Graphical probabilistic models - inference

Jiří Kléma

Department of Cybernetics, FEE, CTU at Prague

IDA
 Intelligent Data Analysis

RESEARCH GRoup

```
http://ida.felk.cvut.cz
```


Agenda

- Bayesian networks
- fundamental tasks,
- inference and its complexity
- straightforward enumeration
* easy to understand but inefficient - computes joint probabilities,
* descends to the level of atomic events,
* acceleration by variable elimination,
- limitations \times efficiency of algorithms,
- exact \times approximate algorithms,
- particular "fast" algorithms
* belief propagation,
* junction tree,
* arc reversal,
* Gibbs sampling.

Bayesian networks - fundamental tasks

- inference - reasoning, deduction
- from observed events assumes on probability of other events,
- observations (E - a set of evidence variables, \mathbf{e} - a particular event),
- target variables (\mathbf{Q} - a set of query variables, Q - a particular query variable),
$-\operatorname{Pr}(\mathbf{Q} \mid \mathbf{e})$, resp. $\operatorname{Pr}(Q \in \mathbf{Q} \mid \mathbf{e})$ to be found,
- network is known (both graph and CPTs),
- learning network parameters from data
- network structure (graph) is given,
- "only" quantitative parameters (CPTs) to be optimized,
- learning network structure from data
- propose an optimal network structure
* which edges of the complete graph shall be employed?,
- too many arcs \rightarrow complicated model,
- too few arcs \rightarrow inaccurate model.

Probabilistic network - inference by enumeration

- Let us observe the following events:
- no barking heard,
- the door light is on.
- What is the prob of family being out?
- searching for $\operatorname{Pr}\left(f_{o} \mid l o, \neg h b\right)$.
- Will observation influence the target event?
- light on supports departure hypothesis,
- no barking suggests dog inside,
- the dog is in house when it is
* rather healthy,
* the family is at home.

Probabilistic network - inference by enumeration

- inference by enumeration

- conditional probs calculated by summing the elements of joint probability table,
- how to find the joint probabilities (the table is not given)?
- BN definition suggests:

$$
\begin{aligned}
& \operatorname{Pr}(F O, B P, D O, L O, H B)= \\
& \quad=\operatorname{Pr}(F O) \operatorname{Pr}(B P) \operatorname{Pr}(D O \mid F O, B P) \operatorname{Pr}(L O \mid F O) \operatorname{Pr}(H B \mid D O)
\end{aligned}
$$

- answer to the question?
- conditional probability definition suggests:

$$
\operatorname{Pr}(f o \mid l o, \neg h b)=\frac{\operatorname{Pr}(f o, l o, \neg h b)}{\operatorname{Pr}(l o, \neg h b)}
$$

- by joint prob marginalization we get:

$$
\begin{aligned}
& \operatorname{Pr}(f o, l o, \neg h b)=\sum_{B P, D O} \operatorname{Pr}(f o, B P, D O, l o, \neg h b) \\
& \operatorname{Pr}(f o, l o, \neg h b)=\operatorname{Pr}(f o, b p, d o, l o, \neg h b)+\operatorname{Pr}(f o, b p, \neg d o, l o, \neg h b)+ \\
& +\operatorname{Pr}(f o, \neg b p, d o, l o, \neg h b)+\operatorname{Pr}(f o, \neg b p, \neg d o, l o, \neg h b)=.15 \times .01 \times .99 \times .6 \times .3+.15 \times \\
& .01 \times .01 \times .6 \times .99+.15 \times .99 \times .9 \times .6 \times .3+.15 \times .99 \times .1 \times .6 \times .99=.033 \\
& \operatorname{Pr}(l o, \neg h b)=\operatorname{Pr}(f o, l o, \neg h b)+\operatorname{Pr}(\neg f o, l o, \neg h b)=.066
\end{aligned}
$$

Probabilistic network - inference by enumeration

- after substitution:

$$
\operatorname{Pr}(f o \mid l o, \neg h b)=\frac{\operatorname{Pr}(f o, l o, \neg h b)}{\operatorname{Pr}(l o, \neg h b)}=\frac{.033}{.066}=0.5
$$

- posterior probability $\operatorname{Pr}(f o \mid l o, \neg h b)$ is higher then the prior $\operatorname{Pr}\left(f_{o}\right)=0.15$.
- can we assume on complexity?
- instead of $2^{5}-1=31$ probs (either conditional or joint) 10 is needed only,
- however, joint probs are enumerated to answer the query
* it is easy to show that inference remains a NP problem,
- to simply move summations right-to-left makes a difference, but not a principal one
* see the evaluation tree on the next slide,

$$
\begin{aligned}
\operatorname{Pr}(f o, l o, \neg h b) & =\sum_{B P, D O} \operatorname{Pr}(f o, B P, D O, l o, \neg h b)= \\
& =\operatorname{Pr}(f o) \sum_{B P} \operatorname{Pr}(B P) \sum_{D O} \operatorname{Pr}(D O \mid f o, B P) \operatorname{Pr}(l o \mid f o) \operatorname{Pr}(\neg h b \mid D O)
\end{aligned}
$$

- inference by enumeration is an intelligible, but unfortunately inefficient procedure,
- solution: minimize recomputations, special network types or approximate inference.

Inference by enumeration - evaluation tree

- Complexity: time $\mathcal{O}\left(n 2^{d}\right)$, memory $\mathcal{O}(n)$
- $n \ldots$ the number of variables, $e \ldots$ the number of evidence variables, $d=n-e$,
- resource of inefficiency: recomputations $(\operatorname{Pr}(l o \mid f o) \times \operatorname{Pr}(\neg h b \mid D O)$ for each BP value)
- variable ordering makes a difference $-\operatorname{Pr}(l o \mid f o)$ shall be moved forward.

