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Agenda

= Bayesian networks
fundamental tasks,
n and its complexity

straightforward enumeration

* easy to understand but inefficient — computes joint probabilities,
* descends to the level of atomic events,

* acceleration by variable elimination,

limitations x efficiency of algorithms,

exact X approximate algorithms,

particular “fast” algorithms

* belief propagation,

* junction tree,

* arc reversal,

* Gibbs sampling.




Bayesian networks — fundamental tasks

m inference — reasoning, deduction

from observed events assumes on probability of other events,
observations (E — a set of evidence variables, e — a particular event),

target variables (Q — a set of query variables, Q — a particular query variable),
Pr(Qle), resp. Pr(Q € Qle) to be found,
network is known (both graph and CPTs),

= learning network parameters from data

network structure (graph) is given,

“only” quantitative parameters (CPTs) to be optimized,

= learning network structure from data

propose an optimal network structure
« which edges of the complete graph shall be employed?,
too many arcs — complicated model,

too few arcs — inaccurate model.




Probabilistic network — inference by enumeration

m Let us observe the following events:

no barking heard,
the door light is on.

s What is the prob of family being out?
searching for Pr(fo|lo, —hb).
s Will observation influence the target event?

light on supports departure hypothesis,
no barking suggests dog inside,
the dog is in house when it is

x rather healthy,
x the family is at home.

Pr(fo)=.15

Pr(lo|fo)=.6
Pr(lo|~fo)=.05

Pr(hb|do)=.7
Pr(hb|—do)=.01

Pr(bp)=.01

bowel
problem

Pr(do|fo,bp)=.99
Pr(do|fo,—bp)=.9
Pr(do|—fo,bp)=.97
Pr(do|—-fo,—bp)=.3




Probabilistic network — inference by enumeration

conditional probs calculated by summing the elements of joint probability table,
= how to find the joint probabilities (the table is not given)?

BN definition suggests:
Pr(FO,BP,DO,LO,HB) =
= Pr(FO)Pr(BP)Pr(DO|FO, BP)Pr(LO|FO)Pr(HB|DO)

m answer to the question?

conditional probability definition suggests:

Pr(fo,lo,—hb
Pr(fOUO, ﬂhb) = P(7:f(l0,—|hb) !

by joint prob marginalization we get:

Pr(fo,lo,=hb) =} pppo Pr(fo, BP, DO, lo,~hb)

Pr(fo,lo,—=hb) = Pr(fo,bp,do,lo,—hb) + Pr(fo,bp, ~do,lo, —~hb)+
+Pr(fo,—bp,do,lo,~hb)+ Pr(fo,—bp, ~do,lo, =hb) = .15 x .01 X .99 X .6 X .34 .15 X
Ol X .0l x.6%x.994.15x.99%x . 9x .6 x.3+.15x.99x.1x.6x.99=.033

Pr(lo,—=hb) = Pr(fo,lo,—hb) + Pr(—fo,lo,—hb) = .066




Probabilistic network — inference by enumeration

after substitution:

Pr(fo,lo,—hb i
Pr(follo,—hb) = P(%f(lo,ﬁhb)) = 022 = 0.5

posterior probability Pr(fo|lo, —~hb) is higher then the prior Pr(fo) = 0.15.

m can we assume on complexity?

instead of 2° — 1=31 probs (either conditional or joint) 10 is needed only,

however, joint probs are enumerated to answer the query

x it is easy to show that inference remains a NP problem,

to simply move summations right-to-left makes a difference, but not a principal one

* see the evaluation tree on the next slide,

Pr(fo,lo,=hb) = Y  Pr(fo, BP,DO,lo,~hb) =
BP,DO
= Pr(fo)Y _Pr(BP)Y Pr(DO|fo, BP)Pr(lo| fo)Pr(~hb| DO)
BP DO
inference by enumeration is an intelligible, but unfortunately inefficient procedure,

solution: minimize recomputations, special network types or approximate inference.




Inference by enumeration — evaluation tree

Pr(do|fo, =bp)
Pr(=do|fo,bp)

Pr(=h b|'ldo) |

s Complexity: time O(n2%), memory O(n)
n ...the number of variables, e ...the number of evidence variables, d=n-¢,

= resource of inefficiency: recomputations (Pr(lo|fo) x Pr(—hb|DO) for each BP value)

variable ordering makes a difference — Pr(lo| fo) shall be moved forward.




