AE4M33RZN, Fuzzy description logic: fuzzyDL reasoner

Radomír Černoch

radomir.cernoch@fel.cvut.cz

18/11/2013

Faculty of Electrical Engineering, CTU in Prague

Plan of the lecture

Witnessed model

FuzzyDL algorithm Completion-forest Forest completion Existential rule and termination

FuzzyDL syntax

Concrete data types

Biblopgraphy

Definition

A logic is said to have the finite model property if every satisfiable formula of the logic admits a finite model, i.e., a model with a finite domain. [Baader, 2003]

Definition

A logic is said to have the finite model property if every satisfiable formula of the logic admits a finite model, i.e., a model with a finite domain. [Baader, 2003]

• Why is FMP important?

Definition

A logic is said to have the finite model property if every satisfiable formula of the logic admits a finite model, i.e., a model with a finite domain. [Baader, 2003]

• Why is FMP important? Unless FMP holds, we need to be clever about our reasoning algorithms and avoid creating infinite models.

Definition

A logic is said to have the finite model property if every satisfiable formula of the logic admits a finite model, i.e., a model with a finite domain. [Baader, 2003]

- Why is FMP important? Unless FMP holds, we need to be clever about our reasoning algorithms and avoid creating infinite models.
- Does FMP hold in Fuzzy Description Logic?

Definition

A logic is said to have the finite model property if every satisfiable formula of the logic admits a finite model, i.e., a model with a finite domain. [Baader, 2003]

- Why is FMP important? Unless FMP holds, we need to be clever about our reasoning algorithms and avoid creating infinite models.
- Does FMP hold in Fuzzy Description Logic? Unfortunately no.

Witnessed model property

Definition

An interpretation \mathscr{I} is \circ -witnessed if for all $x \in \Delta$, there is $y \in \Delta$ s.t.

$$(\exists \mathsf{R} \,\cdot\, \mathsf{C})^{\mathscr{I}}(\mathsf{x}) = \mathsf{R}^{\mathscr{I}}(\mathsf{x},\mathsf{y}) \overset{\wedge}{_{\scriptscriptstyle \circ}} \mathsf{C}^{\mathscr{I}}(\mathsf{y})$$

and similarly there is a y $\in \Delta$ s.t.

$$(C \sqsubseteq D)^{\mathscr{I}}(y) = C^{\mathscr{I}}(y) \stackrel{\circ}{\Longrightarrow} D^{\mathscr{I}}(y)$$
.

We say that the y is the "witness", because he is responsible for the particular membership degree of $\exists R \cdot C$ (or $C \sqsubseteq D$).

• It is easy to see that every finite model is a witnessed model,

 It is easy to see that every finite model is a witnessed model, because all sup() can be replaced by max() in the definition of ∃.

- It is easy to see that every finite model is a witnessed model, because all sup() can be replaced by max() in the definition of ∃.
- Example: Assume $\frac{-}{s}$ and $\frac{-}{s}$ logic and a concept

 $C = \neg \forall R \cdot A \sqcap \neg \exists R \cdot \neg A.$

We will show that C can be satisfied to the degree 0.5 in an **infinite** model, but **no finite model** (and therefore no witnessed model) can satisfy C to 0.5.

- It is easy to see that every finite model is a witnessed model, because all sup() can be replaced by max() in the definition of ∃.
- Example: Assume $\frac{-}{s}$ and $\frac{-}{s}$ logic and a concept

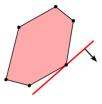
 $C = \neg \forall R \cdot A \sqcap \neg \exists R \cdot \neg A.$

We will show that C can be satisfied to the degree 0.5 in an **infinite** model, but **no finite model** (and therefore no witnessed model) can satisfy C to 0.5.

Are we hopeless? No! In Łukasiewicz logic ([¬]_S, [∧]_L, ^R_L) we can restrict our reasoning to witnessed and finite models without loosing any information [Hájek, 2005].

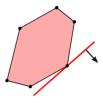
305 / 338 FuzzyDL

Imagine a 2D space with a convex polygon in the space (x, y). Given constraints $4x + y \ge 6, y \le 8, ...,$ minimize x - 2y.