Inference by enumeration - straightforward improvements

- variable elimination procedure

1. pre-computes factors to remove the inefficiency shown in the previous slide

- factors serve for recycling the earlier computed intermediate results,
- some variables are eliminated by summing them out,

$$
\begin{aligned}
& \sum_{P} f_{1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \times \sum_{P} f_{i+1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \times f_{\bar{P}} \\
& \text { assumes that } f_{1}, \ldots, f_{i} \text { do not depend on } P
\end{aligned}
$$

when multiplying factors, the pointwise product is computed $f_{1}\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}\right) \times f_{2}\left(y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right)=f\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right)$
eventual enumeration over P_{1} variable, which takes all (two) possible values $f_{\bar{P}_{1}}\left(P_{2}, \ldots, P_{k}\right)=\sum_{P_{1}} f_{1}\left(P_{1}, P_{2}, \ldots, P_{k}\right)$,

- execution efficiency is influenced by the variable ordering when computing, (finding the best order is NP-complete problem, can be optimized heuristically too),

Inference by enumeration - straightforward improvements

- variable elimination procedure

2. does not consider variables irrelevant to the query

- all the leaves that are neither query nor evidence variable,
- the rule can be applied recursively.
- example: $\operatorname{Pr}(l o \mid d o)$
- what is prob that the door light is shining if the dog is in the garden?
- we will enumerate $\operatorname{Pr}(L O, d o)$, since:

$$
\operatorname{Pr}(l o \mid d o)=\frac{\operatorname{Pr}(l o, d o)}{\operatorname{Pr}(d o)}=\frac{\operatorname{Pr}(l o, d o)}{\operatorname{Pr}(l o, d o)+\operatorname{Pr}(\neg l o, d o)}
$$

Inference by enumeration - variable elimination

- HB is irrelevant to the particular query, why?

$$
\begin{aligned}
& \sum_{H B} \operatorname{Pr}(H B \mid d o)=1 \\
& \operatorname{Pr}(L O, d o)=\sum_{F O, B P, H B} \operatorname{Pr}(F O) \operatorname{Pr}(B P) \operatorname{Pr}(d o \mid F O, B P) \operatorname{Pr}(L O \mid F O) \operatorname{Pr}(H B \mid d o)= \\
&=\sum_{H B} \operatorname{Pr}(H B \mid d o) \sum_{F O} \operatorname{Pr}(F O) \operatorname{Pr}(L O \mid F O) \sum_{B P} \operatorname{Pr}(B P) \operatorname{Pr}(d o \mid F O, B P)
\end{aligned}
$$

- after omitting the first invariant, factorization may take place

$$
\begin{aligned}
\operatorname{Pr}(L O, d o) & =\sum_{F O} \operatorname{Pr}(F O) \operatorname{Pr}(L O \mid F O) \sum_{B P} \operatorname{Pr}(B P) \operatorname{Pr}(d o \mid F O, B P)= \\
& =\sum_{F O} \operatorname{Pr}(F O) \operatorname{Pr}(L O \mid F O) f_{\overline{B P}}(d o \mid F O)=\sum_{F O} f_{\overline{B P}, d o}(F O) \operatorname{Pr}(L O \mid F O)= \\
& =f_{\overline{F O}, \overline{B P}, d o}(L O)
\end{aligned}
$$

- having the last factor (a table of two elements), one can read

$$
\operatorname{Pr}(l o \mid d o)=\frac{f_{\overline{F O}, \overline{B P}, d o}(l o)}{f_{\overline{F O}, \overline{B P}, d o}(l o)+f_{\overline{F O}, \overline{B P}, d o}(\neg l o)}=\frac{0.0941}{0.0941+0.3017}=\frac{0.0941}{0.3958}=0.24
$$

Variable elimination - factor computations

- factors are enumerated from CPTs by summing out variables
- sum out BP: $C P T(D O) \& C P T(B P) \rightarrow f_{\overline{B P}}(d o \mid F O)$
- reformulate into: $C P T(F O) \& f_{\overline{B P}}(d o \mid F O) \rightarrow f_{\overline{B P}, d o}(F O)$
- sum out FO: $f_{\overline{B P}, d o}(F O) \& C P T(L O) \rightarrow f_{\overline{F O}, \overline{B P}, d o}(L O)$

Inference by enumeration - comparison of the number of operations

- let us take the last example
- namely the total number of sums and products in $\operatorname{Pr}(L O, d o)$,
- (the final $\operatorname{Pr}(l o \mid d o)$ enumaretion is identical for all procedures),
- naïve enumeration, no evaluation tree
-4 products (5 vars) $\times 2^{4}$ (\# atomic events on unevidenced variables) $+2^{4}-1$ sums,
- in total 79 operations,
- using evaluation tree and a proper reordering of variables
- in total 33 operations,
- with variable elimination on top of that
- in total 14 operations (6 in Tab1, 2 in Tab2, 6 in Tab3).

Inference in networks without undirected cycles

- polytree (singly connected network, directed graph without undirected cycles),

DAG
(multiply connected net)

polytree
(singly connected net)

directed tree (strict definition)
- belief propagation or polytree algorithm - J. Pearl
- exact algorithm,
- time complexity proportional with network diameter
* and thus polynomial with the number of variables at worst,
* and linear wrt the number of network parameters (CPTs).

Belief propagation

- local evidence in V node changes $\operatorname{Pr}(V)$ to $\operatorname{Pr}^{*}(V)$, network needs to be updated,
- each evidence node sends a message about the evidence to its children and parents,
- every node updates its belief in all of its possible values based on the neighbor messages and further sends this evidence to its neighbors,
- two reasoning types can be distinguished
- causal (π) evidence is propagated from ancestor nodes,
- diagnostic (λ) evidence is propagated from descendant nodes,
- object-oriented method
- nodes $=$ objects, edges $=$ communication channels,
- time stamps on variable (node) states needed (an iteration index must be concerned).

Belief propagation - causal evidence message passing

$$
\begin{gathered}
\operatorname{Pr}(\mathrm{fo})=.15 \\
\operatorname{Pr}(\neg \mathrm{fo})=1-\operatorname{Pr}(\mathrm{fo})
\end{gathered}
$$

- Aim: find prob, that light is on in the trivial network on the left
- neither $\operatorname{Pr}(l o)$ (nor $\neg \operatorname{Pr}(l o)$) can be computed from local data purely,
$-\operatorname{Pr}(l o)=\operatorname{Pr}(l o \mid f o) \times \operatorname{Pr}(f o)+\operatorname{Pr}(l o \mid \neg f o) \times \operatorname{Pr}(\neg f o)$,
- FO node must pass a message to LO: $\pi_{L O}^{F O}(F O)=\operatorname{Pr}(F O)$
- provided FO is not an evidence node, it sends its prior prob
$-\pi_{L O}^{F O}(f o)=\operatorname{Pr}(f o), \pi_{L O}^{F O}(\neg f o)=\operatorname{Pr}(\neg f o)$,
$-\operatorname{Pr}(l o)=\operatorname{Pr}(l o \mid f o) \pi_{L O}^{F O}(f o)+\operatorname{Pr}(l o \mid \neg f o) \pi_{L O}^{F O}(\neg f o)$
$-\operatorname{Pr}(l o)=.6 \times .15+.05 \times .85=.1325$