Inference by enumeration — straightforward improvements

0 procedure

1. pre-computes to remove the inefficiency shown in the previous slide

factors serve for recycling the earlier computed intermediate results,

some variables are eliminated by summing them out,

Ypfix-oxXfi=fAxo X fixd pfipp XX fo=fixo X fi X fp,

assumes that f1,..., f; do not depend on P,

when multiplying factors, the pointwise product is computed

fl(xla ey Ly Y, 7yk) X f2(y17 vy Yky 215 "'7Zl> — f(xla ey Ly Yl ooy Yy 21,4 "'725)

eventual enumeration over P variable, which takes all (two) possible values

fo (P ooy ) = X p fi(Pr, Py, oy P),

execution efficiency is influenced by the variable ordering when computing,

(finding the best order is NP-complete problem, can be optimized heuristically too),




Inference by enumeration — straightforward improvements

0 procedure

2. does not consider variables irrelevant to the query

all the leaves that are neither query nor evidence variable,

the rule can be applied recursively.

bowel
problem

= example: Pr(lo|do)

what is prob that the door light is shining if the dog
is in the garden?

we will enumerate Pr(LO, do), since:

__ Pr(lo,do) __ Pr(lo,do)
P?"(l0|d0) " Pr(do) ~— Pr(lo,do)+Pr(—lo,do)




Inference by enumeration — variable elimination

s HB is irrelevant to the particular query, why?

Y yp Pr(HB|do) =1

Pr(LO,do)= Y Pr(FO)Pr(BP)Pr(do|FO, BP)Pr(LO|FO)Pr(HB|do) =

FO,BP,HB
= Pr(HB|do) )  Pr(FO)Pr(LO|FO)Y ~ Pr(BP)Pr(do|FO, BP)
HB FO BP
m after omitting the first invariant, may take place

Pr(LO,do) =Y Pr(FO)Pr(LO|FO)Y ~ Pr(BP)Pr(do|FO, BP) =

FO BP

=Y Pr(FO)Pr(LO|FO) fgp(do|FO) =  fgp 4(FO)Pr(LO|FO) =
FO FO

— fm,ﬁ,dO(LO)

= having the last factor (a table of two elements), one can read

170.5P.40(10) 0.0941 0.0941
Pr(lo|do) = Fro gm0 o p o (10) — 00041408007 — 03058 — U-24




Variable elimination — factor computations

m factors are enumerated from CPTs by summing out variables

sum out BP: CPT(DO) & CPT(BP) — fzp(do|FO)
reformulate into: CPT(FO) & fzp(do|FO) — f5p 4,(FO)
sum out FO: fz5 4,(FO) & CPT(LO) — f755p.4,(LO)

FO BP |Pr(do|FO,BP)
BP | Pr(BP) T T 0.99 FO| fgp(do|FO)
T‘ 001 x T F 0.9 — T |0.9009=0.99%0.01+0.9x0.99
F | 099 F T 0.97 F | 0.3067=0.97x0.01+0.99x0.3
FF 0.3
FO|Pr(FO)  FO|fgp(do|FO)  FO|  fgp.(FO)
T| 015 x T | 09009 = T |0.1351=0.15x0.9009
F‘ 0.85 F | 0.3067 F | 0.2607=0.85%0.3067
LO FO|Pr(LO|FO)
FO| fgp 4(FO) T T 0.6 LO| Frogp.alLO)
T| 0131 x T F 0.05 — T | 0.0941=0.1351x0.6+0.2607 x0.05
F‘ 0.2607 FooT 0.4 F | 0.3017=0.1351x0.4+0.2607 x0.95
FF 0.95




Inference by enumeration — comparison of the number of operations

let us take the last example

namely the total number of sums and products in Pr(LO, do),

(the final Pr(lo|do) enumaretion is identical for all procedures),

m naive enumeration, no evaluation tree

4 products (5 vars) x2! (# atomic events on unevidenced variables) + 2! — 1 sums,

in total 79 operations,

using evaluation tree and a proper reordering of variables

in total 33 operations,

= with variable elimination on top of that

in total 14 operations (6 in Tabl, 2 in Tab2, 6 in Tab3).




Inference in networks without undirected cycles

= polytree (singly connected network, directed graph without undirected cycles),

DAG polytree directed tree
(multiply connected net) (singly connected net) (strict definition)
N or polytree algorithm — J. Pearl

exact algorithm,
time complexity proportional with network diameter

« and thus polynomial with the number of variables at worst,

* and linear wrt the number of network parameters (CPTs).