Source: [Wikipedia, 2013]

Imagine a 2D space with a convex polygon in the space (x, y). Given constraints $4x + y \ge 6, y \le 8, ...,$ minimize x - 2y.

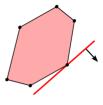


Source: [Wikipedia, 2013]

Usually written in a matrix form

maximize
$$c^T \cdot x$$
(1)subject to A $x \leq 0$ (2)

Imagine a 2D space with a convex polygon in the space (x, y). Given constraints $4x + y \ge 6, y \le 8, ...,$ minimize x - 2y.



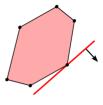
Source: [Wikipedia, 2013]

Usually written in a matrix form

maximize
$$c^T \cdot x$$
(1)subject to A $x \leq 0$ (2)

• (Mixed) Integer LP allows (some) variables to be discrete.

Imagine a 2D space with a convex polygon in the space (x, y). Given constraints $4x + y \ge 6, y \le 8, ...,$ minimize x - 2y.



Source: [Wikipedia, 2013]

Usually written in a matrix form

maximize
$$c^T \cdot x$$
(1)subject to A $x \leq 0$ (2)

- (Mixed) Integer LP allows (some) variables to be discrete.
- LP with real values is in P class. ILP is NP-complete.

Solution of a ((M)I)LP

- One solution (a point in the polytope).
- No solution (the polytope is empty).
- Multiple solutions with equal objective function value.

Solution of a ((M)I)LP

- One solution (a point in the polytope).
- No solution (the polytope is empty).
- Multiple solutions with equal objective function value.

Syntactical notes about fuzzyDL:

- $x \in \mathbb{R}$ will be real numbers.
- y $\in \mathbb{N}$ will be integer numbers.
- All values x, y will be bounded by [0, 1].

• Transforms \mathcal{K} to the negated-normal-form.¹

¹Makes sure that the negation \neg appears only in front of concepts using:

- Transforms \mathcal{K} to the negated-normal-form.¹
- Creates an witnessed interpretation of \mathcal{K} .

¹Makes sure that the negation \neg appears only in front of concepts using:

- Transforms \mathcal{K} to the negated-normal-form.¹
- Creates an witnessed interpretation of \mathcal{K} .
- During its working it creates
 - a completion forest and

¹Makes sure that the negation \neg appears only in front of concepts using:

- Transforms \mathcal{K} to the negated-normal-form.¹
- Creates an witnessed interpretation of \mathcal{K} .
- During its working it creates
 - a completion forest and
 - a list of linear constraints \mathscr{C} .

¹Makes sure that the negation \neg appears only in front of concepts using:

- Transforms \mathcal{K} to the negated-normal-form.¹
- Creates an witnessed interpretation of \mathcal{K} .
- During its working it creates
 - a completion forest and
 - a list of linear constraints \mathscr{C} .
- Linear constraints \mathscr{C} are solved using any mixed-integer-linear-programming solver.

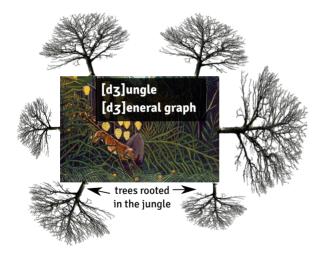
¹Makes sure that the negation \neg appears only in front of concepts using:

- Transforms $\mathcal K$ to the <code>negated-normal-form.1</code>
- Creates an witnessed interpretation of \mathcal{K} .
- During its working it creates
 - a completion forest and
 - a list of linear constraints \mathscr{C} .
- Linear constraints $\mathscr C$ are solved using any mixed-integer-linear-programming solver.

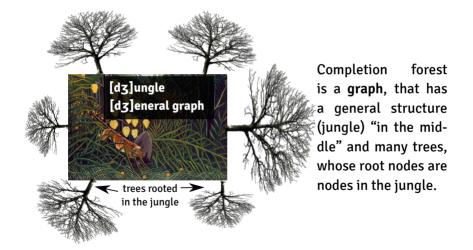
Disclaimer: Not going beyond Ł-logic, no concrete data types.