Belief propagation - causal evidence message passing

$$
\operatorname{Pr}^{\star}(\mathrm{fo})=1
$$

$$
\operatorname{Pr}^{*}(- \text { fo })=0
$$

- Aim: find prob, that light is on in the trivial network on the left
- neither $\operatorname{Pr}(l o)$ (nor $\neg \operatorname{Pr}(l o)$) computable from local data purely,
$-\operatorname{Pr}(l o)=\operatorname{Pr}(l o \mid f o) \times \operatorname{Pr}(f o)+\operatorname{Pr}(l o \mid \neg f o) \times \operatorname{Pr}(\neg f o)$,
- FO node must pass a message to LO: $\pi_{L O}^{F O}(F O)=\operatorname{Pr}(F O)$
- knowing that family left the house, FO node sends $\pi_{L O}^{F O}(f o)=P r^{*}(f o)=1, \pi_{L O}^{F O}(\neg f o)=P r^{*}(\neg f o)=0$
$-\operatorname{Pr}^{*}(l o)=\operatorname{Pr}(l o \mid f o)=.6$
$-\operatorname{Pr}^{*}(\neg l o)=\operatorname{Pr}(\neg l o \mid f o)=.4$
$\operatorname{Pr}(\neg \mathrm{lo} \mid \mathrm{fo})=1-\operatorname{Pr}(\mathrm{l} \mid \mathrm{fo})$
$\operatorname{Pr}(\neg$ lo| -fo$)=1-\mathrm{Pr}(\mathrm{lo} \mid \neg \mathrm{fo})$

Belief propagation - diagnostic evidence message passing

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{fo})=.15 \\
& \operatorname{Pr}(-\mathrm{fo})=1-\operatorname{Pr}(\mathrm{fo})
\end{aligned}
$$

Belief propagation - diagnostic evidence message passing

- Aim: find prob that family left the house in the trivial net on the left
- provided that $\operatorname{Pr}^{*}(l o)=1$ is given

$$
\begin{gathered}
\operatorname{Pr}(\mathrm{fo})=0.15 \\
\operatorname{Pr}(\neg \mathrm{fo})=1-\operatorname{Pr}(\mathrm{fo})
\end{gathered}
$$

$\operatorname{Pr}^{*}(\mathrm{lo})=1$
$\operatorname{Pr}^{*}(\neg 10)=0$

- we search for $\operatorname{Pr}^{*}(f o)=\operatorname{Pr}(f o \mid l o)$,
- from Bayes theorem $\operatorname{Pr}(f o \mid l o)=\frac{\operatorname{Pr}(l o \mid f o) \operatorname{Pr}(f o)}{\operatorname{Pr}(l o)}$
- two values are actually needed: $\operatorname{Pr}(l o \mid f o)$ and $\operatorname{Pr}(l o)$
- however, $\operatorname{Pr}(l o)$ is unknown (only $\operatorname{Pr}^{*}(l o)=1$)
- LO passes $\lambda_{L O}^{F O}(f o)=\operatorname{Pr}(l o \mid f o)$ and $\lambda_{L O}^{F O}(\neg f o)=\operatorname{Pr}(l o \mid \neg f o)$
- and makes use of normalization $\operatorname{Pr}^{*}(f o)+\operatorname{Pr}^{*}(\neg f o)=1$

$$
\begin{aligned}
& \operatorname{Pr}^{*}(f o)=\alpha \lambda_{L O}^{F O}(f o) \operatorname{Pr}(f o)=\alpha \times .6 \times .15=.09 \alpha \\
& \operatorname{Pr}^{*}(\neg f o)=\alpha \lambda_{L O}^{F O}(\neg f o) \operatorname{Pr}(\neg f o)=\alpha \times .05 \times .85=.0425 \alpha \\
& \operatorname{Pr}^{*}(f o)+\operatorname{Pr}^{*}(\neg f o)=1 \rightarrow .09 \alpha+.0425 \alpha=1 \\
& \alpha=1 / .1325 \cong 7.55
\end{aligned}
$$

- it can be inferred that $\alpha=\frac{1}{\operatorname{Pr}(l o)}$
$-\operatorname{Pr}^{*}(f o)=0.68, \operatorname{Pr}^{*}(\neg f o)=0.32$

Belief propagation - combined propagation

- Aim: find prob that the dog is out knowing it barks,

- child is observed, parent is unobserved,
- finding $\operatorname{Pr}^{*}(D O)$ asks both for causal and diagnostic inference

$$
\begin{aligned}
& \pi_{D O}^{F O}(f o)=\operatorname{Pr}(f o), \pi_{D O}^{F O}(\neg f o)=\operatorname{Pr}(\neg f o) \\
& \lambda_{H B}^{D O}(d o)=\operatorname{Pr}(h b \mid d o), \lambda_{H B}^{D O}(\neg d o)=\operatorname{Pr}(h b \mid \neg d o)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}^{*}(d o)=\alpha \lambda_{H B}^{D O}(d o)\left[\operatorname{Pr}(d o \mid f o) \pi_{D O}^{F O}(f o)+\right. \\
&\left.+\operatorname{Pr}(d o \mid \neg f o) \pi_{D O}^{F O}(\neg f o)\right]= \\
&=.7 \alpha[.9 \times .15+.3 \times .85]=\alpha \times .7 \times .39=.273 \alpha \\
& \operatorname{Pr}^{*}(\neg d o)=\text { analogically }=6.1 \times 10^{-3} \alpha \\
& \alpha \cong 3.58, \operatorname{Pr}^{*}(d o) \cong .98, \operatorname{Pr}^{*}(\neg d o) \cong .02
\end{aligned}
$$

- if we generalize
$-\operatorname{Pr}^{*}(D O)=\operatorname{Pr}(D O \mid$ Evidence $)=\alpha \times \pi(D O) \times \lambda(D O)$
$-\alpha$ - normalization constant,
$-\pi(D O)$ - compound causal parameter,
$-\lambda(D O)$ - compound diagnostic parameter.