Belief propagation

= local evidence in V node changes Pr(V) to Pr*(V'), network needs to be updated,
m each evidence node sends a message about the evidence to its children and parents,

m every node updates its belief in all of its possible values based on the neighbor messages and
further sends this evidence to its neighbors,

= two reasoning types can be distinguished

()

evidence is propagated from ancestor nodes,

()

evidence is propagated from descendant nodes,
m object-oriented method

nodes = objects, edges = communication channels,

time stamps on variable (node) states needed
(an iteration index must be concerned).




Belief propagation — causal evidence message passing

Pr(fo)=.15
Pr(—fo)=1-Pr(fo)

s Aim: find prob, that light is on in the trivial network on the left

neither Pr(lo) (nor =Pr(lo)) can be computed from local
data purely,

Pr(lo) = Pr(lo|fo) x Pr(fo)+ Pr(lo|=fo) x Pr(=fo),

lﬂ:(FD)
= FO node must pass a message to LO: 7£§(FO) = Pr(FO)

provided FO is not an evidence node, it sends its prior prob
16 (fo) = Pr(fo), m5(=fo) = Pr(=fo),
Pr(io) = Pr(lo| fo)r£S(fo) + Pr(lo|~fo)rfQ(~fo)
Pr(lo|fo)=.6 Pr(lo) = .6 x .15+ .05 x .85 = .1325
Pr(lo|]—fo)=.05
(—lo|fo)=1-Pr(lo|fo)
Pr(—lo|—-fo)=1-Pr(lo]—fo)




Belief propagation — causal evidence message passing

Pr*(fo)=1
Pr*(—f0)=0
m Aim: find prob, that light is on in the trivial network on the left
neither Pr(lo) (nor = Pr(lo)) computable from local data
purely,
lﬂ(FD) Pr(lo) = Pr(lo|fo) x Pr(fo)+ Pr(lo|=fo) x Pr(=fo),

= FO node must pass a message to LO: 7£9(FO) = Pr(FO)

knowing that family left the house, FO node sends
8 (fo) = Pr*(fo) = 1,7E9(=fo) = Pr*(=fo) =0
Pr*(lo) = Pr(lo|fo) = .6
Pr(lo|fo)=.6 Prt(=lo) = Pr(=lo|fo) = 4
Pr(lo|—-fo)=.05
Pr(—lo|fo)=1-Pr(lo|fo)
Pr(=lo|—-fo)=1-Pr(lo]—fo)




Belief propagation — diagnostic evidence message passing

Pr(fo)=.15
Pr(—fo)=1-Pr(fo)

= Aim: find prob that family is out in the trivial net on the left

N?‘(FD} = let us take the situation when the child node is not observed
neither Pr(fo) (nor =Pr(fo)) is a function of Pr(lo),
LO passes A\ES(FO) = 1 (invariant in further computations).
Pr(lo]fo)=.6

Pr(lo|-fo)=.05
Pr(—lo|fo)=1-Pr(lo|fo)
Pr(—lo|—-fo)=1-Pr(lo]—fo)




Belief propagation — diagnostic evidence message passing

= Aim: find prob that family left the house in the trivial net on the left

= provided that Pr*(lo) = 1 is given

Pr(P_rgfch;)z_ﬂc_)b]}?fD) we search for Pr*(fo) = Pr(fol|lo),
from Bayes theorem Pr(follo) = Pr(lOLéiggr(fo>
two values are actually needed: Pr(lo|fo) and Pr(lo)
however, Pr(lo) is unknown (only Pr*(lo) = 1)
LO passes A'§(fo) = Pr(lo|fo) and XY (—~fo) = Pr(lo|—fo)
THFO} and makes use of normalization Pr*(fo) + Pr*(—fo) =1

Pr(fo) = aXf9(fo)Pr(fo) = a x .6 x .15 = .09«
Pr(=fo) = aXEY (= fo)Pr(—fo) = a x .05 x .85 = .0425x
Pr*(fo) + Pr*(—fo) = 1 — .09« + .0425cc = 1