¹Makes sure that the negation \neg appears only in front of concepts using:

Completion-forest informally



Completion-forest informally



Completion-forest formally

The fuzzyDL algorithm starts with creating the "jungle". It contains all **individuals** (connected by an edge if they are linked by some relation).

Initialization

- Create a new vertex v_a for each individual a in the $\ensuremath{\mathcal{K}}.$

Completion-forest formally

The fuzzyDL algorithm starts with creating the "jungle". It contains all **individuals** (connected by an edge if they are linked by some relation).

Initialization

- Create a new vertex v_a for each individual a in the ${\cal K}.$
- Create an edge (v_a,v_b) for each role assertion between a and b.

The fuzzyDL algorithm starts with creating the "jungle". It contains all **individuals** (connected by an edge if they are linked by some relation).

Initialization

- Create a new vertex v_a for each individual a in the $\ensuremath{\mathcal{K}}.$
- Create an edge (v_a,v_b) for each role assertion between a and b.
- Add a label (C, n) to vertex a for each concept assertion (a : C | n).

The fuzzyDL algorithm starts with creating the "jungle". It contains all **individuals** (connected by an edge if they are linked by some relation).

Initialization

- Create a new vertex v_a for each individual a in the $\ensuremath{\mathcal{K}}.$
- Create an edge (v_a,v_b) for each role assertion between a and b.
- Add a label $\langle C,n\rangle$ to vertex a for each concept assertion $\langle a : C\,|\,n\rangle.$
- Add a label ⟨R, n⟩ to edge (a, b) for each role assertion ⟨(a, b) : R | n⟩.

Forest completion (1)

The reasoner applies each of the following rules sequentially:

A If a vertex v is labeled $\langle C, l \rangle$, add $(x_{v:C} \ge l)$ into \mathscr{C} .

The reasoner applies each of the following rules sequentially:

- A If a vertex v is labeled $\langle C, l \rangle$, add $(x_{v:C} \ge l)$ into \mathscr{C} .
- \overline{A} If a vertex v is labeled $\langle \neg C, l \rangle$, add $(x_{v:C} \leq 1 l)$ into \mathscr{C} .

The reasoner applies each of the following rules sequentially:

- A If a vertex v is labeled $\langle C, l \rangle$, add $(x_{v:C} \ge l)$ into \mathscr{C} .
- \overline{A} If a vertex v is labeled $\langle \neg C, l \rangle$, add $(x_{v:C} \leq 1 l)$ into \mathscr{C} .
- $\mathsf{R} \ \text{ If an edge } (\mathsf{v},\mathsf{w}) \text{ is labeled } \langle \mathsf{R},\mathsf{l}\rangle \text{, add } (\mathsf{x}_{(\mathsf{v},\mathsf{w}):\mathsf{R}} \geqslant \mathsf{l}) \text{ into } \mathscr{C}.$

The reasoner applies each of the following rules sequentially:

- A If a vertex v is labeled $\langle C, l \rangle$, add $(x_{v:C} \ge l)$ into \mathscr{C} .
- \overline{A} If a vertex v is labeled $\langle \neg C, l \rangle$, add $(x_{v:C} \leq 1 l)$ into \mathscr{C} .
- $\mathsf{R} \ \text{ If an edge } (\mathsf{v},\mathsf{w}) \text{ is labeled } \langle \mathsf{R},\mathsf{l}\rangle \text{, add } (\mathsf{x}_{(\mathsf{v},\mathsf{w}):\mathsf{R}} \geqslant \mathsf{l}) \text{ into } \mathscr{C}.$
- \perp If a vertex v is labeled $\langle \perp, l \rangle$, add (l = 0) into \mathscr{C} .

