
AE4M33RZN, Fuzzy description logic:
fuzzyDL reasoner

Radomír Černoch
radomir.cernoch@fel.cvut.cz

10/11/2014

Faculty of Electrical Engineering, CTU in Prague

401 / 438 FuzzyDL

Plan of the lecture

FuzzyDL algorithm
Completion-forest
Forest completion
Existential rule and termination

Concrete data types

Witnessed model

Example

Biblopgraphy

402 / 438 FuzzyDL

Linear programming in a nutshell

Imagine a 2D space with a convex
polygon in the space (x, y). Given
constraints 4x + y ≥ 6, y ≤ 8, ...,
minimize x − 2y.

Source: [Wikipedia, 2013]

• Usually written in a matrix form

maximize 𝐜T ⋅ x (1)

subject to A 𝐱 ≤ 0 (2)

• (Mixed) Integer LP allows (some) variables to be discrete.
• LP with real values is in P class, ILP is NP-complete.

403 / 438 FuzzyDL

Linear programming in a nutshell

Imagine a 2D space with a convex
polygon in the space (x, y). Given
constraints 4x + y ≥ 6, y ≤ 8, ...,
minimize x − 2y.

Source: [Wikipedia, 2013]

• Usually written in a matrix form

maximize 𝐜T ⋅ x (1)

subject to A 𝐱 ≤ 0 (2)

• (Mixed) Integer LP allows (some) variables to be discrete.
• LP with real values is in P class, ILP is NP-complete.

403 / 438 FuzzyDL

Linear programming in a nutshell

Imagine a 2D space with a convex
polygon in the space (x, y). Given
constraints 4x + y ≥ 6, y ≤ 8, ...,
minimize x − 2y.

Source: [Wikipedia, 2013]

• Usually written in a matrix form

maximize 𝐜T ⋅ x (1)

subject to A 𝐱 ≤ 0 (2)

• (Mixed) Integer LP allows (some) variables to be discrete.

• LP with real values is in P class, ILP is NP-complete.

403 / 438 FuzzyDL

Linear programming in a nutshell

Imagine a 2D space with a convex
polygon in the space (x, y). Given
constraints 4x + y ≥ 6, y ≤ 8, ...,
minimize x − 2y.

Source: [Wikipedia, 2013]

• Usually written in a matrix form

maximize 𝐜T ⋅ x (1)

subject to A 𝐱 ≤ 0 (2)

• (Mixed) Integer LP allows (some) variables to be discrete.
• LP with real values is in P class, ILP is NP-complete.

403 / 438 FuzzyDL

Linear programming in a nutshell

Solution of a ((M)I)LP

• One solution (a point in the polytope).

• No solution (the polytope is empty).

• Multiple solutions with equal objective function value.

Syntactical notes about fuzzyDL:

• x ∈ IR will be real numbers.

• y ∈ IN will be integer numbers.

• All values x, y will be bounded by [0, 1].

404 / 438 FuzzyDL

Linear programming in a nutshell

Solution of a ((M)I)LP

• One solution (a point in the polytope).

• No solution (the polytope is empty).

• Multiple solutions with equal objective function value.

Syntactical notes about fuzzyDL:

• x ∈ IR will be real numbers.

• y ∈ IN will be integer numbers.

• All values x, y will be bounded by [0, 1].

404 / 438 FuzzyDL

FuzzyDL algorithm overview

• TransformsK to the negated-normal-form.1

• Creates an witnessed interpretation ofK .

• During its working it creates
• a completion forest and
• a list of linear constraints𝒞 .

• Linear constraints𝒞 are solved using any
mixed-integer-linear-programming solver.

Disclaimer: Not going beyond Ł-logic, no concrete data types.

1Makes sure that the negation¬ appears only in front of concepts using:

nnf(¬∀𝖱 ⋅ 𝖢) = ∃𝖱 ⋅ nnf(¬𝖢) and nnf(¬∃𝖱 ⋅ 𝖢) = ∀𝖱 ⋅ nnf(¬𝖢) .

405 / 438 FuzzyDL

FuzzyDL algorithm overview

• TransformsK to the negated-normal-form.1

• Creates an witnessed interpretation ofK .

• During its working it creates
• a completion forest and
• a list of linear constraints𝒞 .

• Linear constraints𝒞 are solved using any
mixed-integer-linear-programming solver.

Disclaimer: Not going beyond Ł-logic, no concrete data types.

1Makes sure that the negation¬ appears only in front of concepts using:

nnf(¬∀𝖱 ⋅ 𝖢) = ∃𝖱 ⋅ nnf(¬𝖢) and nnf(¬∃𝖱 ⋅ 𝖢) = ∀𝖱 ⋅ nnf(¬𝖢) .

405 / 438 FuzzyDL

FuzzyDL algorithm overview

• TransformsK to the negated-normal-form.1

• Creates an witnessed interpretation ofK .

• During its working it creates
• a completion forest and

• a list of linear constraints𝒞 .

• Linear constraints𝒞 are solved using any
mixed-integer-linear-programming solver.

Disclaimer: Not going beyond Ł-logic, no concrete data types.

1Makes sure that the negation¬ appears only in front of concepts using:

nnf(¬∀𝖱 ⋅ 𝖢) = ∃𝖱 ⋅ nnf(¬𝖢) and nnf(¬∃𝖱 ⋅ 𝖢) = ∀𝖱 ⋅ nnf(¬𝖢) .

405 / 438 FuzzyDL

FuzzyDL algorithm overview

• TransformsK to the negated-normal-form.1

• Creates an witnessed interpretation ofK .

• During its working it creates
• a completion forest and
• a list of linear constraints𝒞 .

• Linear constraints𝒞 are solved using any
mixed-integer-linear-programming solver.

Disclaimer: Not going beyond Ł-logic, no concrete data types.

1Makes sure that the negation¬ appears only in front of concepts using:

nnf(¬∀𝖱 ⋅ 𝖢) = ∃𝖱 ⋅ nnf(¬𝖢) and nnf(¬∃𝖱 ⋅ 𝖢) = ∀𝖱 ⋅ nnf(¬𝖢) .

405 / 438 FuzzyDL

FuzzyDL algorithm overview

• TransformsK to the negated-normal-form.1

• Creates an witnessed interpretation ofK .

• During its working it creates
• a completion forest and
• a list of linear constraints𝒞 .

• Linear constraints𝒞 are solved using any
mixed-integer-linear-programming solver.

Disclaimer: Not going beyond Ł-logic, no concrete data types.

1Makes sure that the negation¬ appears only in front of concepts using:

nnf(¬∀𝖱 ⋅ 𝖢) = ∃𝖱 ⋅ nnf(¬𝖢) and nnf(¬∃𝖱 ⋅ 𝖢) = ∀𝖱 ⋅ nnf(¬𝖢) .

405 / 438 FuzzyDL

FuzzyDL algorithm overview

• TransformsK to the negated-normal-form.1

• Creates an witnessed interpretation ofK .

• During its working it creates
• a completion forest and
• a list of linear constraints𝒞 .

• Linear constraints𝒞 are solved using any
mixed-integer-linear-programming solver.