Pr*(lo)=1 a=1/.1325 = 7.55

Pr*(—l0)=0

1
Pr(lo)

Pr*(fo) = 0.68, Pr*(—fo) = 0.32

it can be inferred that a =




Belief propagation — combined propagation

m Aim: find prob that the dog is out knowing it barks,

Pr(fo)=.15

m child is observed, parent is unobserved,

s finding Pr*(DO) asks both for causal and diagnostic inference

Tho(fo) = Pr(fo), nhg(=fo) = Pr(=fo)
ADG(do) = Pr(hb|do), NP9 (~do) = Pr(hb|~do)

Pr(do|fo)=.9

ln(FD)
Pr(do|—fo)=.3

Pr*(do) = a 59 (do)[Pr(do| fo)mhd(fo)+
+ Pr(do|=fo)mpo(—fo)] =
— Tal9x .15+ .3 % .85 = a x .7 x .39 = 273a
ﬂ Pr*(—do) = analogically = 6.1 x 103«
oo o 3.58, Pr¥(do) = .98, Pr*(—do) = .02
= if we generalize
Pr*(DO) = Pr(DO|Evidence) = a x m(DO) x A\(DO)

« — normalization constant,

Pr(hb|do)=.7
pr(éb|ldo))=_o1 ©(DO) - causal parameter,

ANDO) - diagnostic parameter.




Belief propagation — combined propagation

= the evidence set with respect to V;: = E*(V;) U E~(V;)

causal (E7(V;)) and diagnostic (£~ (V;)) observations,
polytree — it holds £ (V;) IL E~(V})|V,

the only path connecting a causal and a diagnostic node
leads through V.

= this separation can be used when computing probs Pr*(V;)
Pr(Vi) = Pr(Vi|E) = Pr(V|ET(V}), B~ (V})) =
=a' X x Pr(V;) =
=o' X X Pr(V;) =
=a x Pr(E~(V))|V;) x Pr(V;|E*(V})) =
— o x (Vi) x (Vi) = bel(V})

s compound causal 7w(V;) and diagnostic A(V;) parameter

(V)= 3 Pr(Vil,.. Hw W =1,

<S

cj




Belief propagation — combined propagation

s Let ussearch for Pr*(FO) again: Pr*(fo) = Pr(follo,—hb)a Pr*(—fo) = Pr(—follo,~hb)
Pr*(FO) = a x A(FO) x n(FO) = a x AI§(FO) x A\E9(FO) x Pr(FO),

= \ messages from evidence nodes:

Pr(fo)=.15 Pr(bp)=.01

bowel
problem

/IDDBP(BP)

Pr(do|fo,bp)=.99
Pr(do|fo,—-bp)=.9
Pr(do|—fo,bp)=.97
Pr(do|—-fo,—bp)=.3

simple, follows from earlier examples,
light on — Pr*(lo) =1

« XFO(fo) = Pr(lo|fo) = 0.6, o)/
x* AMI'Q(=fo) = Pr(lo|=fo) = 0.05,
no barking heard - Pr*(hb) = 0,

x \P9(do) = Pr(—hb|do) = 0.3,

x ADP(=do) = Pr(=hb|~do) = 0.99,

QDOFD(FD)

Pr(lo|fo)=.6

. . YL
= 7 message from BP node carries the priors: pr(jo|~fo)=.05 I"HB (DO)

Tho(bp) = 0.01, 755(=bp) = 0.99,
Pr(hb|do)=.7

= it is more difficult to quantify AEZ(FO). Pr(hb|—do)=.01

it equals Pr*(DO|FO).




Belief propagation — combined propagation

= In general, V; sends messages as follows
i ' Ve
(Vi) = am(V) ITZ L, M2 (VA),
Vi S
Ay (Vi) = Do AVI) val ,,,,, Vi Pr(VilVp, ..., Vin) Zi{n Tt (Vi),
s DO node passes to FO node
NEQ(fo) = AL (do) [Pr(dol fo, bp)wEh(bp) + Pr(do| fo, ~bp)w55(~bp)
+ AD9(~do) [Pr(~do] fo, bp)wE5(bp) + Pr(~dol fo, ~bp)m s (~bp)] =
= .3(.99 x .01 +.9 x .99) +.99(.01 x .01 4+ .1 x .99) = .27 + .098 = 0.368
Apo(=fo) = A (do) [Pr(do|=fo, bp)w 55 (bp) + Pr(do|—fo, =bp)wpi(—bp)]
+ AD9 (~do) [Pr(~do|~fo, bp)wE5(bp) + Pr(~do|~fo, ~bp)r b (~bp)] =
= .3(.97 x .01 +.3 x .99) +.99(.03 x .7+ .1 x .99) = .092 + .686 = 0.778
s next, Pr*(FO) can be computed
Pri(fo) = a x AXE§(fo) x AL9(fo) x Pr(fo) =
= a X .6 X .368 x .15 = .033«
Pr*(=fo) = a x AL§(=fo) x Apg(=fo) x Pr(=fo) =
= a X .05 X .778 x .85 = .033«