Forest completion (2)

 $\Box \text{ If a vertex } v \text{ is labeled } \langle C \Box D, l \rangle, \text{ append labels } \langle C, x_1 \rangle, \langle D, x_2 \rangle \\ \text{ to } v \text{ and add the following constraints into } \mathscr{C} \text{ (with fresh } x_1, x_2, y\text{):}$

$$y \leq 1 - l$$

$$x_1 \leq 1 - y$$

$$x_2 \leq 1 - y$$

$$x_1 + x_2 = l + 1 - y$$

Forest completion (2)

 $\Box \text{ If a vertex } v \text{ is labeled } \langle C \Box D, l \rangle, \text{ append labels } \langle C, x_1 \rangle, \langle D, x_2 \rangle \\ \text{ to } v \text{ and add the following constraints into } \mathscr{C} \text{ (with fresh } x_1, x_2, y\text{):}$

$$y \leq 1 - l$$
$$x_1 \leq 1 - y$$
$$x_2 \leq 1 - y$$
$$x_1 + x_2 = l + 1 - y$$

 $\begin{tabular}{ll} $$ \square $ If a vertex v is labeled $\langle C \sqcup D, l \rangle$, append labels $\langle C, x_1 \rangle$, $\langle C, x_2 \rangle$ to v and add $(x_1 + x_2 = l)$ into \varnotharpow (with fresh x_1, x_2, y)$. } \end{tabular}$

Forest completion (3)

∀ If a vertex v is labeled $\langle \forall R \cdot C, l_1 \rangle$, an edge (v, w) is labeled $\langle R, l_2 \rangle$ and the rule has not been applied to this pair, then append the label $\langle C, x \rangle$ to w and add the following constraints into \mathscr{C} (with fresh x, y):

$$l_1+l_2-1\leqslant x\leqslant y\leqslant l_1+l_2$$

Forest completion (3)

∀ If a vertex v is labeled $\langle \forall R \cdot C, l_1 \rangle$, an edge (v, w) is labeled $\langle R, l_2 \rangle$ and the rule has not been applied to this pair, then append the label $\langle C, x \rangle$ to w and add the following constraints into \mathscr{C} (with fresh x, y):

$$l_1+l_2-1\leqslant x\leqslant y\leqslant l_1+l_2$$

 $\begin{tabular}{l} &\sqsubseteq \ \mbox{If } \langle C \sqsubseteq D \, | \, n \rangle \in \mathcal{K} \mbox{, and the rule has not been applied to a node v,} \\ & \ \mbox{then append labels } \langle nnf(\neg C), 1 - x_1 \rangle \mbox{, } \langle D, x_2 \rangle \mbox{ to v} \\ & \ \mbox{and add } (x_1 \leqslant x_2 + 1 - n) \mbox{ to } \mathscr{C}. \end{tabular} \end{tabular}$

Consider $\mathcal{K} = \{ \langle \exists R \cdot C \sqsubseteq D | 1 \rangle, \langle (a, b) : R | 0.7 \rangle, \langle b : C | 0.8 \rangle \}.$ Show that $glb(\mathcal{K}, a : D) = 0.5$.

Termination (1)

Unless the rules are applied repeatedly, the algorithm (as explained so far) terminates.

Termination (1)

Unless the rules are applied repeatedly, the algorithm (as explained so far) terminates.

For defining \exists rule, new nodes are added, which needs to refine the terminating condition.

Unless the rules are applied repeatedly, the algorithm (as explained so far) terminates.

For defining \exists rule, new nodes are added, which needs to refine the terminating condition.

Equivalence of labels

Two lists of labels $[\langle C_1,l_1\rangle\,,\ldots\,,\langle C_n,l_n\rangle]$ and $[\langle C_1,l_1'\rangle\,,\ldots\,,\langle C_n,l_n'\rangle]$ are equivalent iff either

- l_i and l'_i are variables or
- l_i and l_i' are negated variables or
- l_i and l'_i are equal rationals.

Termination (2)

Directly blocked node

A node is directly blocked iff

- it is outside the "jungle" and
- none of its ancestors are blocked and
- it has an ancestor with equivalent labels.

Blocked node

A node is blocked iff either

- it is directly blocked or
- one of its predecessors is blocked.