Disclaimer: Not going beyond Ł-logic, no concrete data types.
1Makes sure that the negation¬ appears only in front of concepts using:

nnf(¬∀𝖱 ⋅ 𝖢) = ∃𝖱 ⋅ nnf(¬𝖢) and nnf(¬∃𝖱 ⋅ 𝖢) = ∀𝖱 ⋅ nnf(¬𝖢) .

405 / 438 FuzzyDL

Completion-forest informally

[dʒ]ungle
[dʒ]eneral graph

trees rooted
in the jungle

Completion forest
is a graph, that has
a general structure
(jungle) “in the mid-
dle” and many trees,
whose root nodes are
nodes in the jungle.

406 / 438 FuzzyDL

Completion-forest informally

[dʒ]ungle
[dʒ]eneral graph

trees rooted
in the jungle

Completion forest
is a graph, that has
a general structure
(jungle) “in the mid-
dle” and many trees,
whose root nodes are
nodes in the jungle.

406 / 438 FuzzyDL

Completion-forest formally

The fuzzyDL algorithm starts with creating the “jungle”. It contains all
individuals (connected by an edge if they are linked by some relation).

Initialization

• Create a new vertex va for each individual a in the K .

• Create an edge (va, vb) for each role assertion between a and b.

• Add a label ⟨𝖢, n⟩ to vertex a for each concept assertion ⟨a ∶ 𝖢 | n⟩.
• Add a label ⟨𝖱, n⟩ to edge (a, b)

for each role assertion 􏾉(a, b) ∶ 𝖱 | n􏽼.

407 / 438 FuzzyDL

Completion-forest formally

The fuzzyDL algorithm starts with creating the “jungle”. It contains all
individuals (connected by an edge if they are linked by some relation).

Initialization

• Create a new vertex va for each individual a in the K .

• Create an edge (va, vb) for each role assertion between a and b.

• Add a label ⟨𝖢, n⟩ to vertex a for each concept assertion ⟨a ∶ 𝖢 | n⟩.
• Add a label ⟨𝖱, n⟩ to edge (a, b)

for each role assertion 􏾉(a, b) ∶ 𝖱 | n􏽼.

407 / 438 FuzzyDL

Completion-forest formally

The fuzzyDL algorithm starts with creating the “jungle”. It contains all
individuals (connected by an edge if they are linked by some relation).

Initialization

• Create a new vertex va for each individual a in the K .

• Create an edge (va, vb) for each role assertion between a and b.

• Add a label ⟨𝖢, n⟩ to vertex a for each concept assertion ⟨a ∶ 𝖢 | n⟩.

• Add a label ⟨𝖱, n⟩ to edge (a, b)
for each role assertion 􏾉(a, b) ∶ 𝖱 | n􏽼.

407 / 438 FuzzyDL

Completion-forest formally

The fuzzyDL algorithm starts with creating the “jungle”. It contains all
individuals (connected by an edge if they are linked by some relation).

Initialization

• Create a new vertex va for each individual a in the K .

• Create an edge (va, vb) for each role assertion between a and b.

• Add a label ⟨𝖢, n⟩ to vertex a for each concept assertion ⟨a ∶ 𝖢 | n⟩.
• Add a label ⟨𝖱, n⟩ to edge (a, b)

for each role assertion 􏾉(a, b) ∶ 𝖱 | n􏽼.

407 / 438 FuzzyDL

Forest completion (1)

The reasoner applies each of the following rules sequentially:

𝖠 If a vertex v is labeled ⟨𝖢, l⟩, add (xv∶𝖢 ≥ l) into𝒞 .

𝖠̄ If a vertex v is labeled ⟨¬𝖢, l⟩, add (xv∶𝖢 ≤ 1 − l) into𝒞 .

𝖱 If an edge (v,w) is labeled ⟨𝖱, l⟩, add (x(v,w)∶𝖱 ≥ l) into𝒞 .

⊥ If a vertex v is labeled ⟨⊥, l⟩, add (l = 0) into𝒞 .

408 / 438 FuzzyDL

Forest completion (1)

The reasoner applies each of the following rules sequentially:

𝖠 If a vertex v is labeled ⟨𝖢, l⟩, add (xv∶𝖢 ≥ l) into𝒞 .

𝖠̄ If a vertex v is labeled ⟨¬𝖢, l⟩, add (xv∶𝖢 ≤ 1 − l) into𝒞 .

𝖱 If an edge (v,w) is labeled ⟨𝖱, l⟩, add (x(v,w)∶𝖱 ≥ l) into𝒞 .

⊥ If a vertex v is labeled ⟨⊥, l⟩, add (l = 0) into𝒞 .

408 / 438 FuzzyDL

Forest completion (1)

The reasoner applies each of the following rules sequentially:

𝖠 If a vertex v is labeled ⟨𝖢, l⟩, add (xv∶𝖢 ≥ l) into𝒞 .

𝖠̄ If a vertex v is labeled ⟨¬𝖢, l⟩, add (xv∶𝖢 ≤ 1 − l) into𝒞 .

𝖱 If an edge (v,w) is labeled ⟨𝖱, l⟩, add (x(v,w)∶𝖱 ≥ l) into𝒞 .

⊥ If a vertex v is labeled ⟨⊥, l⟩, add (l = 0) into𝒞 .

408 / 438 FuzzyDL

Forest completion (1)

The reasoner applies each of the following rules sequentially:

𝖠 If a vertex v is labeled ⟨𝖢, l⟩, add (xv∶𝖢 ≥ l) into𝒞 .

𝖠̄ If a vertex v is labeled ⟨¬𝖢, l⟩, add (xv∶𝖢 ≤ 1 − l) into𝒞 .

𝖱 If an edge (v,w) is labeled ⟨𝖱, l⟩, add (x(v,w)∶𝖱 ≥ l) into𝒞 .

⊥ If a vertex v is labeled ⟨⊥, l⟩, add (l = 0) into𝒞 .

408 / 438 FuzzyDL

Forest completion (2)

⊓ If a vertex v is labeled ⟨𝖢 ⊓ 𝖣, l⟩, append labels ⟨𝖢, x1⟩, ⟨𝖣, x2⟩
to v and add the following constraints into𝒞 (with fresh x1, x2, y):

y ≤ 1 − l

x1 ≤ 1 − y

x2 ≤ 1 − y

x1 + x2 = l + 1 − y

⊔ If a vertex v is labeled ⟨𝖢 ⊔ 𝖣, l⟩, append labels ⟨𝖢, x1⟩, ⟨𝖢, x2⟩
to v and add (x1 + x2 = l) into𝒞 (with fresh x1, x2, y).

409 / 438 FuzzyDL

Forest completion (2)

⊓ If a vertex v is labeled ⟨𝖢 ⊓ 𝖣, l⟩, append labels ⟨𝖢, x1⟩, ⟨𝖣, x2⟩
to v and add the following constraints into𝒞 (with fresh x1, x2, y):

y ≤ 1 − l

x1 ≤ 1 − y

x2 ≤ 1 − y

x1 + x2 = l + 1 − y

⊔ If a vertex v is labeled ⟨𝖢 ⊔ 𝖣, l⟩, append labels ⟨𝖢, x1⟩, ⟨𝖢, x2⟩
to v and add (x1 + x2 = l) into𝒞 (with fresh x1, x2, y).