s Pr*(fo)+ Pr*(—~fo) =1 — a = oz = 15.15 — Pr*(fo) = Pr*(=fo) = 0.5




Belief propagation — summary

= Initialization step

each observed node sends its causal and diagnostic parameters
* 7 is either 0 or 1, \ carries conditional node probs (both according to observations),
each unobserved root passes its causal 7 equal to its prior prob distribution,

each unobserved leaf passes its diagnostic A = 1.
m lteration steps

carried out until any change occurs,
each node V; which:

. Vyj
+ received the causal " (V,;) of all parents
= computes its compound 7 (V;),

* received the diagnostic )\gij(Vi) of all its children

= computes its compound A\(V}),
* knows its compound 7(V;) and received diagnostic )\‘Z of all its children excepted V.

= passes W“Z(Vg) to V. child,
. . Vyj .
+ knows its compound A(V;) and received causal .’ (V) of all its parents excepted V,

N
= passes its A7 (V) to V,, parent.




Other inference algorithms

0 — Lauritzen & Spigelhalter

apparently the most commonly used method for exact inference in general DAGs,
complexity is exponential in the size of the largest clique in transformed undirected graph,

applicable namely in sparse networks,

= — R. D. Shachter

another exact inference method for general DAGs,

m stochastic sampling

approximate inference method for general DAGs,
instead of exact distribution Pr(()|e) makes its estimation by stochastic simulation,

although it does not have lower than NP complexity in general, time may be obtained at
the expense of accuracy,

particular algorithms

* — Henrion,

* — Fung & Chang,

* — Geman & Geman, Pearl.




Junction tree algorithm

1. Moralization

m connect nodes that have a common child with an undirected edge,

m make all edges in the graph undirected,
2. triangulation

m extend the existing graph to be triangulated,

m each of its cycles of four or more nodes has a chord
(an edge joining two nodes that are not adjacent in the cycle),

3. triangulated = decomposable (chordal) = a junction tree exists,
4. junction tree construction

clique nodes = cliques of triangulated graph,

cliques C; in graph GG can be ordered such that “running intersection property” holds

1—1
Vi=2...K 31<j<i Cm(UCk> C O}

k=1
m the connected graph has one edge less than the number of its nodes = tree,

tree is completed by separator nodes = intersections of adjacent cliques.




Junction tree algorithm — examples

@ @ @ @ {FDBPDD}
(1) @ ” ol D“’“

{FD LO} {DD HB}




Calculations in junction trees — examples

= stems from joint probability factorization along the triangulated graph

Ch C
o) Pr Pr-x

Pr¢ = Pr e
Pr02ﬂ01 PT.CKH(ClUCQU...CK_l)

s product of all the junction tree nodes is at any moment and constantly equal to Pr®,

s FAMILY example
Pr(FO,BP,DO) x Pr(FO, LO) x Pr(DO, HB)

Pr(FO,LO,BP, DO, HB) = Pr(FO) x Pr(DO)

the node annotation probability tables are computed from the original network:
x Pr(FO,BP,DO) = Pr(FO) x Pr(BP) x Pr(DO|FO, BP),

« Pr(DO) =) popp Pr(FO, BP, DO),

x Pr(DO,HB) = Pr(DO) x Pr(HB|DO), ...

Pr(FO,BP.DO)

Pri(FO) /o\ Pri(DO)

o o

Pr(FO,LO) Pr(DO,HB)




Calculations in junction trees

m the JT algorithm uses belief propagation to pass messages through the graph,

= enumerate Pr(fo|lo, —hb):

1. {FO} node annotation is moved into {FO,BP,DO} node,
2. Pr*(lo) = 1 — compute Pr(FO|lo) from Pr(FO, LO) and propagate it into {FO},

3. multiply probs in {FO,BP,DO} and {FO}, utilize BP, DO 1. LO|FO relationship
Pr(BP,DO|FO) x Pr(FOl|lo) = Pr(FO,BP,DO|lo),