Forest completion (4)

 $\exists \ \text{If a vertex } v \text{ is labeled } \langle \exists \, R \, \cdot \, C, l \rangle \text{ and it is not blocked,} \\ \text{add a new vertex } w \text{ and an edge } (v, w), \text{ add labels } \langle C, x_2 \rangle \text{ to } w, \text{ and} \\ \langle R, x_1 \rangle \text{ to } (v, w) \text{ and the following constraints into } \mathscr{C} \text{ (with fresh } x_1, x_2 \text{ and } y): }$

$$\begin{split} y \leqslant \mathbf{1} - l \\ \mathbf{x}_1 \leqslant \mathbf{1} - \mathbf{y} \\ \mathbf{x}_2 \leqslant \mathbf{1} - \mathbf{y} \\ \mathbf{x}_1 + \mathbf{x}_2 = l + \mathbf{1} - \mathbf{y} \end{split}$$

- The instance of MILP is created using constraints ${\mathscr C}.$
- In order to solve $glb(\mathcal{K}, \langle a : C \rangle)$,

- The instance of MILP is created using constraints ${\mathscr C}.$
- In order to solve $glb(\mathcal{K}, \langle a : C \rangle)$, the objective function is set to minimize x in the MILP instance created for an augmented knowledge base $\mathcal{K} \cup \langle a : \neg C | \mathbf{1} x \rangle$.

- The instance of MILP is created using constraints $\mathscr{C}.$
- In order to solve $glb(\mathcal{K}, \langle a : C \rangle)$, the objective function is set to minimize x in the MILP instance created for an augmented knowledge base $\mathcal{K} \cup \langle a : \neg C | \mathbf{1} x \rangle$.
- Similarly for $glb(\mathcal{K}, \langle a : C \sqsubseteq D \rangle)$ the augmented knowledge base is $\mathcal{K} \cup \langle a : \neg C | 1 x \rangle$.

- The instance of MILP is created using constraints \mathscr{C} .
- In order to solve glb(𝔅, ⟨a : C⟩), the objective function is set to minimize x in the MILP instance created for an augmented knowledge base 𝔅∪ ⟨a : ¬ C | 1 - x⟩.
- Similarly for $glb(\mathcal{K}, \langle a : C \sqsubseteq D \rangle)$ the augmented knowledge base is $\mathcal{K} \cup \langle a : \neg C | 1 x \rangle$.
- \mathcal{K} is inconsistent iff the MILP instance has no solution.
- Hence the $glb(\cdot, \cdot)$ is found if MILP instance has a solution.

FuzzyDL: Conclusion

 FuzzyDL is a tableau algorithm with exactly 1 branch. The ⊔ does not cause branching.

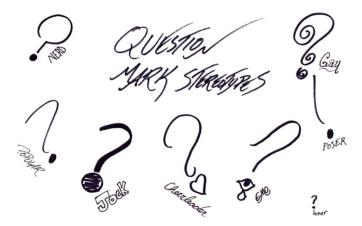
FuzzyDL: Conclusion

- FuzzyDL is a tableau algorithm with exactly 1 branch. The ⊔ does not cause branching.
- Rules are applied deterministically (to ensure termination).

FuzzyDL: Conclusion

- FuzzyDL is a tableau algorithm with exactly 1 branch. The ⊔ does not cause branching.
- Rules are applied deterministically (to ensure termination).
- The complexity of reasoning is caused by the integer (y) variables.

Questions?! Ask, please.



Source: ragtagdoodles.deviantart.com

320 / 338 FuzzyDL

Ex: Jim revisited

We will use the Łukasiewicz logic in the following examples ($\Box = \Box$, ...).

- $\langle jim: Male | 0.9 \rangle$ (3)
- $\langle jim : Female | 0.2 \rangle$ (4)
- $\langle \mathsf{Male} \sqcap \mathsf{Female} \sqsubseteq \bot | \mathbf{1} \rangle \tag{5}$

Ex: Jim revisited

We will use the Łukasiewicz logic in the following examples ($\Box = \Box$, ...).

- $\langle jim : Male | 0.9 \rangle$ (3)
- $\langle jim : Female | 0.2 \rangle$ (4)

$$\langle \mathsf{Male} \sqcap \mathsf{Female} \sqsubseteq \bot | \mathbf{1} \rangle$$
 (5)

$$\begin{split} \text{The interpretation domain is } \Delta^{\mathscr{I}_1} &= \Delta^{\mathscr{I}_2} = \{j\}, \, jim^{\mathscr{I}_1} = jim^{\mathscr{I}_2} = j. \\ \text{Male}^{\mathscr{I}_1} &= \{(j; 0.9)\} \\ \text{Female}^{\mathscr{I}_1} &= \{(j; 0)\} \\ \end{split}$$

Ex: Jim revisited (check your knowledge)

Let's check the interpretation against the definitions...