409 / 438 FuzzyDL

Forest completion (3)

∀ If a vertex v is labeled ⟨∀𝖱 ⋅ 𝖢, l1⟩, an edge (v,w) is labeled
⟨R, l2⟩ and the rule has not been applied to this pair,
then append the label ⟨𝖢, x⟩ to w and add the following
constraints into𝒞 (with fresh x, y):

l1 + l2 − 1 ≤ x ≤ y ≤ l1 + l2

⊑ If ⟨𝖢⊑𝖣 | n⟩ ∈ K , and the rule has not been applied to a node v,
then append labels 􏾉nnf(¬𝖢), 1 − x1􏽼, ⟨𝖣, x2⟩ to v
and add (x1 ≤ x2 + 1 − n) to𝒞 .

410 / 438 FuzzyDL

Forest completion (3)

∀ If a vertex v is labeled ⟨∀𝖱 ⋅ 𝖢, l1⟩, an edge (v,w) is labeled
⟨R, l2⟩ and the rule has not been applied to this pair,
then append the label ⟨𝖢, x⟩ to w and add the following
constraints into𝒞 (with fresh x, y):

l1 + l2 − 1 ≤ x ≤ y ≤ l1 + l2

⊑ If ⟨𝖢⊑𝖣 | n⟩ ∈ K , and the rule has not been applied to a node v,
then append labels 􏾉nnf(¬𝖢), 1 − x1􏽼, ⟨𝖣, x2⟩ to v
and add (x1 ≤ x2 + 1 − n) to𝒞 .

410 / 438 FuzzyDL

Forest completion: Example

Consider K = {⟨∃𝖱 ⋅ 𝖢⊑𝖣 | 1⟩ , 􏾉(a, b) ∶ 𝖱 | 0.7􏽼 , ⟨b ∶ 𝖢 | 0.8⟩}.
Show that glb(K , a ∶ 𝖣) = 0.5.

411 / 438 FuzzyDL

Termination (1)

Unless the rules are applied repeatedly, the algorithm (as explained so
far) terminates.

For defining ∃ rule, new nodes are added, which needs to refine the
terminating condition.

Equivalence of labels

Two lists of labels [⟨C1, l1⟩ , … , ⟨Cn, ln⟩] and [⟨C1, l′1⟩ , … , ⟨Cn, l′n⟩] are
equivalent iff either

• li and l′i are variables or

• li and l′i are negated variables or

• li and l′i are equal rationals.

412 / 438 FuzzyDL

Termination (1)

Unless the rules are applied repeatedly, the algorithm (as explained so
far) terminates.
For defining ∃ rule, new nodes are added, which needs to refine the
terminating condition.

Equivalence of labels

Two lists of labels [⟨C1, l1⟩ , … , ⟨Cn, ln⟩] and [⟨C1, l′1⟩ , … , ⟨Cn, l′n⟩] are
equivalent iff either

• li and l′i are variables or

• li and l′i are negated variables or

• li and l′i are equal rationals.

412 / 438 FuzzyDL

Termination (1)

Unless the rules are applied repeatedly, the algorithm (as explained so
far) terminates.
For defining ∃ rule, new nodes are added, which needs to refine the
terminating condition.

Equivalence of labels

Two lists of labels [⟨C1, l1⟩ , … , ⟨Cn, ln⟩] and [⟨C1, l′1⟩ , … , ⟨Cn, l′n⟩] are
equivalent iff either

• li and l′i are variables or

• li and l′i are negated variables or

• li and l′i are equal rationals.

412 / 438 FuzzyDL

Termination (2)

Directly blocked node

A node is directly blocked iff

• it is outside the “jungle” and

• none of its ancestors are blocked and

• it has an ancestor with equivalent labels.

Blocked node
A node is blocked iff either

• it is directly blocked or

• one of its predecessors is blocked.

413 / 438 FuzzyDL

Forest completion (4)

∃ If a vertex v is labeled ⟨∃𝖱 ⋅ 𝖢, l⟩ and it is not blocked,
add a new vertex w and an edge (v,w), add labels ⟨C, x2⟩ to w, and
⟨R, x1⟩ to (v,w) and the following constraints into𝒞 (with fresh
x1, x2 and y):

y ≤ 1 − l

x1 ≤ 1 − y

x2 ≤ 1 − y

x1 + x2 = l + 1 − y

414 / 438 FuzzyDL

FuzzyDL: Overview

• The instance of MILP is created using constraints𝒞 .

• In order to solve glb(K , ⟨a ∶ 𝖢⟩),

the objective function is set to
minimize x in the MILP instance created for an augmented
knowledge base K∪ ⟨a ∶ ¬ 𝖢 | 1 − x⟩.

• Similarly for glb(K , ⟨a ∶ C⊑D⟩) the augmented knowledge base
isK∪ ⟨a ∶ 𝖢 ⊓ ¬𝖣 | 1 − x⟩.

• K is inconsistent iff the MILP instance has no solution.
Hence the glb(⋅, ⋅) is found if MILP instance has a solution.

415 / 438 FuzzyDL

FuzzyDL: Overview

• The instance of MILP is created using constraints𝒞 .

• In order to solve glb(K , ⟨a ∶ 𝖢⟩), the objective function is set to
minimize x in the MILP instance created for an augmented
knowledge base K∪ ⟨a ∶ ¬ 𝖢 | 1 − x⟩.

• Similarly for glb(K , ⟨a ∶ C⊑D⟩) the augmented knowledge base
isK∪ ⟨a ∶ 𝖢 ⊓ ¬𝖣 | 1 − x⟩.

• K is inconsistent iff the MILP instance has no solution.
Hence the glb(⋅, ⋅) is found if MILP instance has a solution.

415 / 438 FuzzyDL

FuzzyDL: Overview

• The instance of MILP is created using constraints𝒞 .

• In order to solve glb(K , ⟨a ∶ 𝖢⟩), the objective function is set to
minimize x in the MILP instance created for an augmented
knowledge base K∪ ⟨a ∶ ¬ 𝖢 | 1 − x⟩.

• Similarly for glb(K , ⟨a ∶ C⊑D⟩) the augmented knowledge base
isK∪ ⟨a ∶ 𝖢 ⊓ ¬𝖣 | 1 − x⟩.

• K is inconsistent iff the MILP instance has no solution.
Hence the glb(⋅, ⋅) is found if MILP instance has a solution.

415 / 438 FuzzyDL

FuzzyDL: Overview

• The instance of MILP is created using constraints𝒞 .

• In order to solve glb(K , ⟨a ∶ 𝖢⟩), the objective function is set to
minimize x in the MILP instance created for an augmented
knowledge base K∪ ⟨a ∶ ¬ 𝖢 | 1 − x⟩.

• Similarly for glb(K , ⟨a ∶ C⊑D⟩) the augmented knowledge base
isK∪ ⟨a ∶ 𝖢 ⊓ ¬𝖣 | 1 − x⟩.

• K is inconsistent iff the MILP instance has no solution.
Hence the glb(⋅, ⋅) is found if MILP instance has a solution.