4. multiply probs in {DO} and {DO,HB} nodes: % = Pr(HB|DO),

START STEPS 1 and 2 STEPS 3 and 4
Pr(FO,BP.DO) Pr(FO,BP,DO) Pr(FO,BP,DOlo)
O Pr(FO) '®)

Prl(FD)/ \Prl(DD) Pr(FDIIo)/ \Prl(DD) 1 / \1

[ ] L] [ ] [] [ ] [ ]
o o o

O O O
Pr(FO,LO) Pr(DO,HB) Pr(FO,LO) Pr(DO,HB) Pr(FO,LO) Pr(HB|DO)

Pr(FO|lo) Pr(FO|lo)




Calculations in junction trees

5. knowing Pr(FO, BP, DO|lo), Pr(DO|lo) is computed and passed into {DO} node,

6. {FO,BP,DO} annotation is updated: PT(FP(:(’gg"g?UO) = Pr(FO, BP|DO,lo),

7. multiply probs in {DO} and {DO,HB} nodes, make use of LO 1L HB|DO property
Pr(DO|lo) x Pr(HB|DO) = Pr(DO, HB|lo),

8. Pr*(lo) =1 — from Pr(DO, HB|lo) compute Pr(DO|lo,—hb) and pass it into {DO},

9. multiply probs in {FO,BP,DO} and {DO} nodes, make use of 'O, BP 1. H B| DO property
Pr(FO,BP|DO,lo) x Pr(DO|lo,—hb) = Pr(FO, BP, DO|lo, —hb),

10. through marginalization of {FO,BP,DO} node we obtain Pr(F'Ollo, —hb).

STEP 5 STEP 6 and 7 STEP 8 STEP 9
Pr(FO,BP,DO|lo) Pr(FO,BP|DO, o) Pr(FO,BP,DO|lo) Pr(FO,BP,DO|lo,~hb)
Pr(DOllo) O Pr(DOJlo) O
1 7 \_Pr(DOllo) 1 7N 1 1~ \_Pr(DOlo,~hb) 1 /" \_Pr(DOllo, hb)
[] I N L O
AN C{ N 6 AN ({ AN
O O O O
Pr(FO,LO) Pr(HB|DO) Pr(FO.LO)  pr(DO,HBIIo) Pr(FO,LO) P(DO,HB|lo)  Pr(FO,LO) Pr(DO, HB]lo)
Pr(FOllo) Pr(FO[lo) Pr(FO[lo) Pr(DOJlo,=hb)  Pr(FO[lo) Pr(DO[lo,7hb)




Arc reversal algorithm

transform the original Bayesian network into a different one,

the represented joint distribution either does not change or it is marginal wrt original one,

the transformed network must include the query and evidence nodes (Q and E),

the target marginal distribution Pr(Q|E) is available directly in the final transformed network,

algorithm has 2 steps

1. node elimination — a node makes a tail (initial vertex) of no edge (its output degree is 0),

2. arc reversal — if there is an edge from a parent to its child and there is no alternative
directed path between them, a transformation that does not change the joint distribution
can be made — the arc is reversed, its incident nodes mutually inherit their parents.

S8 QYA




Arc reversal algorithm

m each arc reversal from P, — P, to P, — P, is accompanied by CPT recomputations,

m let us start with CPT of the new parent node
(the old™ and new™ graph need to be used concurrently):

Pr(P|parents*(P)) = Z Pr(P, = p|parents (Py)) x Pr(P|parents™ (P) \ Py, P, = p)
Vpe Py
the paths leading through the former parent P, replaced by an edge,

the new edge sums the information flows for all the possible P values,

m next, let us derive CPT for the new child:
Pr(Py|parents™(Py)) x Pr(P/|parents™(P))

PT(Pk’pCLTent5+<P/€)) — Pr(P/|parentst(P))

in the trivial case parents (Py) = parentst(P,) = () the recomputation formula reduces
on Bayes theorem.




