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pGPM lectures – an overview

� L1: introduction

− Bayesian networks – motivation and definitions,

− how graphs can help – conditional independence,

� L2: inference

− network applications in predictive tasks,

− inference engine – fundamental algorithms,

� L3: learning networks from data

− using networks for modelling,

− networks as tools for understanding of relations among variables,

� L4: extensions

− time, continuous variables, undirected graphs,

� L5: simple (restricted) graph models

− feasible models in expert systems,

− final exam – form, questions.
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pAgenda

� Motivation for graphical models

− general probabilistic model and its curse of dimensionality,

− general probabilistic model and knowledge?

� conditional independence

− definition, examples,

− graph equivalent – d-separation,

− graph equivalence wrt conditional independence,

� essential types of graphical probabilistic models

− brief categorization,

� Bayesian networks

− basic idea behind,

− example – family house with a dog,

− fundamental tasks and their complexity.

Notation (binary random variables):

A . . . random variable, a . . . A = True, ¬a . . . A = False, Pr(A, B) . . . joint probability distribution (a table),

Pr(a, b) = Pr(A = True, B = True) . . . prob of a particular event (a single item in table Pr(A, B)).
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pWhy not a general probabilistic model?

� Ex.: 3 statements about world (people), each statement valid or invalid for a person

− the world can be captured by joint probability,

� H: The person is higher then 180cm. M: The person is a man. Z: The person is a jockey.

− women and men are equally frequent, men tend to be tall, a jockey is mostly a short man,

T M J Pr(T,M,J) j ⇒ ¬t

F F F 0.298 F

F F T 0.002 T

F T F 0.245 F

F T T 0.005 T

T F F 0.199 T

T F T 0.001 T

T T F 0.248 T

T T T 0.002 T

1

� probability of a formula equals the sum of probability

of interpretations that satisfy it

− Pr(t)= 0.199 + 0.001 + 0.248 + 0.002 = 0.45,

45% of population is tall,

− Pr(j ⇒ ¬t)= 1 - 0.001 - 0.002 = 0.997,

99.7% of population is not tall or not a jockey,

� arbitrary probabilistic operations can also be applied

− Pr(¬t|j) = Pr(¬t,j)
Pr(j) = 0.007

0.01 = 0.7,

70% of jockeys are not tall

− Pr(m|j) = Pr(m,j)
Pr(j) = 0.007

0.01 = 0.7,

70% of jockeys are men

knowing a person is a jockey, in 70% cases it is a

man as well
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pWhy not a general probabilistic model?

� universality makes an asset of this model

− identical and trivial model structure for all problems,

− for a sufficient sample size its learning converges

∗ model learning means to estimate (joint) probabilities,

� intractable for real problems

− 2n − 1 probabilities when dealing with n propositions

(for discrete variables a different base, for continuous parametric models),

− infeasible for experts, the same holds for empirical settings based on data,

− even if probs were known, still exponential in memory and inference time

∗ obvious for a joint continuous distribution function,

∗ curse of dimensionality - the number of observations needed grows exp with the

number of variables,

� impenetrable for real tasks

− model gives no explicit knowledge about the domain,

− relations among objects remain hidden in a flood of numbers.
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pThe ways to simplify and better organize the model?

� utilize the domain knowledge:

− is there any relationship between all the random variables?

− the example: gender influences both height and occupation, height influences occupation.

� let us consider the graph probabilistic representation

− can relations be posed in terms of graphs?

− in which way to interpret graphs in probabilistic context?

− still 7 probability values needed, no simplification, only reformulation,

− why? edges among all the nodes, no use of (conditional) independence.