Belief propagation - combined propagation

- the evidence set with respect to $V_{i}: E=E^{+}\left(V_{i}\right) \cup E^{-}\left(V_{i}\right)$
- causal $\left(E^{+}\left(V_{i}\right)\right)$ and diagnostic $\left(E^{-}\left(V_{i}\right)\right)$ observations,
- polytree \rightarrow it holds $E^{+}\left(V_{i}\right) \Perp E^{-}\left(V_{i}\right) \mid V_{i}$,
- the only path connecting a causal and a diagnostic node leads through V_{i}.
- this separation can be used when computing probs $\operatorname{Pr}^{*}\left(V_{i}\right)$

$$
\begin{aligned}
\operatorname{Pr}^{*}\left(V_{i}\right) & =\operatorname{Pr}\left(V_{i} \mid E\right)=\operatorname{Pr}\left(V_{i} \mid E^{+}\left(V_{i}\right), E^{-}\left(V_{i}\right)\right)= \\
& =\alpha^{\prime} \times \operatorname{Pr}\left(E^{+}\left(V_{i}\right), E^{-}\left(V_{i}\right) \mid V_{i}\right) \times \operatorname{Pr}\left(V_{i}\right)= \\
& =\alpha^{\prime} \times \operatorname{Pr}\left(E^{-}\left(V_{i}\right) \mid V_{i}\right) \times \operatorname{Pr}\left(E^{+}\left(V_{i}\right) \mid V_{i}\right) \times \operatorname{Pr}\left(V_{i}\right)= \\
& =\alpha \times \operatorname{Pr}\left(E^{-}\left(V_{i}\right) \mid V_{i}\right) \times \operatorname{Pr}\left(V_{i} \mid E^{+}\left(V_{i}\right)\right)= \\
& =\alpha \times \lambda\left(V_{i}\right) \times \pi\left(V_{i}\right)=\operatorname{bel}\left(V_{i}\right)
\end{aligned}
$$

- compound causal $\pi\left(V_{i}\right)$ and diagnostic $\lambda\left(V_{i}\right)$ parameter

$$
\pi\left(V_{i}\right)=\sum_{V_{p 1}, \ldots, V_{p n}} \operatorname{Pr}\left(V_{i} \mid V_{p 1}, \ldots, V_{p n}\right) \prod_{j=1}^{n} \pi_{V_{i}}^{V_{p j}}\left(V_{p j}\right) \quad \lambda\left(V_{i}\right)=\prod_{j=1}^{m} \lambda_{V_{c j}}^{V_{i}}\left(V_{i}\right)
$$

Belief propagation - combined propagation

- Let us search for $\operatorname{Pr}^{*}(F O)$ again: $\operatorname{Pr}^{*}(f o)=\operatorname{Pr}(f o \mid l o, \neg h b)$ a $\operatorname{Pr}^{*}(\neg f o)=\operatorname{Pr}(\neg f o \mid l o, \neg h b)$
$-\operatorname{Pr}^{*}(F O)=\alpha \times \lambda(F O) \times \pi(F O)=\alpha \times \lambda_{L O}^{F O}(F O) \times \lambda_{D O}^{F O}(F O) \times \operatorname{Pr}(F O)$,
- λ messages from evidence nodes:
- simple, follows from earlier examples,
- light on - $\operatorname{Pr}^{*}(l o)=1$

$$
\begin{aligned}
& * \lambda_{L O}^{F O}(f o)=\operatorname{Pr}(l o \mid f o)=0.6, \\
& * \lambda_{L O}^{F O}(\neg f o)=\operatorname{Pr}(l o \mid \neg f o)=0.05,
\end{aligned}
$$

- no barking heard $-P r^{*}(h b)=0$,
* $\lambda_{H B}^{D O}(d o)=\operatorname{Pr}(\neg h b \mid d o)=0.3$,
* $\lambda_{H B}^{D O}(\neg d o)=\operatorname{Pr}(\neg h b \mid \neg d o)=0.99$,

$$
\begin{gathered}
\operatorname{Pr}(\mathrm{hb} \mid \mathrm{do})=.7 \\
\operatorname{Pr}(\mathrm{hb} \mid-\mathrm{do})=.01
\end{gathered} \quad \begin{aligned}
& \text { hear } \\
& \text { bark }
\end{aligned}
$$

- it equals $\operatorname{Pr}^{*}(D O \mid F O)$.

$$
-\pi_{D O}^{B P}(b p)=0.01, \pi_{D O}^{B P}(\neg b p)=0.99
$$

- it is more difficult to quantify $\lambda_{D O}^{F O}(F O)$.

Belief propagation - combined propagation

- In general, V_{i} sends messages as follows

$$
\begin{aligned}
& -\pi_{V_{V_{j}}}^{V_{i}}\left(V_{i}\right)=\alpha \pi\left(V_{i}\right) \prod_{k=1 \ldots m}^{k \neq j} \lambda_{V_{i}}^{V_{c k}}\left(V_{i}\right), \\
& -\lambda_{V_{i}}^{V_{p j}}\left(V_{p j}\right)=\sum_{v_{i}} \lambda\left(V_{i}\right) \sum_{V_{p 1}, \ldots, V_{p n}} \operatorname{Pr}\left(V_{i} \mid V_{p 1}, \ldots, V_{p n}\right) \prod_{k=1 \ldots n}^{k \neq j} \pi_{V_{i}}^{V_{k}}\left(V_{k}\right),
\end{aligned}
$$

- DO node passes to FO node

$$
\begin{aligned}
\lambda_{D O}^{F O}(f o) & =\lambda_{H B}^{D O}(d o)\left[\operatorname{Pr}(d o \mid f o, b p) \pi_{D O}^{B P}(b p)+\operatorname{Pr}(d o \mid f o, \neg b p) \pi_{D O}^{B P}(\neg b p)\right] \\
& +\lambda_{H B}^{D O}(\neg d o)\left[\operatorname{Pr}(\neg d o \mid f o, b p) \pi_{D O}^{B P}(b p)+\operatorname{Pr}(\neg d o \mid f o, \neg b p) \pi_{D O}^{B P}(\neg b p)\right]= \\
& =.3(.99 \times .01+.9 \times .99)+.99(.01 \times .01+.1 \times .99)=.27+.098=0.368 \\
\lambda_{D O}^{F O}(\neg f o) & =\lambda_{H B}^{D O}(d o)\left[\operatorname{Pr}(d o \mid \neg f o, b p) \pi_{D O}^{B P}(b p)+\operatorname{Pr}(d o \mid \neg f o, \neg b p) \pi_{D O}^{B P}(\neg b p)\right] \\
& +\lambda_{H B}^{D O}(\neg d o)\left[\operatorname{Pr}(\neg d o \mid \neg f o, b p) \pi_{D O}^{B P}(b p)+\operatorname{Pr}(\neg d o \mid \neg f o, \neg b p) \pi_{D O}^{B P}(\neg b p)\right]= \\
& =.3(.97 \times .01+.3 \times .99)+.99(.03 \times .7+.1 \times .99) \cong .092+.686=0.778
\end{aligned}
$$