$\mathscr{I} \models \tau$	$\tau_{(1)}$	$ au_{(2)}$	$\tau_{(3)}$
\mathcal{I}_{1}	?	?	?
I ₂	?	?	?

Ex: Jim revisited (check your knowledge)

Let's check the interpretation against the definitions...

$\mathscr{I} \models \tau$	$\tau_{(1)}$	$ au_{(2)}$	$\tau_{(3)}$
\mathcal{I}_{1}	yes	no	yes
I ₂	yse	yes	no

Let's change the weights and encode the example in fuzzyDL:

```
(instance jim Male 0.4)
(instance jim Female 0.2)
```

(l-implies (and Male Female) *bottom* 0.9)

```
(min-instance? jim Male)
(max-instance? jim Male)
(min-instance? jim Female)
(max-instance? jim Female)
```

Let $\langle \text{jim} : \text{Male} | \alpha \rangle$ and $\langle \text{jim} : \text{Female} | \beta \rangle$, what are the bounds on α and β ? fuzzyDL shows that 0.4 $\leq \alpha \leq$ 0.9 and 0.2 $\leq \beta \leq$ 0.7. Why?

Ex: Smokers

Recall the motivational example from the first lecture:

- $\langle symmetric(friend) \rangle$ (6)
- $\langle (anna, bill) : friend | 1 \rangle$ (7)
 - $\langle (bill, cloe) : friend | 1 \rangle$ (8)
- $\langle (cloe, dirk) : friend | 1 \rangle$ (9)
 - $\langle anna : Smoker | 1 \rangle$ (10)
- $\langle \exists friend \cdot Smoker \sqsubseteq Smoker | 0.7 \rangle$ (11)

What are the bounds on $\langle i: \text{Smoker} \rangle$ for $i \in \{\text{anna, bill, cloe, dirk}\}$?

What changes if we add

$$\langle dirk : \neg Smoker | 0.7 \rangle$$
 (12)
(13)

What are the bounds on $(i : \neg Smoker)$ for $i \in \{anna, bill, cloe, dirk\}$?

Ex: Smokers (in fuzzyDL)

```
(implies (some friendOf Smoker) Smoker 0.7)
(summetric friendOf)
(related anna bill friendOf)
(related bill cloe friendOf)
(related cloe dirk friendOf)
(instance anna Smoker)
(instance dirk (not Smoker) 0.7)
(min-instance? anna Smoker)
(min-instance? bill Smoker)
(min-instance? cloe Smoker)
(min-instance? dirk Smoker)
(max-instance? anna Smoker)
(max-instance? bill Smoker)
(max-instance? cloe Smoker)
(max-instance? dirk Smoker)
```

The domain $\Delta^{\mathscr{S}}$ is an unordered set. This is good for modelling cathegorical data: e.g. colors, people, ...

General idea: Extended interpretation

But we also need to include real numbers IR. The *fuzzy description logic with concrete datatypes* SHIF(D) uses "abstract objects" and "concrete objects":

$$\Delta^{\mathscr{I}} = \Delta^{\mathscr{I}}_{\mathsf{a}} \cup \mathbb{R}$$

• *Concrete individuals*, are interpreted as objects from **R**.

- Concrete individuals, are interpreted as objects from IR.
- *Concrete concepts*, are interpreted as subsets from IR.

- Concrete individuals, are interpreted as objects from IR.
- *Concrete concepts*, are interpreted as subsets from **I**R.
- *Concrete roles*, are interpreted as subsets from ($\Delta_a^{\mathscr{I}} \times \mathbb{R}$).

- Concrete individuals, are interpreted as objects from IR.
- *Concrete concepts*, are interpreted as subsets from **I**R.
- *Concrete roles*, are interpreted as subsets from ($\Delta_a^{\mathscr{I}} \times \mathbb{R}$).

