends its causal and diagnostic parameters
 - * π is either 0 or 1, λ carries conditional node probs (both according to observations),
- each unobserved root passes its causal π equal to its prior prob distribution,
- each unobserved leaf passes its diagnostic $\lambda = 1$.

Iteration steps

- carried out until any change occurs,
- each node V_i which:
 - * received the causal $\pi^{V_{pj}}_{V_i}(V_{pj})$ of all parents
 - \Rightarrow computes its compound $\pi(V_i)$,
 - * received the diagnostic $\lambda^{V_i}_{V_{ci}}(V_i)$ of all its children
 - \Rightarrow computes its compound $\lambda(V_i)$,
 - * knows its compound $\pi(V_i)$ and received diagnostic $\lambda_{V_{cj}}^{V_i}$ of all its children excepted V_c \Rightarrow passes $\pi_{V_c}^{V_i}(V_i)$ to V_c child,
 - * knows its compound $\lambda(V_i)$ and received causal $\pi^{V_{pj}}_{V_i}(V_{pj})$ of all its parents excepted V_p \Rightarrow passes its $\lambda^{V_p}_{V_i}(V_p)$ to V_p parent.

Other inference algorithms

- Clique or junction tree Lauritzen & Spigelhalter
 - apparently the most commonly used method for exact inference in general DAGs,
 - complexity is exponential in the size of the largest clique in transformed undirected graph,
 - applicable namely in sparse networks,
- arc reversal R. D. Shachter
 - another exact inference method for general DAGs,
- stochastic sampling
 - approximate inference method for general DAGs,
 - instead of exact distribution $Pr(Q|\mathbf{e})$ makes its estimation by stochastic simulation,
 - although it does not have lower than NP complexity in general, time may be obtained at the expense of accuracy,
 - particular algorithms
 - * rejection sampling Henrion,
 - * likelihood weighting Fung & Chang,
 - * Gibbs sampling Geman & Geman, Pearl.

Junction tree algorithm

1. Moralization

- connect nodes that have a common child with an undirected edge,
- make all edges in the graph undirected,

2. triangulation

- extend the existing graph to be triangulated,
- each of its cycles of four or more nodes has a chord
 (an edge joining two nodes that are not adjacent in the cycle),
- 3. triangulated = decomposable (chordal) = a junction tree exists,
- 4. junction tree construction
 - clique nodes = cliques of triangulated graph,
 - cliques C_i in graph G can be ordered such that "running intersection property" holds

$$\forall i = 2 \dots K \quad \exists 1 \leq j < i \quad C_i \cap \left(\bigcup_{k=1}^{i-1} C_k\right) \subseteq C_j$$

- the connected graph has one edge less than the number of its nodes = tree,
- tree is completed by separator nodes = intersections of adjacent cliques.

Junction tree algorithm – examples

Calculations in junction trees – examples

stems from joint probability factorization along the triangulated graph

$$Pr^{G} = Pr^{C_1} \frac{Pr^{C_2}}{Pr^{C_2 \cap C_1}} \dots \frac{Pr^{C_K}}{Pr^{C_K \cap (C_1 \cup C_2 \cup \dots C_{K-1})}}$$

- product of all the junction tree nodes is at any moment and constantly equal to Pr^G ,
- FAMILY example

$$Pr(FO, LO, BP, DO, HB) = \frac{Pr(FO, BP, DO) \times Pr(FO, LO) \times Pr(DO, HB)}{Pr(FO) \times Pr(DO)}$$

— the node annotation probability tables are computed from the original network:

$$*Pr(FO, BP, DO) = Pr(FO) \times Pr(BP) \times Pr(DO|FO, BP),$$

*
$$Pr(DO) = \sum_{FO,BP} Pr(FO,BP,DO)$$
,

$$* Pr(DO, HB) = Pr(DO) \times Pr(HB|DO), \dots$$

Calculations in junction trees

- the JT algorithm uses belief propagation to pass messages through the graph,
- enumerate $Pr(fo|lo, \neg hb)$:
- 1. {FO} node annotation is moved into {FO,BP,DO} node,
- 2. $Pr^*(lo) = 1 \rightarrow \text{compute } Pr(FO|lo) \text{ from } Pr(FO,LO) \text{ and propagate it into } \{FO\},$
- 3. multiply probs in {FO,BP,DO} and {FO}, utilize $BP,DO \perp\!\!\!\perp LO|FO$ relationship $Pr(BP,DO|FO) \times Pr(FO|lo) = Pr(FO,BP,DO|lo)$,
- 4. multiply probs in {DO} and {DO,HB} nodes: $\frac{Pr(DO,HB)}{Pr(DO)} = Pr(HB|DO)$,