- next, $P r^{*}(F O)$ can be computed

$$
\begin{aligned}
\operatorname{Pr}^{*}(f o) & =\alpha \times \lambda_{L O}^{F O}(f o) \times \lambda_{D O}^{F O}(f o) \times \operatorname{Pr}(f o)= \\
& =\alpha \times .6 \times .368 \times .15=.033 \alpha \\
\operatorname{Pr}^{*}(\neg f o)= & \alpha \times \lambda_{L O}^{F O}(\neg f o) \times \lambda_{D O}^{F O}(\neg f o) \times \operatorname{Pr}(\neg f o)= \\
= & \alpha \times .05 \times .778 \times .85=.033 \alpha
\end{aligned}
$$

- $\operatorname{Pr}^{*}(f o)+\operatorname{Pr}^{*}(\neg f o)=1 \rightarrow \alpha=\frac{1}{.066}=15.15 \rightarrow \operatorname{Pr}^{*}(f o)=\operatorname{Pr}^{*}(\neg f o)=0.5$

Belief propagation - summary

- Initialization step
- each observed node sends its causal and diagnostic parameters
$* \pi$ is either 0 or $1, \lambda$ carries conditional node probs (both according to observations),
- each unobserved root passes its causal π equal to its prior prob distribution,
- each unobserved leaf passes its diagnostic $\lambda=1$.
- Iteration steps
- carried out until any change occurs,
- each node V_{i} which:
* received the causal $\pi_{V_{i}}^{V_{p j}}\left(V_{p j}\right)$ of all parents
\Rightarrow computes its compound $\pi\left(V_{i}\right)$,
* received the diagnostic $\lambda_{V_{c j}}^{V_{i}}\left(V_{i}\right)$ of all its children
\Rightarrow computes its compound $\lambda\left(V_{i}\right)$,
* knows its compound $\pi\left(V_{i}\right)$ and received diagnostic $\lambda_{V_{c j}}^{V_{i}}$ of all its children excepted V_{c}
\Rightarrow passes $\pi_{V_{c}}^{V_{i}}\left(V_{i}\right)$ to V_{c} child,
* knows its compound $\lambda\left(V_{i}\right)$ and received causal $\pi_{V_{i}}^{V_{p j}}\left(V_{p j}\right)$ of all its parents excepted V_{p}
\Rightarrow passes its $\lambda_{V_{i}}^{V_{p}}\left(V_{p}\right)$ to V_{p} parent.

Other inference algorithms

- Clique or junction tree - Lauritzen \& Spigelhalter
- apparently the most commonly used method for exact inference in general DAGs,
- complexity is exponential in the size of the largest clique in transformed undirected graph,
- applicable namely in sparse networks,
- arc reversal - R. D. Shachter
- another exact inference method for general DAGs,
- stochastic sampling
- approximate inference method for general DAGs,
- instead of exact distribution $\operatorname{Pr}(Q \mid \mathbf{e})$ makes its estimation by stochastic simulation,
- although it does not have lower than NP complexity in general, time may be obtained at the expense of accuracy,
- particular algorithms
* rejection sampling - Henrion,
* likelihood weighting - Fung \& Chang,
* Gibbs sampling - Geman \& Geman, Pearl.

Junction tree algorithm

1. Moralization

- connect nodes that have a common child with an undirected edge,
- make all edges in the graph undirected,

2. triangulation

- extend the existing graph to be triangulated,
- each of its cycles of four or more nodes has a chord (an edge joining two nodes that are not adjacent in the cycle),

3. triangulated $=$ decomposable $($ chordal $)=$ a junction tree exists,
4. junction tree construction

- clique nodes $=$ cliques of triangulated graph,
- cliques C_{i} in graph G can be ordered such that "running intersection property" holds

$$
\forall i=2 \ldots K \quad \exists 1 \leq j<i \quad C_{i} \cap\left(\bigcup_{k=1}^{i-1} C_{k}\right) \subseteq C_{j}
$$

- the connected graph has one edge less than the number of its nodes $=$ tree,
- tree is completed by separator nodes $=$ intersections of adjacent cliques.

Junction tree algorithm - examples

Calculations in junction trees - examples

- stems from joint probability factorization along the triangulated graph

$$
\operatorname{Pr}^{G}=\operatorname{Pr}^{C_{1}} \frac{\operatorname{Pr}^{C_{2}}}{\operatorname{Pr}^{C_{2} \cap C_{1}}} \cdots \frac{\operatorname{Pr}^{C_{K}}}{\operatorname{Pr}^{C_{K} \cap\left(C_{1} \cup C_{2} \cup \ldots C_{K-1}\right)}}
$$

- product of all the junction tree nodes is at any moment and constantly equal to Pr^{G},
- FAMILY example

$$
\operatorname{Pr}(F O, L O, B P, D O, H B)=\frac{\operatorname{Pr}(F O, B P, D O) \times \operatorname{Pr}(F O, L O) \times \operatorname{Pr}(D O, H B)}{\operatorname{Pr}(F O) \times \operatorname{Pr}(D O)}
$$

- the node annotation probability tables are computed from the original network:
* $\operatorname{Pr}(F O, B P, D O)=\operatorname{Pr}(F O) \times \operatorname{Pr}(B P) \times \operatorname{Pr}(D O \mid F O, B P)$,
$* \operatorname{Pr}(D O)=\sum_{F O, B P} \operatorname{Pr}(F O, B P, D O)$,
* $\operatorname{Pr}(D O, H B)=\operatorname{Pr}(D O) \times \operatorname{Pr}(H B \mid D O), \ldots$

Calculations in junction trees

- the JT algorithm uses belief propagation to pass messages through the graph,
- enumerate $\operatorname{Pr}(f o \mid l o, \neg h b)$:

1. $\{\mathrm{FO}\}$ node annotation is moved into $\{\mathrm{FO}, \mathrm{BP}, \mathrm{DO}\}$ node,
2. $\operatorname{Pr}^{*}(l o)=1 \rightarrow$ compute $\operatorname{Pr}(F O \mid l o)$ from $\operatorname{Pr}(F O, L O)$ and propagate it into $\{\mathrm{FO}\}$,
3. multiply probs in $\{\mathrm{FO}, \mathrm{BP}, \mathrm{DO}\}$ and $\{\mathrm{FO}\}$, utilize $B P, D O \Perp L O \mid F O$ relationship $\operatorname{Pr}(B P, D O \mid F O) \times \operatorname{Pr}(F O \mid l o)=\operatorname{Pr}(F O, B P, D O \mid l o)$,
4. multiply probs in $\{\mathrm{DO}\}$ and $\{\mathrm{DO}, \mathrm{HB}\}$ nodes: $\frac{\operatorname{Pr}(D O, H B)}{\operatorname{Pr}(D O)}=\operatorname{Pr}(H B \mid D O)$,