415 / 438 FuzzyDL

Concrete data types

The domainΔℐ is an unordered set. This is good for modelling
cathegorical data: e.g. colors, people, ...

General idea: Extended interpretation

But we also need to include real numbers IR. The fuzzy description
logic with concrete datatypes SHIF(D) uses “abstract objects” and
“concrete objects”:

Δℐ = Δℐa ∪ IR

416 / 438 FuzzyDL

Concrete data types

• Concrete individuals, are interpreted as objects from IR.

• Concrete concepts, are interpreted as subsets from IR.
• Concrete roles, are interpreted as subsets from (Δℐa × IR).

All non-concrete notions are called abstract.

417 / 438 FuzzyDL

Concrete data types

• Concrete individuals, are interpreted as objects from IR.
• Concrete concepts, are interpreted as subsets from IR.

• Concrete roles, are interpreted as subsets from (Δℐa × IR).
All non-concrete notions are called abstract.

417 / 438 FuzzyDL

Concrete data types

• Concrete individuals, are interpreted as objects from IR.
• Concrete concepts, are interpreted as subsets from IR.
• Concrete roles, are interpreted as subsets from (Δℐa × IR).

All non-concrete notions are called abstract.

417 / 438 FuzzyDL

Concrete data types

• Concrete individuals, are interpreted as objects from IR.
• Concrete concepts, are interpreted as subsets from IR.
• Concrete roles, are interpreted as subsets from (Δℐa × IR).

All non-concrete notions are called abstract.

417 / 438 FuzzyDL

Concrete data types: New concepts

418 / 438 FuzzyDL

Ex: Age of parents

(related adam bob parent) (related adam eve parent)

(define-fuzzy-concept around23 triangular(0,100, 18,23,26))
(define-fuzzy-concept moreTh17 right-shoulder(0,100, 13,21))
(instance bob (some age around23) 0.9)
(instance eve (some age moreTh17))

(define-fuzzy-concept young left-shoulder(0,100, 17,25))
(define-concept YoungPerson (some age young))

(min-instance? eve YoungPerson) (max-instance? eve YoungPerson)
(min-instance? bob YoungPerson) (max-instance? bob YoungPerson)
(min-instance? adam (all parent YoungPerson))
(max-instance? adam (all parent YoungPerson))
(min-instance? adam (some parent YoungPerson))
(max-instance? adam (some parent YoungPerson))

419 / 438 FuzzyDL

Ex: Age of parents

1. What are the bounds on 𝛼 from ⟨eve ∶ 𝖸𝗈𝗎𝗇𝗀𝖯𝖾𝗋𝗌𝗈𝗇 | 𝛼⟩?

Start by drawing the concept 𝖺𝗋𝗈𝗎𝗇𝖽𝟤𝟥, then construct an
interpretation. How much freedom do you have when constructing
the interpretation?

2. Let fuzzyDL reasoner give you both bounds on
􏾉i ∶ 𝖸𝗈𝗎𝗇𝗀𝖯𝖾𝗋𝗌𝗈𝗇 | 𝛽i􏽼 for i ∈ {eve, bob}.

How do you infer the bounds on 􏾉adam ∶ 𝖸𝗈𝗎𝗇𝗀𝖯𝖾𝗋𝗌𝗈𝗇 | 𝛾􏽼?

420 / 438 FuzzyDL

Ex: Age of parents

1. What are the bounds on 𝛼 from ⟨eve ∶ 𝖸𝗈𝗎𝗇𝗀𝖯𝖾𝗋𝗌𝗈𝗇 | 𝛼⟩?

Start by drawing the concept 𝖺𝗋𝗈𝗎𝗇𝖽𝟤𝟥, then construct an
interpretation. How much freedom do you have when constructing
the interpretation?

2. Let fuzzyDL reasoner give you both bounds on
􏾉i ∶ 𝖸𝗈𝗎𝗇𝗀𝖯𝖾𝗋𝗌𝗈𝗇 | 𝛽i􏽼 for i ∈ {eve, bob}.

How do you infer the bounds on 􏾉adam ∶ 𝖸𝗈𝗎𝗇𝗀𝖯𝖾𝗋𝗌𝗈𝗇 | 𝛾􏽼?

420 / 438 FuzzyDL

Ex: Age of parents

1. What are the bounds on 𝛼 from ⟨eve ∶ 𝖸𝗈𝗎𝗇𝗀𝖯𝖾𝗋𝗌𝗈𝗇 | 𝛼⟩?

Start by drawing the concept 𝖺𝗋𝗈𝗎𝗇𝖽𝟤𝟥, then construct an
interpretation. How much freedom do you have when constructing
the interpretation?

2. Let fuzzyDL reasoner give you both bounds on
􏾉i ∶ 𝖸𝗈𝗎𝗇𝗀𝖯𝖾𝗋𝗌𝗈𝗇 | 𝛽i􏽼 for i ∈ {eve, bob}.

How do you infer the bounds on 􏾉adam ∶ 𝖸𝗈𝗎𝗇𝗀𝖯𝖾𝗋𝗌𝗈𝗇 | 𝛾􏽼?

420 / 438 FuzzyDL

Finite model property

Definition
A logic is said to have the finite model property if every satisfiable
formula of the logic admits a finite model, i.e., a model with a finite
domain. [Baader, 2003]

• Why is FMP important? Unless FMP holds, we need to be clever
about our reasoning algorithms and avoid creating infinite models.

• Does FMP hold in Fuzzy Description Logic? Unfortunately no.

421 / 438 FuzzyDL

Finite model property

Definition
A logic is said to have the finite model property if every satisfiable
formula of the logic admits a finite model, i.e., a model with a finite
domain. [Baader, 2003]

• Why is FMP important?

Unless FMP holds, we need to be clever
about our reasoning algorithms and avoid creating infinite models.

• Does FMP hold in Fuzzy Description Logic? Unfortunately no.

421 / 438 FuzzyDL

Finite model property

Definition
A logic is said to have the finite model property if every satisfiable
formula of the logic admits a finite model, i.e., a model with a finite
domain. [Baader, 2003]

• Why is FMP important? Unless FMP holds, we need to be clever
about our reasoning algorithms and avoid creating infinite models.

• Does FMP hold in Fuzzy Description Logic? Unfortunately no.

421 / 438 FuzzyDL

Finite model property

Definition
A logic is said to have the finite model property if every satisfiable
formula of the logic admits a finite model, i.e., a model with a finite
domain. [Baader, 2003]

• Why is FMP important? Unless FMP holds, we need to be clever
about our reasoning algorithms and avoid creating infinite models.

• Does FMP hold in Fuzzy Description Logic?

Unfortunately no.

421 / 438 FuzzyDL

Finite model property

Definition
A logic is said to have the finite model property if every satisfiable
formula of the logic admits a finite model, i.e., a model with a finite
domain. [Baader, 2003]

• Why is FMP important? Unless FMP holds, we need to be clever
about our reasoning algorithms and avoid creating infinite models.

• Does FMP hold in Fuzzy Description Logic? Unfortunately no.

421 / 438 FuzzyDL

Witnessed model property

Definition
An interpretationℐ is ∘-witnessed if for all x ∈ Δ, there is y ∈ Δ s.t.