A4M33RZN

Calculations in junction trees

- 5. knowing Pr(FO, BP, DO|lo), Pr(DO|lo) is computed and passed into $\{DO\}$ node,
- 6. {FO,BP,DO} annotation is updated: $\frac{Pr(FO,BP,DO|lo)}{Pr(DO|lo)} = Pr(FO,BP|DO,lo)$,
- 7. multiply probs in {DO} and {DO,HB} nodes, make use of $LO \perp \!\!\! \perp HB|DO$ property $Pr(DO|lo) \times Pr(HB|DO) = Pr(DO,HB|lo)$,
- 8. $Pr^*(lo) = 1 \rightarrow \text{from } Pr(DO, HB|lo) \text{ compute } Pr(DO|lo, \neg hb) \text{ and pass it into } \{DO\},$
- 9. multiply probs in {FO,BP,DO} and {DO} nodes, make use of $FO,BP \perp\!\!\!\perp HB|DO$ property $Pr(FO,BP|DO,lo) \times Pr(DO|lo,\neg hb) = Pr(FO,BP,DO|lo,\neg hb)$,
- 10. through marginalization of {FO,BP,DO} node we obtain $Pr(FO|lo, \neg hb)$.

Arc reversal algorithm

- transform the original Bayesian network into a different one,
- the represented joint distribution either does not change or it is marginal wrt original one,
- the transformed network must include the query and evidence nodes (Q and E),
- the target marginal distribution $Pr(Q|\mathbf{E})$ is available directly in the final transformed network,
- algorithm has 2 steps
 - 1. node elimination a node makes a tail (initial vertex) of no edge (its output degree is 0),
 - 2. arc reversal if there is an edge from a parent to its child and there is no alternative directed path between them, a transformation that does not change the joint distribution can be made the arc is reversed, its incident nodes mutually inherit their parents.

Arc reversal algorithm

- each arc reversal from $P_k \to P_l$ to $P_l \to P_k$ is accompanied by CPT recomputations,
- let us start with CPT of the new parent node (the old⁻ and new⁺ graph need to be used concurrently):

$$Pr(P_l|parents^+(P_l)) = \sum_{\forall p \in P_k} Pr(P_k = p|parents^-(P_k)) \times Pr(P_l|parents^-(P_l) \setminus P_k, P_k = p)$$

- the paths leading through the former parent P_k replaced by an edge,
- the new edge sums the information flows for all the possible P_k values,
- next, let us derive CPT for the new child:

$$Pr(P_k|parents^+(P_k)) = \frac{Pr(P_k|parents^-(P_k)) \times Pr(P_l|parents^-(P_l))}{Pr(P_l|parents^+(P_l))}$$

— in the trivial case $parents^-(P_k) = parents^+(P_l) = \emptyset$ the recomputation formula reduces on Bayes theorem.

Arc reversal algorithm – example

• let us consider a particular arc reversal from $DO \rightarrow HB$ to $HB \rightarrow DO$, it holds:

$$Pr(HB|FO,BP) = \sum_{p \in \{do, \neg do\}} Pr(DO = p|FO,BP) \times Pr(HB|DO = p)$$

$$Pr(DO|FO,DO,HB) = \frac{Pr(DO|FO,BP) \times Pr(HB|DO)}{Pr(HB|FO,BP)}$$

			Pr(HB FO,BP)
Т	Т	Т	$.99 \times .7 + .01 \times .01 = .6931$
Τ	F	Τ	$.9 \times .7 + .1 \times .01 = .631$
F	Т	Т	$0.97 \times 0.7 + 0.03 \times 0.01 = 0.6793$
F	F	Τ	$.99 \times .7 + .01 \times .01 = .6931$ $.9 \times .7 + .1 \times .01 = .631$ $.97 \times .7 + .03 \times .01 = .6793$ $.3 \times .7 + .7 \times .01 = .217$

FO	BP	НВ	DO	Pr(DO FO,BP,HB)
T	Т	Т	Т	$.99 \times .7/.6931 = .9999$
Т	F	Т	Т	$.9 \times .7/.631 = .9984$
F	Т	F	Τ	$.97 \times .3 / .3207 = .9074$
F	F	F	Т	$.3 \times .3 / .783 = .1149$

Approximate inference by stochastic sampling

- a general Monte-Carlo method, samples from the joint prob distribution,
- estimates the target conditional probability (query) from a sample set,
- the joint prob distribution is not explicitly given, its factorization is available only (network),
- the most straightforward is direct forward sampling
 - 1. topologically sort the network nodes
 - for every edge it holds that parent comes before its children in the ordering,
 - 2. instantiate variables along the topological ordering
 - take $Pr(P_i|parents(P_i))$, randomly sample P_i ,
 - 3. repeat step 2 for all the samples (the sample size M is given a priori),
- from samples to probabilities?
 - $-Pr(q|\mathbf{e}) \approx \frac{N(q,\mathbf{e})}{N(\mathbf{e})}$
 - samples that contradict evidence not used,
 - forward sampling gets inefficient if $Pr(\mathbf{e})$ is small,
- rejection sampling brings a slight improvement
 - rejects partially generated samples as soon as they violate the evidence event e,
 - sample generation often stops early.