Calculations in junction trees

5. knowing $\operatorname{Pr}(F O, B P, D O \mid l o), \operatorname{Pr}(D O \mid l o)$ is computed and passed into $\{\mathrm{DO}\}$ node,
6. $\{\mathrm{FO}, \mathrm{BP}, \mathrm{DO}\}$ annotation is updated: $\frac{\operatorname{Pr}(F O, B P, D O \mid l o)}{\operatorname{Pr}(\mathrm{DO} \mid l o)}=\operatorname{Pr}(F O, B P \mid D O, l o)$,
7. multiply probs in $\{\mathrm{DO}\}$ and $\{\mathrm{DO}, \mathrm{HB}\}$ nodes, make use of $L O \Perp H B \mid D O$ property $\operatorname{Pr}(D O \mid l o) \times \operatorname{Pr}(H B \mid D O)=\operatorname{Pr}(D O, H B \mid l o)$,
8. $\operatorname{Pr}^{*}(l o)=1 \rightarrow$ from $\operatorname{Pr}(D O, H B \mid l o)$ compute $\operatorname{Pr}(D O \mid l o, \neg h b)$ and pass it into $\{\mathrm{DO}\}$,
9. multiply probs in $\{\mathrm{FO}, \mathrm{BP}, \mathrm{DO}\}$ and $\{\mathrm{DO}\}$ nodes, make use of $F O, B P \Perp H B \mid D O$ property $\operatorname{Pr}(F O, B P \mid D O, l o) \times \operatorname{Pr}(D O \mid l o, \neg h b)=\operatorname{Pr}(F O, B P, D O \mid l o, \neg h b)$,
10. through marginalization of $\{\mathrm{FO}, \mathrm{BP}, \mathrm{DO}\}$ node we obtain $\operatorname{Pr}(F O \mid l o, \neg h b)$.

Arc reversal algorithm

- transform the original Bayesian network into a different one,
- the represented joint distribution either does not change or it is marginal wrt original one,
- the transformed network must include the query and evidence nodes (Q and E),
- the target marginal distribution $\operatorname{Pr}(Q \mid \mathbf{E})$ is available directly in the final transformed network,
- algorithm has 2 steps

1. node elimination - a node makes a tail (initial vertex) of no edge (its output degree is 0),
2. arc reversal - if there is an edge from a parent to its child and there is no alternative directed path between them, a transformation that does not change the joint distribution can be made - the arc is reversed, its incident nodes mutually inherit their parents.

Arc reversal algorithm

- each arc reversal from $P_{k} \rightarrow P_{l}$ to $P_{l} \rightarrow P_{k}$ is accompanied by CPT recomputations,
- let us start with CPT of the new parent node
(the old ${ }^{-}$and new ${ }^{+}$graph need to be used concurrently):

$$
\operatorname{Pr}\left(P_{l} \mid \text { parents }^{+}\left(P_{l}\right)\right)=\sum_{\forall p \in P_{k}} \operatorname{Pr}\left(P_{k}=p \mid \text { parents }^{-}\left(P_{k}\right)\right) \times \operatorname{Pr}\left(P_{l} \mid \text { parents }^{-}\left(P_{l}\right) \backslash P_{k}, P_{k}=p\right)
$$

- the paths leading through the former parent P_{k} replaced by an edge,
- the new edge sums the information flows for all the possible P_{k} values,
- next, let us derive CPT for the new child:

$$
\left.\operatorname{Pr}\left(P_{k} \mid \text { parents }^{+}\left(P_{k}\right)\right)=\frac{\operatorname{Pr}\left(P_{k} \mid \text { parents }^{-}\left(P_{k}\right)\right) \times \operatorname{Pr}\left(P_{l} \mid \text { parents }^{-}\left(P_{l}\right)\right)}{\operatorname{Pr}\left(P_{l} \mid\right. \text { parents }}\left(P_{l}\right)\right)
$$

- in the trivial case parents ${ }^{-}\left(P_{k}\right)=$ parents $^{+}\left(P_{l}\right)=\emptyset$ the recomputation formula reduces on Bayes theorem.

Arc reversal algorithm - example

- let us consider a particular arc reversal from $D O \rightarrow H B$ to $H B \rightarrow D O$, it holds:

$$
\begin{gathered}
\operatorname{Pr}(H B \mid F O, B P)=\sum_{p \in\{d o, \neg d o\}} \operatorname{Pr}(D O=p \mid F O, B P) \times \operatorname{Pr}(H B \mid D O=p) \\
\operatorname{Pr}(D O \mid F O, D O, H B)=\frac{\operatorname{Pr}(D O \mid F O, B P) \times \operatorname{Pr}(H B \mid D O)}{\operatorname{Pr}(H B \mid F O, B P)}
\end{gathered}
$$

FO	BP	HB		$\operatorname{Pr}(\mathrm{HB} \mid \mathrm{FO}, \mathrm{BP})$
T	T	T	$.99 \times .7+.01 \times .01=.6931$	
T	F	T	$\begin{gathered} .9 \times .7+.1 \times .01=.631 \\ .97 \times .7+.03 \times .01=.6793 \end{gathered}$	
F	T	T		
F	F	T	. $3 \times .7+.7 \times .01=.217$	
FO	BP	HB	DO	$\operatorname{Pr}(\mathrm{DO} \mid \mathrm{FO}, \mathrm{BP}, \mathrm{HB})$
T	T	T	T	. $99 \times .7 / .6931=.9999$
T	F	T	T	$.9 \times .7 / .631=.9984$
F	T	F	T	. $97 \times .3 / .3207=.9074$
F	F	F	T	$.3 \times .3 / .783=.1149$

$\operatorname{Pr}(\mathrm{do} \mid \mathrm{fo}, \mathrm{bp})=.99 \quad \operatorname{Pr}(\mathrm{hb} \mid \mathrm{do})=.7$
$\operatorname{Pr}(\mathrm{do} \mid \mathrm{fo}, \neg \mathrm{bp})=.9$
$\operatorname{Pr}(\mathrm{hb} \mid \neg \mathrm{do})=.01$
$\operatorname{Pr}(d o \mid \neg f o, b p)=.97$
$\operatorname{Pr}(\mathrm{do} \mid \neg \mathrm{fo}, \neg \mathrm{bp})=.3$