− any joint probability can be calculated

(and thus any other probability)

− Pr(t, m, j) = Pr(m)× Pr(t|m)× Pr(j|t, m) =

= 0.5× 0.5× 0.008 = 0.002

− Pr(m, j) = Pr(t, m, j) + Pr(¬t, m, j) =

= 0.002 + 0.005 = 0.007

− Pr(m|j) = Pr(m,j)
Pr(j) = 0.007

0.01 = 0.7
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p(Conditional) independence

� definition: A and B are conditionally independent given C if:

− Pr(A, B|C) = Pr(A|C)× Pr(B|C), ∀A, B, C, Pr(C) 6= 0

− denoted as A ⊥⊥ B|C (conditional dependence A>>B|C)

− (classical independence between A and B: Pr(A, B) = Pr(A)× Pr(B))

� some observations make other observations uninteresting

− under assumption of conditional independence it holds:

Pr(B|C) = Pr(B|A, C) a Pr(A|C) = Pr(A|B, C),

− observing C, knowledge of A becomes redundant for knowing B,

− observing C, knowledge of B becomes redundant for knowing A.
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p(Conditional) independence

� Example 1:

− heart attack rate (H) grows with ice cream sales (I),

− variables H and I are dependent:

Pr(h|i) > Pr(h),

− both grow only because of temperature (T),

− when conditioned by T, H and I become indepen-

dent: Pr(H|I, T ) = Pr(H|T ).

� Example 2:

− educated grandparents (PhDg) often have educated

grandchildren (PhD):

Pr(phd|phdg) > Pr(phd)

− knowledge of the parents’ education level (PhDp)

makes grandparents unimportant:

Pr(PhD|PhDp, PhDg) = Pr(PhD|PhDp)
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p(Conditional) independence

� Example 3:

− both radiation (R) and smoking (S) can cause cancer (C)

− R and S are obviously independent variables:

Pr(R, S) = Pr(R)× Pr(S)

− concerning C, R and S become seemingly dependent!!!

Pr(r|s, c) < Pr(r|c) or Pr(r|s, 6 c) < Pr(r| 6 c)

� Summary

− Ad 1 and 2) conditional independence

the intermediate variable explains dependency between the ultimate ones,

− Ad 3) independence

the intermediate variable introduces spurious dependency.

� � � � � � � � � � � � � � � � � � � � � � � � � � � A4M33RZN



pConnection types

� Nomenclature

− parent p and child/son c – a directed edge from p to c,

− ancestor a and descendant d – a directed path from a to d,

� three connection types

− diverging

∗ terminal nodes dependent, dependence disappears when (surely) knowing middle node,

∗ intermediate variable (daytime) explains dependence,

∗ crime-rate ← daytime → energy consumption (and Ex. 1 – heart attacks).

− linear (serial)

∗ terminal nodes dependent, dependence disappears when (surely) knowing middle node,

∗ intermediate variable (branch of study) explains dependence,

∗ Simpson’s paradox: gender → branch of study → admission (and Ex. 2 – PhD),

− converging

∗ terminal nodes indep., spurious dependence introduced with knowledge of middle node,

∗ temperature → ice cream sales ← salesperson skills (and Ex. 3 – radiation exposure),

� analogy e.g. with partial correlations.
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pD-separation

� uses connections to determine conditional independence between sets of nodes

− linear and diverging connection transmit information not given middle node,

− converging connection transmits information given middle node or its descendant,

� two node sets X and Y are d-separated by a node set Z iff

− all undirected paths between arbitrary node pairs x ∈ X and y ∈ Y are blocked

∗ there is a linear or diverging node z ∈ Z on the path, or

∗ there is a converging node w /∈ Z (none of its descendants w must not be in Z),

� d-separation is equivalent of conditional independence between X and Y given Z,

� a tool of abstraction

− generalizes from 3 to multiple nodes when studying information flow through a network.
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pD-separation – example, car diagnosis BN [Russel: AIMA]

� Gas, Start, Go ⊥⊥ Bat, Rad|Ign

� {Gas, Start, Go} and {Bat, Rad} c.ind

� sets are d-separated

� no open path between any pair of nodes

− Gas x Battery, Gas x Radio etc.

− all paths blocked by the middle linear node

� Gas>>Ign, Bat, Rad|Go

� Gas and {Ign, Bat, Rad} are c.dependent

� sets are not d-separated

� node Goes opens one path at least

− Gas connected with Ignition via Starts

− observed descendant of converging node
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pGraphical probabilistic models

� exploit both probability theory and graph theory,

� graph = qualitative part of model

− nodes represent events / random variables,

− edges represent dependencies between them,

− conditional independence can be seen in graph.