Arc reversal algorithm — example

m let us consider a particular arc reversal from DO — HB to HB — DO, it holds:
Pr(HB|[FO,BP)= »  Pr(DO =p|FO,BP) x Pr(HB|DO = p)

pe{do,~do}
Pr(DO|FO, BP) x Pr(HB|DO)
Pr(HB|FO, BP)

Pr(DO|FO, DO, HB) =

FO BP HB Pr(HB|FO,BP)

T T T .99x.74.01 x .01 =.6931 @ @

T F T | 9%x.7+.1x.01=.631

F T T |.97x.7+.03x .01 =.6793 @ @

F F T BX 7T+.7x .01l =.217 @

FO BP HB DO | Pr(DO|FO,BPHB)

T T T T .99x.7/.6931 =.9999

T F T T/ . 77631 = 9984 Pr(dolfo,bp)—.99 Pr(hbldo)-.?
9x.7/.631 = 998 Pr(doffo—bp)=9  Pr(hbj—~do)=.01

o Pr(do|—fo,bp)=.97

F T F T .97x.3/.3207 = .9074 Pr(do|—fo,—bp)=.3

F F F T | .3x.3/.783=.1149




Approximate inference by stochastic sampling

a general method, samples from the joint prob distribution,

estimates the target conditional probability (query) from a sample set,

the joint prob distribution is not explicitly given, its factorization is available only (network),

the most straightforward is direct

1. topologically sort the network nodes

for every edge it holds that parent comes before its children in the ordering,
2. instantiate variables along the topological ordering

take Pr(P;|parents(P;)), randomly sample P},

3. repeat step 2 for all the samples (the sample size M is given a priori),

from samples to probabilities?

N(q.e
Pr(qle) =~ N(EI(;))

samples that contradict evidence not used,

forward sampling gets inefficient if Pr(e) is small,
0 brings a slight improvement

rejects partially generated samples as soon as they violate the evidence event e,

sample generation often stops early.




Rejection sampling — example

s FAMILY example, estimate Pr(fol|lo, —hb)

1. topologically sort the network nodes

eg., (FO,BP,LO,DO,HB) (or (BP,FO,DO,HB, LO), etc.)

2. instantiate variables along the topological ordering

Pr(FO) — —fo, Pr(BP) — —bp,

Pr(LO|=fo) — lo, Pr(DO|=fo,—bp) — —do, Pr(H B|—-do) — —hb
sample agrees with the evidence e = [o A —hb, no rejection needed,

3. generate 1000 samples, repeat step 2,

s let N(fo,lo,—hb) is 491 (the number of samples
with the given values of three variables under con-

sideration),
= in rejection sampling N (e) necessarily equals M,

Pr(follo,=hb) = %((JS) = -0 = 0.491

Pr(fo)=.15

Pr(bp)=.01
bowel
problem

Pr(do|fo,bp)=.99
Pr(do|fo,—bp)=.9

Pr(do|—fo,bp)=.97
Pr(do|—-fo,—-bp)=.3

Pr(lo|fo)=.6
Pr(lo|—fo)=.05

Pr(hb|do)=.7
Pr(hb|—do)=.01




Likelihood weighting

0 is a sampling method that avoids necessity to reject samples

the values of E are fixed, the rest of variables is sampled only,
however, not all events are equally probable, samples need to be weighted,

the weight equals the likelihood of the event given the evidence,
s Vsamples p" ={P =p}",...,P,=p'}, me{l,... M}
1. w™ « 1 (initialize the sample weight)
2.Vj € {1,...,n} (instantiate variables along the topological ordering)
if P; € E then take p" from e and w™ « w™ x Pr(Pj|parents(F;)),
otherwise randomly sample p7* from Pr(P;|parents(F;)),

m from samples to probabilities?

evidence holds in all samples (by definition),
weighted averaging is applied to find Pr(Q = Pile)
S WS (pipi) o, 1 for i=j
i 0(i,7) = T
S wm 0 for ©# 7

m nevertheless, samples may have very low weights

Pr(p;le) ~

it can also turn out inefficient in large networks with evidences occuring late in the ordering.




Likelihood weighting — example

= let us approximate Pr(fol|lo,—hb) (its exact value computed earlier is 0.5),

FO

BP!:

P! 2 3 LO

FO DO

BP H B
LO| T T T

DO FO?:

HB| F F F BP?

w |.0495 015 .18 LO*:

DO?:

H B?:

Pr(fo) = .15 — = fo sampled

Pr(bp) = .01 — —bp sampled

evidence — lo A w! = Pr(lo|—fo) = .05
Pr(do|—fo,—bp) = .3 — —do sampled

evidence — —hb A w! = .05 x Pr(—hb|—~do) = .0495

Pr(fo) = .15 — = fo sampled

Pr(bp) = .01 — —bp sampled

evidence — lo A w! = Pr(lo|~fo) = .05
Pr(do|=fo,—-bp) = .3 — do sampled

evidence — —hb A w? = .05 x Pr(—hb|do) = .015

m a very rough estimate having 3 samples only

Pr(fol|lo,—hbd)