Approximate inference by stochastic sampling

- a general Monte-Carlo method, samples from the joint prob distribution,
- estimates the target conditional probability (query) from a sample set,
- the joint prob distribution is not explicitly given, its factorization is available only (network),
- the most straightforward is direct forward sampling

1. topologically sort the network nodes

- for every edge it holds that parent comes before its children in the ordering,

2. instantiate variables along the topological ordering

- take $\operatorname{Pr}\left(P_{j} \mid\right.$ parents $\left.\left(P_{j}\right)\right)$, randomly sample P_{j},

3. repeat step 2 for all the samples (the sample size M is given a priori),

- from samples to probabilities?
$-\operatorname{Pr}(q \mid \mathbf{e}) \approx \frac{N(q, \mathbf{e})}{N(\mathbf{e})}$
- samples that contradict evidence not used,
- forward sampling gets inefficient if $\operatorname{Pr}(\mathbf{e})$ is small,
- rejection sampling brings a slight improvement
- rejects partially generated samples as soon as they violate the evidence event \mathbf{e},
- sample generation often stops early.

Rejection sampling - example

- FAMILY example, estimate $\operatorname{Pr}\left(f_{o} \mid l o, \neg h b\right)$

1. topologically sort the network nodes

- e.g., $\langle F O, B P, L O, D O, H B\rangle$ (or $\langle B P, F O, D O, H B, L O\rangle$, etc.)

2. instantiate variables along the topological ordering
$-\operatorname{Pr}(F O) \rightarrow \neg f o, \operatorname{Pr}(B P) \rightarrow \neg b p$,

$$
\operatorname{Pr}(L O \mid \neg f o) \rightarrow l o, \operatorname{Pr}(D O \mid \neg f o, \neg b p) \rightarrow \neg d o, \operatorname{Pr}(H B \mid \neg d o) \rightarrow \neg h b
$$

- sample agrees with the evidence $\mathbf{e}=l o \wedge \neg h b$, no rejection needed,

3. generate 1000 samples, repeat step 2 ,

- let $N(f o, l o, \neg h b)$ is 491 (the number of samples with the given values of three variables under consideration),
- in rejection sampling $N(\mathbf{e})$ necessarily equals M,
$-\operatorname{Pr}(f o \mid l o, \neg h b) \approx \frac{N(q, \mathbf{e})}{N(\mathbf{e})}=\frac{491}{1000}=0.491$

Likelihood weighting

- Likelihood weighting is a sampling method that avoids necessity to reject samples
- the values of \mathbf{E} are fixed, the rest of variables is sampled only,
- however, not all events are equally probable, samples need to be weighted,
- the weight equals the likelihood of the event given the evidence,
- \forall samples $p^{m}=\left\{P_{1}=p_{1}^{m}, \ldots, P_{n}=p_{n}^{m}\right\}, m \in\{1, \ldots, M\}$

1. $w^{m} \leftarrow 1$ (initialize the sample weight)
2. $\forall j \in\{1, \ldots, n\}$ (instantiate variables along the topological ordering)

- if $P_{j} \in \mathbf{E}$ then take p_{j}^{m} from e and $w^{m} \leftarrow w^{m} \times \operatorname{Pr}\left(P_{j} \mid\right.$ parents $\left.\left(P_{j}\right)\right)$,
- otherwise randomly sample p_{j}^{m} from $\operatorname{Pr}\left(P_{j} \mid \operatorname{parents}\left(P_{j}\right)\right)$,
- from samples to probabilities?
- evidence holds in all samples (by definition),
- weighted averaging is applied to find $\operatorname{Pr}\left(Q=P_{i} \mid \mathbf{e}\right)$

$$
\operatorname{Pr}\left(p_{i} \mid \mathbf{e}\right) \approx \frac{\sum_{m=1}^{M} w^{m} \delta\left(p_{i}^{m}, p_{i}\right)}{\sum_{m=1}^{M} w^{m}} \delta(i, j)=\left\{\begin{array}{lll}
1 & \text { for } & i=j \\
0 & \text { for } & i \neq j
\end{array}\right.
$$

- nevertheless, samples may have very low weights
- it can also turn out inefficient in large networks with evidences occuring late in the ordering.

Likelihood weighting - example

- let us approximate $\operatorname{Pr}(f o \mid l o, \neg h b)$ (its exact value computed earlier is 0.5),

	p^{1}	p^{2}	p^{3}	$\begin{aligned} & F O^{1} \\ & B P^{1} \\ & L O^{1} \end{aligned}$	$\begin{aligned} & \operatorname{Pr}(f o)=.15 \rightarrow \neg f o \text { sampled } \\ & \operatorname{Pr}(b p)=.01 \rightarrow \neg b p \text { sampled } \\ & \text { evidence } \rightarrow l o \wedge w^{1}=\operatorname{Pr}(l o \mid \neg f o)=.05 \end{aligned}$
FO	F	F	T	$D O^{1}$:	$\operatorname{Pr}(d o \mid \neg f o, \neg b p)=.3 \rightarrow \neg d o$ sampled
BP	F	F	F	$H B^{1}$:	evidence $\rightarrow \neg h b \wedge w^{1}=.05 \times \operatorname{Pr}(\neg h b \mid \neg d o)=.0495$
LO	T	T	T		
DO	F	T	T	$F O^{2}$:	$\operatorname{Pr}(\mathrm{fo})=.15 \rightarrow \neg$ fo sampled
HB	F	F	F	$B P^{2}$:	$\operatorname{Pr}(b p)=.01 \rightarrow \neg b p$ sampled
w	. 0495	. 015	. 18	$\begin{aligned} & L O^{2} \\ & D O^{2} \\ & H B^{2} \end{aligned}$	$\begin{aligned} & \text { evidence } \rightarrow l o \wedge w^{1}=\operatorname{Pr}(l o \mid \neg f o)=.05 \\ & \operatorname{Pr}(d o \mid \neg f o, \neg b p)=.3 \rightarrow d o \text { sampled } \\ & \text { evidence } \rightarrow \neg h b \wedge w^{2}=.05 \times \operatorname{Pr}(\neg h b \mid d o)=.015 \end{aligned}$

- a very rough estimate having 3 samples only

$$
\operatorname{Pr}(f o \mid l o, \neg h b) \approx \frac{.18}{.0495+.015+.18}=.74
$$