� probability = quantitative part of model

− local information about node and its neighbors,

− the strength of dependency, way of inference,

� different graph types (directed/undirected edges, constraints), probability encoding and focus

− Bayesian networks – causal and probabilistic processes,

− Markov networks – images, hidden causes,

− data flows – deterministic computations,

− influence diagrams – decision processes.
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pBayesian networks

� Bayesian or Bayes or belief or causal networks (BNs, CNs),

� What is a Bayesian network?

− directed acyclic graph – DAG,

− nodes represent random variables (typically discrete),

− edges represent direct dependence,

− nodes annotated by probabilities (tables, distributions)

∗ node probability is conditioned by conjunction of all its

parent nodes,

∗ Pr(Pj+1|P1, . . . , Pj) = Pr(Pj+1|parents(Pj+1))

∗ root nodes annotated by prior distributions,

∗ internal nodes conditioned by their parent variables,

∗ other (potential) dependencies are ignored,

� Network interpretation?

− concised representation of probability distribution given conditional independence relations,

− qualitative constituent = graph,

− quantitative constituent = a set of conditional probability tables (CPTs).
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pBayesian networks

� sacrifice accuracy and completeness – focus on fundamental relationships,

� reduce complexity of representation and subsequent inference,

� full probability model

− can be deduced by the gradual decomposition (factorization):

Pr(P1, P2, . . . , Pn) = Pr(P1)× Pr(P2, . . . , Pn|P1) =

= Pr(P1)× Pr(P2|P1)× Pr(P3, . . . , Pn|P1, P2) = · · · =
= Pr(P1)× Pr(P2|P1)× Pr(P3|P1, P2)× · · · × Pr(Pn|P1, . . . , Pn−1)

� BNs simplify the model:

− Pr(P1, . . . , Pn) = Pr(P1|parents(P1))× · · · × Pr(Pn|parents(Pn))

− ie. the other (possible) dependencies are ignored,

� ultimate case is näıve inference assuming variable independence

− Pr(P1, P2, . . . , Pn) = Pr(P1)× Pr(P2)× · · · × Pr(Pn)

− uses marginal probs only – linear complexity in the number of variables,

− used e.g. in classification.
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pNäıve Bayes classifier

� a special case of Bayesian network

− based on purely diagnostic reasoning,

− assumes conditional independence among features P1,. . . , Pk given the diagnosis D,

− the target variable is determined in advance.

Pr(D|P1, . . . , Pk) =
Pr(P1, . . . , Pk|D)× Pr(D)

Pr(P1, . . . , Pk)

Pr(P1, . . . , Pk|D) = Pr(P1|D)× Pr(P2|D)× · · · × Pr(Pk|D)
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pMarkov equivalence classes

� DAG classes that define identical conditional independence relationships

− represent identical joint distribution,

� Markov equivalence class is made by directed acyclic graphs which

− have the identical skeleton

∗ fully match when edge directions removed,

− contain the same set of immoralities

∗ immorality = 3 node subgraph such that: X → Z and Y → Z, no XY arc,

∗ ie. the graphs have the same sets of uncoupled parents (without an edge between them),

� when learning from data, graphs from a single class are indistinguishable,

� example: 2 distinct equivalence classes (first P2 ⊥⊥ P3|P1, second P2 ⊥⊥ P3|∅),
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pMarkov equivalence classes

� let us consider all 25 directed acyclic graphs with 3 labeled nodes
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pMarkov equivalence classes

� they make 11 Markov equivalence classes altogether
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pCharacteristics of qualitative model

� correctness

− simplification Pr(Pj+1|P1, . . . , Pj) = Pr(Pj+1|rodice(Pj+1)) complies with reality,

− each network node is c.ind of its ancestor given its parents,

� efficiency

− there are no redundant edges,

− actual c.independence relations described by the minimum number of edges,

− extra edges do not violate correctness,

− but slow down computations and make the model difficult to read,

� causality

− edge directions agree with actual cause-effect relationships,

� consequences

− graphs lying in the same Markov equivalence class have the same correctness and efficiency,

− complete DAG is always correct, however it is very likely inefficient.
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pCharacteristics of qualitative model – example

� The Surprise Candy Company makes candy in two flavors: 70% are strawberry flavor and

30% are anchovy flavor. Each new piece of candy starts out with a round shape; as it moves

along the production line, a machine randomly selects a certain percentage to be trimmed

into a square; then, each piece is wrapped in a wrapper whose color is chosen randomly to be

red or brown. 80% of the strawberry candies are round and 80% have a red wrapper, while

90% of the anchovy candies are square and 90% have a brown wrapper. All candies are sold

individually in sealed, identical, black boxes.