All non-concrete notions are called *abstract*.

Concrete data types: New concepts

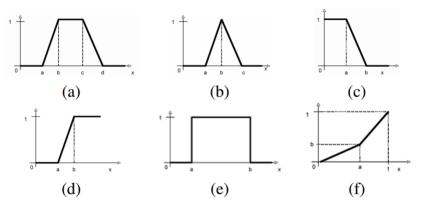


Fig. 1. (a) Trapezoidal function; (b) Triangular function; (c) *L*-function; (d) *R*-function; (e) Crisp interval; (f) Linear function.

(related adam bob parent) (related adam eve parent)

```
(define-fuzzy-concept around23 triangular(0,100, 18,23,26))
(define-fuzzy-concept moreTh17 right-shoulder(0,100, 13,21))
(instance bob (some age around23) 0.9)
(instance eve (some age moreTh17))
```

(define-fuzzy-concept young left-shoulder(0,100, 17,25))
(define-concept YoungPerson (some age young))

```
(min-instance? eve YoungPerson) (max-instance? eve YoungPerson)
(min-instance? bob YoungPerson) (max-instance? bob YoungPerson)
(min-instance? adam (all parent YoungPerson))
(max-instance? adam (all parent YoungPerson))
(min-instance? adam (some parent YoungPerson))
(max-instance? adam (some parent YoungPerson))
```

Ex: Age of parents

1. What are the bounds on α from (eve : YoungPerson | α)?

Ex: Age of parents

1. What are the bounds on α from (eve : YoungPerson | α)?

Start by drawing the concept around23, then construct an interpretation. How much freedom do you have when constructing the interpretation?

Ex: Age of parents

1. What are the bounds on α from (eve : YoungPerson | α)?

Start by drawing the concept around23, then construct an interpretation. How much freedom do you have when constructing the interpretation?

2. Let fuzzyDL reasoner give you both bounds on $\langle i : YoungPerson | \beta_i \rangle$ for $i \in \{eve, bob\}$.

How do you infer the bounds on $\langle adam : YoungPerson | \gamma \rangle$?

Ex: Car dealing

- 1. The buyer wants a **passenger** that costs **less than €26000**.
- 2. If there is an **alarm system** in the car, **then** he is satisfied with paying no more than €22300, but he can go up to €22750 with a lesser degree of satisfaction.
- 3. The driver insurance, air conditioning and the black color are important factors.
- 4. Preferably the price is no more than €22000, but he can go to
 €24000 to a lesser degree of satisfaction.

Ex: Car dealing

- 1. The seller wants to sell no less than €22000.
- 2. Preferably the buyer buys the **insurance plus** package.
- 3. If the **color is black**, then it is highly possible the car has an **air-conditioning**.

This can be formalized in fuzzy description logic.

- 1. The seller wants to sell no less than €22000.
- 2. Preferably the buyer buys the **insurance plus** package.
- 3. If the **color is black**, then it is highly possible the car has an **air-conditioning**.

This can be formalized in fuzzy description logic. We have the background knowledge:

{Sedan ⊑ PassengerCar | 1}
{InsurancePlus = DriverInsurance □ TheftInsurance | 1}

The buyer's preferences:

1. $B = PassengerCar \sqcap \exists price \cdot \leq 26000$

- **1.** $B = PassengerCar \sqcap \exists price \cdot \leq 26000$
- 2. $B_1 = \text{AlarmSystem} \mapsto \exists \text{ price } \cdot \text{ l.sh.}(22300, 22750)$

- **1.** $B = PassengerCar \sqcap \exists price \cdot \leq 26000$
- 2. $B_1 = \text{AlarmSystem} \mapsto \exists \text{ price } \cdot \text{ l.sh.}(22300, 22750)$
- 3. $B_2 = DriverInsurance$,

- **1.** $B = PassengerCar \sqcap \exists price \cdot \leq 26000$
- 2. $B_1 = \text{AlarmSystem} \mapsto \exists \text{ price } \cdot \text{ l.sh.}(22300, 22750)$
- 3. $B_2 = \text{DriverInsurance}, B_3 = \text{AirCondition},$