Gibbs sampling

- a Markov chain method - the next state depends purely on the current state
- generates dependent samples!
- as it is a Monte-Carlo method as well \rightarrow MCMC,
- efficient sampling method namely when some of BN variable states are known
- it again samples nonevidence variables only, the samples never rejected,
- sampling process - samples $p^{m}=\left\{P_{1}=p_{1}^{m}, \ldots, P_{n}=p_{n}^{m}\right\}, m \in\{1, \ldots, M\}$

1. fix states of all observed variables from \mathbf{E} (in all samples),
2. the other variables initialized in p^{0} randomly,
3. generate p^{m} from $p^{m-1}\left(\forall P_{i} \notin E\right)$
$-p_{1}^{m} \leftarrow \operatorname{Pr}\left(P_{1} \mid p_{2}^{m-1}, \ldots, p_{n}^{m-1}\right)$,
$-p_{2}^{m} \leftarrow \operatorname{Pr}\left(P_{2} \mid p_{1}^{m}, p_{3}^{m-1}, \ldots, p_{n}^{m-1}\right)$,
-...,
$-p_{n}^{m} \leftarrow \operatorname{Pr}\left(P_{n} \mid p_{1}^{m}, \ldots, p_{n-1}^{m}\right)$,
4. repeat step 3 for $m \in\{1, \ldots, M\}$.

Gibbs sampling

- probs $\operatorname{Pr}\left(P_{i} \mid P_{1}, \ldots, P_{i-1}, P_{i+1}, \ldots, P_{n}\right)=\operatorname{Pr}\left(P_{i} \mid P \backslash P_{i}\right)$ not explicitly given \ldots
- to enumerate them, only their BN neighborhood needs to be known

$$
\operatorname{Pr}\left(P_{i} \mid P \backslash P_{i}\right) \propto \operatorname{Pr}\left(P_{i} \mid \operatorname{parents}\left(P_{i}\right)\right) \prod_{\forall P_{j}, P_{i} \in \operatorname{parents}\left(P_{j}\right)} \operatorname{Pr}\left(P_{j} \mid \operatorname{parents}\left(P_{j}\right)\right)
$$

- the neighborhood is called Markov blanket (MB),
- $M B$ covers the node, its parents, its children and their parents,
- $M B\left(P_{i}\right)$ is the minimum set of nodes that d-separates P_{i} from the rest of the network.
- from samples to probabilities?
- evidence holds in all samples (by definition),
- averaging $\forall m$ is applied to find $\operatorname{Pr}(Q \mid \mathbf{e})$

$$
\operatorname{Pr}\left(p_{i} \mid \mathbf{e}\right) \approx \frac{\sum_{m=1}^{M} \delta\left(p_{i}^{m}, p_{i}\right)}{M} \delta(i, j)= \begin{cases}1 & \text { for } i=j \\ 0 & \text { for } i \neq j\end{cases}
$$

Gibbs sampling - example

- let us approximate $\operatorname{Pr}(f o \mid l o, \neg h b)$ (its exact value computed earlier is 0.5),
p^{0} : random init of unevidenced variables

	p^{0}	p^{1}	p^{2}	\ldots
FO	T	F	F	
BP	T	F	F	
LO	T	\mathbf{T}	\mathbf{T}	
DO	F	F	F	
HB	\mathbf{F}	\mathbf{F}	\mathbf{F}	

$F O^{1}: \quad \operatorname{Pr}^{*}(f o) \propto \operatorname{Pr}(f o) \times \operatorname{Pr}(l o \mid f o) \times \operatorname{Pr}(\neg d o \mid f o, b p)$
$\operatorname{Pr}^{*}(\neg f o) \propto \operatorname{Pr}(\neg f o) \times \operatorname{Pr}(l o \mid \neg f o) \times \operatorname{Pr}(\neg d o \mid \neg f o, b p)$
$\operatorname{Pr}^{*}(f o) \propto .15 \times .6 \times .01=9 \times 10^{-4} \rightarrow \times \alpha_{F O}^{1}=.41$
$\operatorname{Pr}^{*}(\neg f o) \propto .85 \times .05 \times .03=1.275 \times 10^{-3} \rightarrow \times \alpha_{F O}^{1}=.59$
$\alpha_{F O}^{1}=\frac{1}{P r^{*}(f o)+P r^{*}(\neg f o)}=460$
$B P^{1}: \operatorname{Pr}^{*}(b p) \propto \operatorname{Pr}(b p) \times \operatorname{Pr}(\neg d o \mid \neg f o, b p)=.01 \times .03=.0003$
$\operatorname{Pr}^{*}(\neg b p) \propto \operatorname{Pr}(\neg b p) \times \operatorname{Pr}(\neg d o \mid \neg f o, \neg b p)=.99 \times .7=0.693$
$\alpha_{B P}^{1}=\frac{1}{P r^{*}(b p)+P r^{*}(\neg b p)}=1.44 \rightarrow \operatorname{Pr}^{*}(b p)=4 \times 10^{-4}$
$D O^{1}$: by analogy, $|M B(D O)|=5$
$F O^{2}$: BP value was switched, substitution is $\operatorname{Pr}(D O \mid F O, \neg b p)$
$\operatorname{Pr}^{*}(f o)=.21 \operatorname{Pr}^{*}(\neg f o)=.79$
$B P^{2}$: the same probs as is sample 1

Gibbs sampling - example

- BN Matlab Toolbox, aproximation of $\operatorname{Pr}(f o \mid l o, \neg h b)$,
- gibbs_sampling_inf_engine, three independent runs with 100 samples.

Summary

- independence and conditional independence ramarkably simplify prob model
- still, BN inference remains generally NP-hard wrt the number of network variables,
- inference complexity grows with the number of network edges
* naïve Bayes model - linear complexity,
* general complexity estimate from the size of maximal clique of triangulated graph,
- inference complexity can be reduced by constraining model structure
* special network types (singly connected), e.g. trees - one parent only,
- inference time can be shorten when exact answer is not required
* approximate inference, typically (but not only) stochastic sampling.

Recommended reading, lecture resources

- Russell, Norvig: AI: A Modern Approach, Uncertain Knowledge and Reasoning (Part V)
- probabilistic reasoning (chapter 14 or 15 , depends on the edition),
- online on Google books: http://books.google.com/books?id=8jZBksh-bUMC,
- Jiroušek: Metody reprezentace a zpracování znalostí v umělé inteligenci.
- bayesovské sítě (kapitola 6), metoda postupných modifikací sítě,
- http://staff.utia.cas.cz/vomlel/r.pdf,
- Šingliar: Pearl's algorithm.
- a message passing algorithm for exact inference in polytree BBNs,
- http://www.cs.pitt.edu/ tomas/cs3750/pearl.ppt.