(∃𝖱 ⋅ 𝖢)ℐ (x) = 𝖱ℐ (x, y) ∧∘ 𝖢
ℐ (y)

and similarly there is a y ∈ Δ s.t.

(𝖢⊑𝖣)ℐ (y) = 𝖢ℐ (y) ∘⇒∘ 𝖣
ℐ (y) .

We say that the y is the “witness”, because he is responsible for the
particular membership degree of ∃𝖱 ⋅ 𝖢 (or 𝖢⊑𝖣).

422 / 438 FuzzyDL

Relationship between FMP and WMP

• It is easy to see that every finite model is a witnessed model,

because all sup() can be replaced by max() in the definition of ∃.
• Example: Assume¬

􏹤
and∧􏹤 logic and a concept

𝖢 = ¬∀𝖱 ⋅ 𝖠 ⊓ ¬∃𝖱 ⋅ ¬𝖠 .

We will show that 𝖢 can be satisfied to the degree 0.5 in an
infinitemodel, but no finite model (and therefore no witnessed
model) can satisfy 𝖢 to 0.5.

• Are we hopeless? No! In Łukasiewicz logic (¬
􏹤
, ∧
􏹝
, 􏹣⇒
􏹝
) we can

restrict our reasoning to witnessed and finite models without
loosing any information [Hájek, 2005].

423 / 438 FuzzyDL

Relationship between FMP and WMP

• It is easy to see that every finite model is a witnessed model,
because all sup() can be replaced by max() in the definition of ∃.

• Example: Assume¬
􏹤
and∧􏹤 logic and a concept

𝖢 = ¬∀𝖱 ⋅ 𝖠 ⊓ ¬∃𝖱 ⋅ ¬𝖠 .

We will show that 𝖢 can be satisfied to the degree 0.5 in an
infinitemodel, but no finite model (and therefore no witnessed
model) can satisfy 𝖢 to 0.5.

• Are we hopeless? No! In Łukasiewicz logic (¬
􏹤
, ∧
􏹝
, 􏹣⇒
􏹝
) we can

restrict our reasoning to witnessed and finite models without
loosing any information [Hájek, 2005].

423 / 438 FuzzyDL

Relationship between FMP and WMP

• It is easy to see that every finite model is a witnessed model,
because all sup() can be replaced by max() in the definition of ∃.

• Example: Assume¬
􏹤
and∧􏹤 logic and a concept

𝖢 = ¬∀𝖱 ⋅ 𝖠 ⊓ ¬∃𝖱 ⋅ ¬𝖠 .

We will show that 𝖢 can be satisfied to the degree 0.5 in an
infinitemodel, but no finite model (and therefore no witnessed
model) can satisfy 𝖢 to 0.5.

• Are we hopeless? No! In Łukasiewicz logic (¬
􏹤
, ∧
􏹝
, 􏹣⇒
􏹝
) we can

restrict our reasoning to witnessed and finite models without
loosing any information [Hájek, 2005].

423 / 438 FuzzyDL

Relationship between FMP and WMP

• It is easy to see that every finite model is a witnessed model,
because all sup() can be replaced by max() in the definition of ∃.

• Example: Assume¬
􏹤
and∧􏹤 logic and a concept

𝖢 = ¬∀𝖱 ⋅ 𝖠 ⊓ ¬∃𝖱 ⋅ ¬𝖠 .

We will show that 𝖢 can be satisfied to the degree 0.5 in an
infinitemodel, but no finite model (and therefore no witnessed
model) can satisfy 𝖢 to 0.5.

• Are we hopeless? No! In Łukasiewicz logic (¬
􏹤
, ∧
􏹝
, 􏹣⇒
􏹝
) we can

restrict our reasoning to witnessed and finite models without
loosing any information [Hájek, 2005].

423 / 438 FuzzyDL

Ex: Car dealing

1. The buyer wants a passenger that costs less than €26000.

2. If there is an alarm system in the car, then he is satisfied with
paying no more than €22300, but he can go up to €22750 with a
lesser degree of satisfaction.

3. The driver insurance, air conditioning and the black color are
important factors.

4. Preferably the price is no more than €22000, but he can go to
€24000 to a lesser degree of satisfaction.

424 / 438 FuzzyDL

Ex: Car dealing

1. The seller wants to sell no less than €22000.

2. Preferably the buyer buys the insurance plus package.

3. If the color is black, then it is highly possible the car has an
air-conditioning.

This can be formalized in fuzzy description logic.

We have the background knowledge:

⟨𝖲𝖾𝖽𝖺𝗇⊑𝖯𝖺𝗌𝗌𝖾𝗇𝗀𝖾𝗋𝖢𝖺𝗋 | 1⟩
⟨𝖨𝗇𝗌𝗎𝗋𝖺𝗇𝖼𝖾𝖯𝗅𝗎𝗌 = 𝖣𝗋𝗂𝗏𝖾𝗋𝖨𝗇𝗌𝗎𝗋𝖺𝗇𝖼𝖾 ⊓ 𝖳𝗁𝖾𝖿𝗍𝖨𝗇𝗌𝗎𝗋𝖺𝗇𝖼𝖾 | 1⟩

425 / 438 FuzzyDL

Ex: Car dealing

1. The seller wants to sell no less than €22000.

2. Preferably the buyer buys the insurance plus package.

3. If the color is black, then it is highly possible the car has an
air-conditioning.

This can be formalized in fuzzy description logic.
We have the background knowledge:

⟨𝖲𝖾𝖽𝖺𝗇⊑𝖯𝖺𝗌𝗌𝖾𝗇𝗀𝖾𝗋𝖢𝖺𝗋 | 1⟩
⟨𝖨𝗇𝗌𝗎𝗋𝖺𝗇𝖼𝖾𝖯𝗅𝗎𝗌 = 𝖣𝗋𝗂𝗏𝖾𝗋𝖨𝗇𝗌𝗎𝗋𝖺𝗇𝖼𝖾 ⊓ 𝖳𝗁𝖾𝖿𝗍𝖨𝗇𝗌𝗎𝗋𝖺𝗇𝖼𝖾 | 1⟩

425 / 438 FuzzyDL

Ex: Car dealing

The buyer's preferences:

1. B = 𝖯𝖺𝗌𝗌𝖾𝗇𝗀𝖾𝗋𝖢𝖺𝗋 ⊓ ∃ 𝗉𝗋𝗂𝖼𝖾 ⋅ ≤ 26000

2. B1 = 𝖠𝗅𝖺𝗋𝗆𝖲𝗒𝗌𝗍𝖾𝗆↦∃𝗉𝗋𝗂𝖼𝖾 ⋅ l.sh.(22300, 22750)

3. B2 = 𝖣𝗋𝗂𝗏𝖾𝗋𝖨𝗇𝗌𝗎𝗋𝖺𝗇𝖼𝖾,B3 = 𝖠𝗂𝗋𝖢𝗈𝗇𝖽𝗂𝗍𝗂𝗈𝗇,B4 = ∃ 𝖼𝗈𝗅𝗈𝗋 ⋅ 𝖡𝗅𝖺𝖼𝗄
4. B5 = ∃𝗉𝗋𝗂𝖼𝖾 ⋅ l.sh.(22000, 24000)

The buyer's preferences:

1. S = 𝖯𝖺𝗌𝗌𝖾𝗇𝗀𝖾𝗋𝖢𝖺𝗋 ⊓ ∃ 𝗉𝗋𝗂𝖼𝖾 ⋅ ≥ 22000

2. S1 = 𝖨𝗇𝗌𝗎𝗋𝖺𝗇𝖼𝖾𝖯𝗅𝗎𝗌
3. S2 = (0.5 (∃ 𝖼𝗈𝗅𝗈𝗋 ⋅ 𝖡𝗅𝖺𝖼𝗄)↦𝖠𝗂𝗋𝖢𝗈𝗇𝖽𝗂𝗍𝗂𝗈𝗇)

426 / 438 FuzzyDL

Ex: Car dealing

The buyer's preferences:

1. B = 𝖯𝖺𝗌𝗌𝖾𝗇𝗀𝖾𝗋𝖢𝖺𝗋 ⊓ ∃ 𝗉𝗋𝗂𝖼𝖾 ⋅ ≤ 26000

2. B1 = 𝖠𝗅𝖺𝗋𝗆𝖲𝗒𝗌𝗍𝖾𝗆↦∃𝗉𝗋𝗂𝖼𝖾 ⋅ l.sh.(22300, 22750)

3. B2 = 𝖣𝗋𝗂𝗏𝖾𝗋𝖨𝗇𝗌𝗎𝗋𝖺𝗇𝖼𝖾,B3 = 𝖠𝗂𝗋𝖢𝗈𝗇𝖽𝗂𝗍𝗂𝗈𝗇,B4 = ∃ 𝖼𝗈𝗅𝗈𝗋 ⋅ 𝖡𝗅𝖺𝖼𝗄
4. B5 = ∃𝗉𝗋𝗂𝖼𝖾 ⋅ l.sh.(22000, 24000)

The buyer's preferences:

1. S = 𝖯𝖺𝗌𝗌𝖾𝗇𝗀𝖾𝗋𝖢𝖺𝗋 ⊓ ∃ 𝗉𝗋𝗂𝖼𝖾 ⋅ ≥ 22000

2. S1 = 𝖨𝗇𝗌𝗎𝗋𝖺𝗇𝖼𝖾𝖯𝗅𝗎𝗌
3. S2 = (0.5 (∃ 𝖼𝗈𝗅𝗈𝗋 ⋅ 𝖡𝗅𝖺𝖼𝗄)↦𝖠𝗂𝗋𝖢𝗈𝗇𝖽𝗂𝗍𝗂𝗈𝗇)

426 / 438 FuzzyDL

Ex: Car dealing

The buyer's preferences:

1. B = 𝖯𝖺𝗌𝗌𝖾𝗇𝗀𝖾𝗋𝖢𝖺𝗋 ⊓ ∃ 𝗉𝗋𝗂𝖼𝖾 ⋅ ≤ 26000

2. B1 = 𝖠𝗅𝖺𝗋𝗆𝖲𝗒𝗌𝗍𝖾𝗆↦∃𝗉𝗋𝗂𝖼𝖾 ⋅ l.sh.(22300, 22750)

3. B2 = 𝖣𝗋𝗂𝗏𝖾𝗋𝖨𝗇𝗌𝗎𝗋𝖺𝗇𝖼𝖾,

B3 = 𝖠𝗂𝗋𝖢𝗈𝗇𝖽𝗂𝗍𝗂𝗈𝗇,B4 = ∃ 𝖼𝗈𝗅𝗈𝗋 ⋅ 𝖡𝗅𝖺𝖼𝗄
4. B5 = ∃𝗉𝗋𝗂𝖼𝖾 ⋅ l.sh.(22000, 24000)

The buyer's preferences:

1. S = 𝖯𝖺𝗌𝗌𝖾𝗇𝗀𝖾𝗋𝖢𝖺𝗋 ⊓ ∃ 𝗉𝗋𝗂𝖼𝖾 ⋅ ≥ 22000

2. S1 = 𝖨𝗇𝗌𝗎𝗋𝖺𝗇𝖼𝖾𝖯𝗅𝗎𝗌
3. S2 = (0.5 (∃ 𝖼𝗈𝗅𝗈𝗋 ⋅ 𝖡𝗅𝖺𝖼𝗄)↦𝖠𝗂𝗋𝖢𝗈𝗇𝖽𝗂𝗍𝗂𝗈𝗇)

426 / 438 FuzzyDL

Ex: Car dealing

The buyer's preferences:

1. B = 𝖯𝖺𝗌𝗌𝖾𝗇𝗀𝖾𝗋𝖢𝖺𝗋 ⊓ ∃ 𝗉𝗋𝗂𝖼𝖾 ⋅ ≤ 26000

2. B1 = 𝖠𝗅𝖺𝗋𝗆𝖲𝗒𝗌𝗍𝖾𝗆↦∃𝗉𝗋𝗂𝖼𝖾 ⋅ l.sh.(22300, 22750)

3. B2 = 𝖣𝗋𝗂𝗏𝖾𝗋𝖨𝗇𝗌𝗎𝗋𝖺𝗇𝖼𝖾,B3 = 𝖠𝗂𝗋𝖢𝗈𝗇𝖽𝗂𝗍𝗂𝗈𝗇,

B4 = ∃ 𝖼𝗈𝗅𝗈𝗋 ⋅ 𝖡𝗅𝖺𝖼𝗄
4. B5 = ∃𝗉𝗋𝗂𝖼𝖾 ⋅ l.sh.(22000, 24000)

The buyer's preferences:

1. S = 𝖯𝖺𝗌𝗌𝖾𝗇𝗀𝖾𝗋𝖢𝖺𝗋 ⊓ ∃ 𝗉𝗋𝗂𝖼𝖾 ⋅ ≥ 22000

2. S1 = 𝖨𝗇𝗌𝗎𝗋𝖺𝗇𝖼𝖾𝖯𝗅𝗎𝗌
3. S2 = (0.5 (∃ 𝖼𝗈𝗅𝗈𝗋 ⋅ 𝖡𝗅𝖺𝖼𝗄)↦𝖠𝗂𝗋𝖢𝗈𝗇𝖽𝗂𝗍𝗂𝗈𝗇)

426 / 438 FuzzyDL

Ex: Car dealing

The buyer's preferences:

1. B = 𝖯𝖺𝗌𝗌𝖾𝗇𝗀𝖾𝗋𝖢𝖺𝗋 ⊓ ∃ 𝗉𝗋𝗂𝖼𝖾 ⋅ ≤ 26000

2. B1 = 𝖠𝗅𝖺𝗋𝗆𝖲𝗒𝗌𝗍𝖾𝗆↦∃𝗉𝗋𝗂𝖼𝖾 ⋅ l.sh.(22300, 22750)

3. B2 = 𝖣𝗋𝗂𝗏𝖾𝗋𝖨𝗇𝗌𝗎𝗋𝖺𝗇𝖼𝖾,B3 = 𝖠𝗂𝗋𝖢𝗈𝗇𝖽𝗂𝗍𝗂𝗈𝗇,B4 = ∃ 𝖼𝗈𝗅𝗈𝗋 ⋅ 𝖡𝗅𝖺𝖼𝗄
4. B5 = ∃𝗉𝗋𝗂𝖼𝖾 ⋅ l.sh.(22000, 24000)

The buyer's preferences:

1. S = 𝖯𝖺𝗌𝗌𝖾𝗇𝗀𝖾𝗋𝖢𝖺𝗋 ⊓ ∃ 𝗉𝗋𝗂𝖼𝖾 ⋅ ≥ 22000

2. S1 = 𝖨𝗇𝗌𝗎𝗋𝖺𝗇𝖼𝖾𝖯𝗅𝗎𝗌
3. S2 = (0.5 (∃ 𝖼𝗈𝗅𝗈𝗋 ⋅ 𝖡𝗅𝖺𝖼𝗄)↦𝖠𝗂𝗋𝖢𝗈𝗇𝖽𝗂𝗍𝗂𝗈𝗇)

426 / 438 FuzzyDL

Ex: Car dealing

The buyer's preferences:

1. B = 𝖯𝖺𝗌𝗌𝖾𝗇𝗀𝖾𝗋𝖢𝖺𝗋 ⊓ ∃ 𝗉𝗋𝗂𝖼𝖾 ⋅ ≤ 26000

2. B1 = 𝖠𝗅𝖺𝗋𝗆𝖲𝗒𝗌𝗍𝖾𝗆↦∃𝗉𝗋𝗂𝖼𝖾 ⋅ l.sh.(22300, 22750)

3. B2 = 𝖣𝗋𝗂𝗏𝖾𝗋𝖨𝗇𝗌𝗎𝗋𝖺𝗇𝖼𝖾,B3 = 𝖠𝗂𝗋𝖢𝗈𝗇𝖽𝗂𝗍𝗂𝗈𝗇,B4 = ∃ 𝖼𝗈𝗅𝗈𝗋 ⋅ 𝖡𝗅𝖺𝖼𝗄
4. B5 = ∃𝗉𝗋𝗂𝖼𝖾 ⋅ l.sh.(22000, 24000)

The buyer's preferences:

1. S = 𝖯𝖺𝗌𝗌𝖾𝗇𝗀𝖾𝗋𝖢𝖺𝗋 ⊓ ∃ 𝗉𝗋𝗂𝖼𝖾 ⋅ ≥ 22000

2. S1 = 𝖨𝗇𝗌𝗎𝗋𝖺𝗇𝖼𝖾𝖯𝗅𝗎𝗌

3. S2 = (0.5 (∃ 𝖼𝗈𝗅𝗈𝗋 ⋅ 𝖡𝗅𝖺𝖼𝗄)↦𝖠𝗂𝗋𝖢𝗈𝗇𝖽𝗂𝗍𝗂𝗈𝗇)

426 / 438 FuzzyDL

Ex: Car dealing

The buyer's preferences:

1. B = 𝖯𝖺𝗌𝗌𝖾𝗇𝗀𝖾𝗋𝖢𝖺𝗋 ⊓ ∃ 𝗉𝗋𝗂𝖼𝖾 ⋅ ≤ 26000

2. B1 = 𝖠𝗅𝖺𝗋𝗆𝖲𝗒𝗌𝗍𝖾𝗆↦∃𝗉𝗋𝗂𝖼𝖾 ⋅ l.sh.(22300, 22750)

3. B2 = 𝖣𝗋𝗂𝗏𝖾𝗋𝖨𝗇𝗌𝗎𝗋𝖺𝗇𝖼𝖾,B3 = 𝖠𝗂𝗋𝖢𝗈𝗇𝖽𝗂𝗍𝗂𝗈𝗇,B4 = ∃ 𝖼𝗈𝗅𝗈𝗋 ⋅ 𝖡𝗅𝖺𝖼𝗄
4. B5 = ∃𝗉𝗋𝗂𝖼𝖾 ⋅ l.sh.(22000, 24000)

The buyer's preferences:

1. S = 𝖯𝖺𝗌𝗌𝖾𝗇𝗀𝖾𝗋𝖢𝖺𝗋 ⊓ ∃ 𝗉𝗋𝗂𝖼𝖾 ⋅ ≥ 22000

2. S1 = 𝖨𝗇𝗌𝗎𝗋𝖺𝗇𝖼𝖾𝖯𝗅𝗎𝗌
3. S2 = (0.5 (∃ 𝖼𝗈𝗅𝗈𝗋 ⋅ 𝖡𝗅𝖺𝖼𝗄)↦𝖠𝗂𝗋𝖢𝗈𝗇𝖽𝗂𝗍𝗂𝗈𝗇)

426 / 438 FuzzyDL

Ex: Car dealing

We know that S and B are hard constraints and B1..5 and S1..2 are soft
preferences. All the concepts can be “summed up”:

𝖡𝗎𝗒 = B ⊓ (0.1B1 + 0.2B2 + 0.1B3 + 0.4B4 + 0.2B5)
and

𝖲𝖾𝗅𝗅 = S ⊓ (0.6S1 + 0.4S2)

A good choice of⊓ can make B a hard constraint.

427 / 438 FuzzyDL

Ex: Car dealing

We know that S and B are hard constraints and B1..5 and S1..2 are soft
preferences. All the concepts can be “summed up”:

𝖡𝗎𝗒 = B ⊓ (0.1B1 + 0.2B2 + 0.1B3 + 0.4B4 + 0.2B5)
and

𝖲𝖾𝗅𝗅 = S ⊓ (0.6S1 + 0.4S2)

A good choice of⊓ can make B a hard constraint.

427 / 438 FuzzyDL

Ex: Car dealing

We know that S and B are hard constraints and B1..5 and S1..2 are soft
preferences. All the concepts can be “summed up”:

𝖡𝗎𝗒 = B ⊓ (0.1B1 + 0.2B2 + 0.1B3 + 0.4B4 + 0.2B5)
and

𝖲𝖾𝗅𝗅 = S ⊓ (0.6S1 + 0.4S2)

A good choice of⊓ can make B a hard constraint.

427 / 438 FuzzyDL

Ex: Car dealing

Optimal match

glb(K , 𝖡𝗎𝗒 ⊓ 𝖲𝖾𝗅𝗅)
Finds the optimal match between a seller and a buyer. (Finds an ideal,
imaginary car that maximizes satisfaction of both parties.)

Particular car

glb(K , ⟨audiTT ∶ 𝖡𝗎𝗒 ⊓ 𝖲𝖾𝗅𝗅⟩)
Finds the degree of satisfaction for a particuklar car audiTT.

428 / 438 FuzzyDL

Conclusion

• FuzzyDL is a tableau algorithm with exactly 1 branch.
The⊔ does not cause branching.

• Rules are applied deterministically (to ensure termination).

• The complexity of reasoning is caused by the integer (y) variables.

429 / 438 FuzzyDL

Conclusion

• FuzzyDL is a tableau algorithm with exactly 1 branch.
The⊔ does not cause branching.

• Rules are applied deterministically (to ensure termination).

• The complexity of reasoning is caused by the integer (y) variables.