The buyer's preferences:

- **1.** $B = PassengerCar \sqcap \exists price \cdot \leq 26000$
- 2. $B_1 = \text{AlarmSystem} \mapsto \exists \text{ price } \cdot \text{ l.sh.}(22300, 22750)$
- 3. $B_2 = \text{DriverInsurance}, B_3 = \text{AirCondition}, B_4 = \exists \text{ color } \cdot \text{ Black}$
- 4. $B_5 = \exists \text{ price } \cdot \text{ l.sh.}(22000, 24000)$

The buyer's preferences:

1. $S = PassengerCar \sqcap \exists price \cdot \ge 22000$

The buyer's preferences:

- **1.** $B = PassengerCar \sqcap \exists price \cdot \leq 26000$
- 2. $B_1 = \text{AlarmSystem} \mapsto \exists \text{ price } \cdot \text{ l.sh.}(22300, 22750)$
- 3. $B_2 = \text{DriverInsurance}, B_3 = \text{AirCondition}, B_4 = \exists \text{ color } \cdot \text{ Black}$
- 4. $B_5 = \exists \text{ price } \cdot \text{ l.sh.}(22000, 24000)$

- **1.** $S = PassengerCar \sqcap \exists price \cdot \ge 22000$
- 2. $S_1 = InsurancePlus$

The buyer's preferences:

- **1.** $B = PassengerCar \sqcap \exists price \cdot \leq 26000$
- 2. $B_1 = \text{AlarmSystem} \mapsto \exists \text{ price } \cdot \text{ l.sh.}(22300, 22750)$
- 3. $B_2 = \text{DriverInsurance}, B_3 = \text{AirCondition}, B_4 = \exists \text{ color } \cdot \text{ Black}$
- 4. $B_5 = \exists price \cdot l.sh.(22000, 24000)$

- **1.** $S = PassengerCar \sqcap \exists price \cdot \ge 22000$
- 2. $S_1 = InsurancePlus$
- 3. $S_2 = (0.5 (\exists color \cdot Black) \mapsto AirCondition)$

We know that S and B are hard constraints and $B_{1..5}$ and $S_{1..2}$ are soft preferences. All the concepts can be "summed up":

and

We know that S and B are hard constraints and $B_{1..5}$ and $S_{1..2}$ are soft preferences. All the concepts can be "summed up":

$$Buy = B \sqcap (0.1B_1 + 0.2B_2 + 0.1B_3 + 0.4B_4 + 0.2B_5)$$

$$Sell = S \sqcap (0.6S_1 + 0.4S_2)$$

and

We know that S and B are hard constraints and $B_{1..5}$ and $S_{1..2}$ are soft preferences. All the concepts can be "summed up":

Buy = B
$$\sqcap$$
 (0.1B₁ + 0.2B₂ + 0.1B₃ + 0.4B₄ + 0.2B₅)

$$\mathsf{Sell} = \mathsf{S} \sqcap (\mathsf{0.6S}_1 + \mathsf{0.4S}_2)$$

A good choice of \Box can make B a hard constraint.

Optimal match

$glb({\sf K}\,,{\sf Buy}\sqcap{\sf Sell})$

Finds the optimal match between a seller and a buyer. (Finds an ideal, imaginary car that maximizes satisfaction of both parties.)

Particular car

$glb(K, \langle audiTT : Buy \sqcap Sell \rangle)$

Finds the degree of satisfaction for a particuklar car audiTT.

336 / 338 FuzzyDL

Where to find more examples?

- Simple examples are bundled with fuzzyDL installation (/opt/fuzzydl/ on the heartofgold server).
- Advanced examples can be found on the fuzzyDL web site: http://gaia.isti.cnr.it/~straccia/software/ fuzzyDL/fuzzyDL.html

Bibliography

Baader, F. (2003).

The Description Logic Handbook: Theory, Implementation, and Applications.

Cambridge University Press.

📔 Hájek, P. (2005).

Making fuzzy description logic more general. Fuzzy Sets and Systems, 154(1):1--15.

📔 Wikipedia (2013).

Linear programming – Wikipedia, the free encyclopedia. [Online; accessed 17-November-2013].