Rejection sampling – example

- FAMILY example, estimate $Pr(fo|lo, \neg hb)$
 - 1. topologically sort the network nodes
 - e.g., $\langle FO, BP, LO, DO, HB \rangle$ (or $\langle BP, FO, DO, HB, LO \rangle$, etc.)
 - 2. instantiate variables along the topological ordering
 - $-Pr(FO) \rightarrow \neg fo, Pr(BP) \rightarrow \neg bp,$ $Pr(LO|\neg fo) \rightarrow lo, Pr(DO|\neg fo, \neg bp) \rightarrow \neg do, Pr(HB|\neg do) \rightarrow \neg hb$
 - sample agrees with the evidence $\mathbf{e} = lo \wedge \neg hb$, no rejection needed,
 - 3. generate 1000 samples, repeat step 2,
- let $N(fo, lo, \neg hb)$ is 491 (the number of samples with the given values of three variables under consideration),
- in rejection sampling $N(\mathbf{e})$ necessarily equals M,

$$-Pr(fo|lo, \neg hb) \approx \frac{N(q,e)}{N(e)} = \frac{491}{1000} = 0.491$$

Likelihood weighting

- Likelihood weighting is a sampling method that avoids necessity to reject samples
 - the values of ${f E}$ are fixed, the rest of variables is sampled only,
 - however, not all events are equally probable, samples need to be weighted,
 - the weight equals the likelihood of the event given the evidence,
- \forall samples $p^m = \{P_1 = p_1^m, \dots, P_n = p_n^m\}$, $m \in \{1, \dots, M\}$
 - 1. $w^m \leftarrow 1$ (initialize the sample weight)
 - 2. $\forall j \in \{1, ..., n\}$ (instantiate variables along the topological ordering)
 - if $P_j \in \mathbf{E}$ then take p_j^m from \mathbf{e} and $w^m \leftarrow w^m \times Pr(P_j|parents(P_j))$,
 - otherwise randomly sample p_i^m from $Pr(P_j|parents(P_j))$,
- from samples to probabilities?
 - evidence holds in all samples (by definition),
 - weighted averaging is applied to find $Pr(Q = P_i | \mathbf{e})$

$$Pr(p_i|\mathbf{e}) \approx \frac{\sum_{m=1}^{M} w^m \delta(p_i^m, p_i)}{\sum_{m=1}^{M} w^m} \delta(i, j) = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{for } i \neq j \end{cases}$$

- nevertheless, samples may have very low weights
 - it can also turn out inefficient in large networks with evidences occuring late in the ordering.

Likelihood weighting – example

• let us approximate $Pr(fo|lo, \neg hb)$ (its exact value computed earlier is 0.5),

$$FO^1$$
: $Pr(fo) = .15 \rightarrow \neg fo$ sampled

$$BP^1$$
: $Pr(bp) = .01 \rightarrow \neg bp$ sampled

$$LO^1$$
: evidence $\rightarrow lo \land w^1 = Pr(lo|\neg fo) = .05$

$$DO^1$$
: $Pr(do|\neg fo, \neg bp) = .3 \rightarrow \neg do \text{ sample}$

$$HB^1$$
: evidence $\rightarrow \neg hb \wedge w^1 = .05 \times Pr(\neg hb|\neg do) = .0495$

$$FO^2$$
: $Pr(fo) = .15 \rightarrow \neg fo$ sampled

$$BP^2$$
: $Pr(bp) = .01 \rightarrow \neg bp$ sampled

$$LO^2$$
: evidence $\rightarrow lo \land w^1 = Pr(lo|\neg fo) = .05$

$$DO^2$$
: $Pr(do|\neg fo, \neg bp) = .3 \rightarrow do \text{ sampled}$

$$HB^2$$
: evidence $\rightarrow \neg hb \wedge w^2 = .05 \times Pr(\neg hb|do) = .015$

a very rough estimate having 3 samples only

$$Pr(fo|lo, \neg hb) \approx \frac{.18}{.0495 + .015 + .18} = .74$$

Gibbs sampling

- a Markov chain method the next state depends purely on the current state
 - generates dependent samples!
 - as it is a Monte-Carlo method as well \rightarrow MCMC,
- efficient sampling method namely when some of BN variable states are known
 - it again samples nonevidence variables only, the samples never rejected,
- ullet sampling process samples $p^m=\{P_1=p_1^m,\ldots,P_n=p_n^m\}$, $m\in\{1,\ldots,M\}$
 - 1. fix states of all observed variables from E (in all samples),
 - 2. the other variables initialized in p^0 randomly,
 - 3. generate p^m from p^{m-1} ($\forall P_i \notin E$)