429 / 438 FuzzyDL

Conclusion

• FuzzyDL is a tableau algorithm with exactly 1 branch.
The⊔ does not cause branching.

• Rules are applied deterministically (to ensure termination).

• The complexity of reasoning is caused by the integer (y) variables.

429 / 438 FuzzyDL

Questions?! Ask, please.

Source: ragtagdoodles.deviantart.com
430 / 438 FuzzyDL

http://ragtagdoodles.deviantart.com/art/Question-Mark-Stereotypes-349479336

Ex: Jim revisited

We will use the Łukasiewicz logic in the following examples (⊓ =⊓􏹝 , ...).

⟨jim ∶ 𝖬𝖺𝗅𝖾 | 0.9⟩ (3)

⟨jim ∶ 𝖥𝖾𝗆𝖺𝗅𝖾 | 0.2⟩ (4)

⟨𝖬𝖺𝗅𝖾 ⊓ 𝖥𝖾𝗆𝖺𝗅𝖾 ⊑⊥ | 1⟩ (5)

The interpretation domain isΔℐ1 = Δℐ2 = {j}, jimℐ1 = jimℐ2 = j.

𝖬𝖺𝗅𝖾ℐ1 = {(j; 0.9)}
𝖥𝖾𝗆𝖺𝗅𝖾ℐ1 = {(j; 0)}

𝖬𝖺𝗅𝖾ℐ2 = {(j; 0.9)}
𝖥𝖾𝗆𝖺𝗅𝖾ℐ2 = {(j; 0.2)}

431 / 438 FuzzyDL

Ex: Jim revisited

We will use the Łukasiewicz logic in the following examples (⊓ =⊓􏹝 , ...).

⟨jim ∶ 𝖬𝖺𝗅𝖾 | 0.9⟩ (3)

⟨jim ∶ 𝖥𝖾𝗆𝖺𝗅𝖾 | 0.2⟩ (4)

⟨𝖬𝖺𝗅𝖾 ⊓ 𝖥𝖾𝗆𝖺𝗅𝖾 ⊑⊥ | 1⟩ (5)

The interpretation domain isΔℐ1 = Δℐ2 = {j}, jimℐ1 = jimℐ2 = j.

𝖬𝖺𝗅𝖾ℐ1 = {(j; 0.9)}
𝖥𝖾𝗆𝖺𝗅𝖾ℐ1 = {(j; 0)}

𝖬𝖺𝗅𝖾ℐ2 = {(j; 0.9)}
𝖥𝖾𝗆𝖺𝗅𝖾ℐ2 = {(j; 0.2)}

431 / 438 FuzzyDL

Ex: Jim revisited (check your knowledge)

Let's check the interpretation against the definitions...

ℐ ⊧ 𝜏 𝜏(􏷠) 𝜏(􏷡) 𝜏(􏷢)
ℐ1 ? ? ?
ℐ2 ? ? ?

432 / 438 FuzzyDL

Ex: Jim revisited (check your knowledge)

Let's check the interpretation against the definitions...

ℐ ⊧ 𝜏 𝜏(􏷠) 𝜏(􏷡) 𝜏(􏷢)
ℐ1 yes no yes
ℐ2 yse yes no

432 / 438 FuzzyDL

Ex: Jim revisited (in fuzzyDL)

Let's change the weights and encode the example in fuzzyDL:

(instance jim Male 0.4)
(instance jim Female 0.2)

(l-implies (and Male Female) *bottom* 0.9)

(min-instance? jim Male)
(max-instance? jim Male)
(min-instance? jim Female)
(max-instance? jim Female)

Let ⟨jim ∶ 𝖬𝖺𝗅𝖾 | 𝛼⟩ and 􏾉jim ∶ 𝖥𝖾𝗆𝖺𝗅𝖾 | 𝛽􏽼, what are the bounds on 𝛼
and 𝛽? fuzzyDL shows that 0.4 ≤ 𝛼 ≤ 0.9 and 0.2 ≤ 𝛽 ≤ 0.7. Why?

433 / 438 FuzzyDL

Ex: Smokers

Recall the motivational example from the first lecture:

􏾉symmetric(𝖿𝗋𝗂𝖾𝗇𝖽)􏽼 (6)

􏾉(anna, bill) ∶ 𝖿𝗋𝗂𝖾𝗇𝖽 | 1􏽼 (7)

􏾉(bill, cloe) ∶ 𝖿𝗋𝗂𝖾𝗇𝖽 | 1􏽼 (8)

􏾉(cloe, dirk) ∶ 𝖿𝗋𝗂𝖾𝗇𝖽 | 1􏽼 (9)

⟨anna ∶ 𝖲𝗆𝗈𝗄𝖾𝗋 | 1⟩ (10)

⟨∃ 𝖿𝗋𝗂𝖾𝗇𝖽 ⋅ 𝖲𝗆𝗈𝗄𝖾𝗋 ⊑ 𝖲𝗆𝗈𝗄𝖾𝗋 | 0.7⟩ (11)

What are the bounds on ⟨i ∶ 𝖲𝗆𝗈𝗄𝖾𝗋⟩ for i ∈ {anna, bill, cloe, dirk}?

434 / 438 FuzzyDL

Ex: Smokers

What changes if we add

⟨dirk ∶ ¬ 𝖲𝗆𝗈𝗄𝖾𝗋 | 0.7⟩ (12)

(13)

What are the bounds on ⟨i ∶ ¬ 𝖲𝗆𝗈𝗄𝖾𝗋⟩ for i ∈ {anna, bill, cloe, dirk}?

435 / 438 FuzzyDL

Ex: Smokers (in fuzzyDL)

(implies (some friendOf Smoker) Smoker 0.7)

(symmetric friendOf)
(related anna bill friendOf)
(related bill cloe friendOf)
(related cloe dirk friendOf)

(instance anna Smoker)
(instance dirk (not Smoker) 0.7)

(min-instance? anna Smoker)
(min-instance? bill Smoker)
(min-instance? cloe Smoker)
(min-instance? dirk Smoker)

(max-instance? anna Smoker)
(max-instance? bill Smoker)
(max-instance? cloe Smoker)
(max-instance? dirk Smoker)

436 / 438 FuzzyDL

Where to find more examples?

• Simple examples are bundled with fuzzyDL installation
(/opt/fuzzydl/ on the heartofgold server).

• Advanced examples can be found on the fuzzyDL web site:
http://gaia.isti.cnr.it/~straccia/software/
fuzzyDL/fuzzyDL.html

437 / 438 FuzzyDL

http://gaia.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html
http://gaia.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html

Bibliography

Baader, F. (2003).
The Description Logic Handbook: Theory, Implementation, and
Applications.
Cambridge University Press.

Hájek, P. (2005).
Making fuzzy description logic more general.
Fuzzy Sets and Systems, 154(1):1--15.

Wikipedia (2013).
Linear programming – Wikipedia, the free encyclopedia.
[Online; accessed 17-November-2013].

438 / 438 FuzzyDL

	FuzzyDL algorithm
	Completion-forest
	Forest completion
	Existential rule and termination

	Concrete data types
	Witnessed model
	Example
	Biblopgraphy