N 18 B
0495 + 015+ .18

74




Gibbs sampling

ma method — the next state depends purely on the current state

generates dependent samples!

as it is a method as well — MCMC,
m efficient sampling method namely when some of BN variable states are known

it again samples nonevidence variables only, the samples never rejected,

= sampling process — samples p” ={P, =p{",..., P, =p"}, me {l,..., M}
1. fix states of all observed variables from E (in all samples),
2. the other variables initialized in p” randomly,
3. generate p™ from p ! (VP ¢ F)
P — Pr(PpiL, . pm ),
prgl — PT(PQIPTap?_17 R 7pgb_1)y
py = Pr(Bapl', - pita),
4. repeat step 3 form € {1,..., M }.




Gibbs sampling

s probs Pr(P|Py,...,P,_1,Pi1,...,P,) = Pr(P)|P\ P,) not explicitly given ...
to enumerate them, only their BN neighborhood needs to be known
Pr(P;|P\ P) x Pr(P;|parents(P;)) H Pr(Pj|parents(F;))
v P;,Peparents(P;)
the neighborhood is called (MB),
M B covers the node, its parents, its children and their parents,

M B(P,) is the minimum set of nodes that d-separates P, from the rest of the network.

m from samples to probabilities?

averaging Vm is applied to find Pr(Q|e)

evidence holds in all samples (by definition), )/

M

Dm0 i) oo [ 1 fori=
) & M 206, ) = 0 for i+ j

Pr(pile




Gibbs sampling — example

= let us approximate Pr(fol|lo,—hb) (its exact value computed earlier is 0.5),

p’:  random init of unevidenced variables
FOY Pr*(fo) o< Pr(fo) x Pr(lo|fo) x Pr(—do|fo,bp)
Pr*(=fo) o< Pr(—fo) x Pr(lo|=fo) x Pr(—do|-fo,bp)
01 Pr*(fo) oc .15 x .6 X .01 =9 x 107 — xap, = .41

= pT P b Pri(—fo) o< .85 x .05 x .03 = 1.275 x 1073 — xak, = .59
BP | T ko = P pere) = 400
wolTTT BP: Pr*(bp) < Pr(bp) x Pr(—do|—fo,bp) = .01 x .03 = .0003
DO | E Pr*(=bp) o< Pr(—bp) x Pr(—do|—fo,—bp) = .99 x .7 = 0.693
HBIE F F Upp = prgiprcey) = 144 — Pri(bp) =4 x 107

DO by analogy, |MB(DO)| =5

FO? BP value was switched, substitution is Pr(DO|FO, —bp)
Pr*(fo) = .21 Pr*(—fo) =.79
BP?: the same probs as is sample 1




Gibbs sampling — example

s BN Matlab Toolbox, aproximation of Pr(fo|lo, =hb),

s gibbs_sampling_inf_engine, three independent runs with 100 samples.
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Summary

m independence and conditional independence ramarkably simplify prob model

still, BN inference remains generally wrt the number of network variables,
inference complexity grows with the number of network edges

« naive Bayes model — linear complexity,

« general complexity estimate from the size of maximal clique of triangulated graph,
inference complexity can be reduced by constraining model structure

* special network types (singly connected), e.g. trees — one parent only,

inference time can be shorten when exact answer is not required

* approximate inference, typically (but not only) stochastic sampling.

—

* polytrees only

exact approximate
junction belief variable rejection  likelihood Gibbs

tree  propagation* reversal elimination sampling  weighting sampling




Recommended reading, lecture resources

= Russell, Norvig: Al: A Modern Approach, Uncertain Knowledge and Reasoning (Part V)

probabilistic reasoning (chapter 14 or 15, depends on the edition),
online on Google books: http://books.google.com /books?id=8jZBksh-bUMC,

m Jirousek: Metody reprezentace a zpracovani znalosti v umélé inteligenci.

bayesovské sit& (kapitola 6), metoda postupnych modifikaci sitg,

http://staff.utia.cas.cz/vomlel /r.pdf,
s Singliar: Pearl’s algorithm.
a message passing algorithm for exact inference in polytree BBNs,

http://www.cs.pitt.edu/ tomas/cs3750/pearl.ppt.