Russell, Norvig: Artificial Intelligence: A Modern Approach.
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pCharacteristics of qualitative model – example

� The Surprise Candy Company makes candy in two flavors: 70% are strawberry flavor and

30% are anchovy flavor. Each new piece of candy starts out with a round shape; as it moves

along the production line, a machine randomly selects a certain percentage to be trimmed

into a square; then, each piece is wrapped in a wrapper whose color is chosen randomly to be

red or brown. 80% of the strawberry candies are round and 80% have a red wrapper, while

90% of the anchovy candies are square and 90% have a brown wrapper. All candies are sold

individually in sealed, identical, black boxes.

� Wrap ⊥⊥ Shape|�

� contradicts reality.

� no independ. relationship,

� thus no unrealistic one.

� Wrap ⊥⊥ Shape|Flavor

� complies with reality.
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pProbability networks – example FAMILY

� Family house and events in it:

− family sometimes goes out,

− door light can be on or off,

− family owns a dog, rarely ill,

− dog can stay in or out,

− dog can bark.

� Relationships between events:

− often switching the light on when leaving,

− dog is rather out when leaving,

− dog is out when ill (bowel problem),

− dog is barking when out,

− dog can hardly be heard when in.
c©Charniak: Bayesian Networks withou Tears.
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pD-separation – examples

� LO>>HB|�

� open path from LO to HB,

� LO and HB not d-separated,

� LO and HB are dependent.

� LO ⊥⊥ HB|FO

� observed FO blocks path

� LO and HB c. independent,

� it also holds

− LO ⊥⊥ HB|DO

− LO>>HB|BP

� LO>>BP |HB

� observed HB opens path

� LO and BP c. dependent,

� it also holds

− LO ⊥⊥ BP |�
− LO>>BP |DO
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pBayesian networks – fundamental tasks

� inference – reasoning, deduction

− from observed events assumes on probability of other events,

− observations (E – a set of evidence variables, e – a particular event),

− target variables (Q – a set of query variables, Q – a particular query variable),

− Pr(Q|e), resp. Pr(Q ∈ Q|e) to be found,

− network is known (both graph and CPTs),

� learning network parameters from data

− network structure (graph) is given,

− “only” quantitative parameters (CPTs) to be optimized,

� learning network structure from data

− propose an optimal network structure

∗ which edges of the complete graph shall be employed?,

− too many arcs → complicated model,

− too few arcs → inaccurate model.
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pSummary

� probability

− a rigorous tool for uncertainty modeling,

− each atomic event is described by the joint probability distribution,

− queries answered by enumeration of atomic events

∗ (summing, sometimes with final division),

� needs to be simplified in non-trivial domains

− reason: curse of dimensionality,

− solution: independence and conditional independence

− tool: GPM = graph (quality) + conditional probability tables/functions (quantity).
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pRecommended reading, lecture resources

� Russell, Norvig: AI: A Modern Approach, Uncertain Knowledge and Reasoning (Part V)

− zejména neurčitost (kap. 14) a probabilistic usuzováńı (kap. 15),

− online on Google books: http://books.google.com/books?id=8jZBksh-bUMC,

� Charniak: Bayesian Networks without Tears

− http://ntu.csie.org/~piaip/docs/BayesianNetworksWithoutTears.pdf,

� Murphy: A Brief Introduction to Graphical Models and Bayesian Networks.

− http://www.cs.ubc.ca/~murphyk/Bayes/bayes.html,

� Mooney: CS 391L: Machine Learning: Bayesian Learning: Beyond Naive Bayes.

− http://www.cs.utexas.edu/~mooney/cs391L/slides/bayes2.pdf,

� Bishop: Pattern Recognition and Machine Learning.

− Chapter 8: Graphical models,

− http://research.microsoft.com/%7Ecmbishop/PRML/Bishop-PRML-sample.pdf.
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