$$-p_1^m \leftarrow Pr(P_1|p_2^{m-1},\ldots,p_n^{m-1}),$$

$$-p_2^m \leftarrow Pr(P_2|p_1^m, p_3^{m-1}, \dots, p_n^{m-1})$$
,

— ...,

$$-p_n^m \leftarrow Pr(P_n|p_1^m,\ldots,p_{n-1}^m)$$
,

4. repeat step 3 for $m \in \{1, \dots, M\}$.

Gibbs sampling

- probs $Pr(P_i|P_1,\ldots,P_{i-1},P_{i+1},\ldots,P_n) = Pr(P_i|P\setminus P_i)$ not explicitly given ...
 - to enumerate them, only their BN neighborhood needs to be known

$$Pr(P_i|P \setminus P_i) \propto Pr(P_i|parents(P_i)) \prod_{\forall P_j, P_i \in parents(P_j)} Pr(P_j|parents(P_j))$$

- the neighborhood is called Markov blanket (MB),
- $-\,MB$ covers the node, its parents, its children and their parents,
- $-MB(P_i)$ is the minimum set of nodes that d-separates P_i from the rest of the network.

- from samples to probabilities?
 - evidence holds in all samples (by definition),
 - averaging $\forall m$ is applied to find $Pr(Q|\mathbf{e})$

$$Pr(p_i|\mathbf{e}) pprox rac{\sum_{m=1}^{M} \delta(p_i^m, p_i)}{M} \ \delta(i, j) = \left\{ egin{array}{ll} 1 & \mbox{for} & i=j \\ 0 & \mbox{for} & i
eq j \end{array}
ight.$$

Gibbs sampling – example

• let us approximate $Pr(fo|lo, \neg hb)$ (its exact value computed earlier is 0.5),

random init of unevidenced variables

$$FO^{1}: Pr^{*}(fo) \propto Pr(fo) \times Pr(lo|fo) \times Pr(\neg do|fo, bp) \\ Pr^{*}(\neg fo) \propto Pr(\neg fo) \times Pr(lo|\neg fo) \times Pr(\neg do|\neg fo, bp) \\ Pr^{*}(fo) \propto .15 \times .6 \times .01 = 9 \times 10^{-4} \to \times \alpha_{FO}^{1} = .41 \\ Pr^{*}(\neg fo) \propto .85 \times .05 \times .03 = 1.275 \times 10^{-3} \to \times \alpha_{FO}^{1} = .59 \\ \alpha_{FO}^{1} = \frac{1}{Pr^{*}(fo) + Pr^{*}(\neg fo)} = 460$$

 DO^1 : by analogy, |MB(DO)| = 5

 FO^2 : BP value was switched, substitution is $Pr(DO|FO, \neg bp)$ $Pr^*(fo) = .21 \ Pr^*(\neg fo) = .79$

 BP^2 : the same probs as is sample 1

Gibbs sampling – example

- lacktriangle BN Matlab Toolbox, aproximation of $Pr(fo|lo, \neg hb)$,
- gibbs_sampling_inf_engine, three independent runs with 100 samples.

A4M33RZN

Summary

- independence and conditional independence ramarkably simplify prob model
 - still, BN inference remains generally NP-hard wrt the number of network variables,
 - inference complexity grows with the number of network edges
 - * naïve Bayes model linear complexity,
 - * general complexity estimate from the size of maximal clique of triangulated graph,
 - inference complexity can be reduced by constraining model structure
 - * special network types (singly connected), e.g. trees one parent only,
 - inference time can be shorten when exact answer is not required
 - * approximate inference, typically (but not only) stochastic sampling.

Recommended reading, lecture resources

- Russell, Norvig: Al: A Modern Approach, Uncertain Knowledge and Reasoning (Part V)
 - probabilistic reasoning (chapter 14 or 15, depends on the edition),
 - online on Google books: http://books.google.com/books?id=8jZBksh-bUMC,
- Jiroušek: Metody reprezentace a zpracování znalostí v umělé inteligenci.
 - bayesovské sítě (kapitola 6), metoda postupných modifikací sítě,
 - http://staff.utia.cas.cz/vomlel/r.pdf,
- Šingliar: **Pearl's algorithm.**
 - a message passing algorithm for exact inference in polytree BBNs,
 - http://www.cs.pitt.edu/ tomas/cs3750/pearl.ppt.