AE4M33RZN, Fuzzy logic: Fuzzy description logic

Radomír Černoch

radomir.cernoch@fel.cvut.cz

3/11/2014

Faculty of Electrical Engineering, CTU in Prague

Plan of the lecture

Revision of crisp description logic

Language $\mathcal{SH}I\mathcal{F}$

Concepts and interpretation

Notion of truth

Fuzzy description logic

Concepts

Notion of truth

Queries

Homework

Biblopgraphy

Our treatment of fuzzy description logic is based on a family of crisp description logic $\mathcal{SHIF}(\mathcal{D})$ [Baader, 2003]:

AL

- AL
 - · atomic negation
 - intersection
 - universal restrictions
 - limited existential quantification
- (

- AL
 - · atomic negation
 - intersection
 - universal restrictions
 - limited existential quantification
- C = full concept negation
- S

- AL
 - · atomic negation
 - intersection
 - universal restrictions
 - limited existential quantification
- C = full concept negation
- S = ALC + transitive roles
- H

Our treatment of fuzzy description logic is based on a family of crisp description logic $\mathcal{SHIF}(\mathcal{D})$ [Baader, 2003]:

- AL
 - atomic negation
 - intersection
 - · universal restrictions
 - limited existential quantification
- C = full concept negation
- S = ALC + transitive roles
- \mathcal{H} = role hierarchies

• 1

- AL
 - · atomic negation
 - intersection
 - · universal restrictions
 - limited existential quantification
- C = full concept negation
- S = ALC + transitive roles
- \mathcal{H} = role hierarchies

- *I* = inverse properties
- F

- AL
 - · atomic negation
 - intersection
 - universal restrictions
 - limited existential quantification
- C = full concept negation
- S = ALC + transitive roles
- \mathcal{H} = role hierarchies

- *I* = inverse properties
- F
- · concept intersection
- · universal restrictions
- limited existential quantification
- · role restriction
- D

- AL
 - · atomic negation
 - intersection
 - universal restrictions
 - limited existential quantification
- C = full concept negation
- S = ALC + transitive roles
- \mathcal{H} = role hierarchies

- *I* = inverse properties
- F
- · concept intersection
- · universal restrictions
- limited existential quantification
- · role restriction
- 𝒯 = data types

SHIF concepts

Let A and R be the sets of atomic concepts and atomic roles.

Concept constructors

$C,D := \top \mid \bot$	top and bottom concepts	(1)
A	atomic concept	(2)
¬ C	concept negation	(3)
C n D	intersection	(4)
C⊔D	concept union	(5)
∀R · C	full universal quantification	(6)
∃R·C	full existential quantification	(7)

Crisp description logic ontology

Ontology consists of $\mathscr{A}Box$ and $\mathscr{T}Box$. We use the set of individuals I:

Crisp description logic ontology

Ontology consists of $\mathscr{A}Box$ and $\mathscr{T}Box$. We use the set of individuals I:

$\mathscr{A}Box$ (Assertion Box)

Contains concept assertions $\langle i \in I : C \rangle$ and role assertions $\langle (i, j \in I) : R \rangle$.

Crisp description logic ontology

Ontology consists of $\mathscr{A}Box$ and $\mathscr{T}Box$. We use the set of individuals I:

$\mathscr{A}Box$ (Assertion Box)

Contains concept assertions $\langle i \in I : C \rangle$ and role assertions $\langle (i, j \in I) : R \rangle$.

$\mathscr{T}\mathit{Box}$ (Terminology Box)

Contains *general concept inclusion* (GCI) axioms $\langle C \sqsubseteq D \rangle$ and role axioms (role hierarchy $\langle R_1 \sqsubseteq R_2 \rangle$, transitivity, ...).

Crisp description logic interpretation

Interpretation ${\mathscr I}$ is a tuple $(\Delta^{\mathscr I},\cdot^{\mathscr I})$ (interpretation domain, interpretation function), which maps

an individual to domain object $i^{\mathcal{J}} \in \Delta^{\mathcal{J}}$ an atomic concept to domain subsets $C^{\mathcal{J}} \subseteq \Delta^{\mathcal{J}}$ an atomic role to subset of domain tuples $R^{\mathcal{J}} \subseteq \Delta^{\mathcal{J}} \times \Delta^{\mathcal{J}}$

Crisp description logic interpretation

The non-atomic concepts are interpreted as follows:

non-atomic concept	its interpretation
Т	$\Delta^{\mathcal{F}}$
\perp	Ø
¬ C	$\Delta^{\mathcal{F}}\setminusC^{\mathcal{F}}$
СПО	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
C L D	$C^{\mathscr{I}} \cup D^{\mathscr{I}}$
$\forall R \cdot C$	$\{x \mid \forall y \in \Delta^{\mathscr{I}} . ((x,y) \in R^{\mathscr{I}}) \Rightarrow (y \in C^{\mathscr{I}})\}$
∃R·C	$\{x \mid \exists y \in \Delta^{\mathcal{J}} . ((x,y) \in R^{\mathcal{J}}) \land (y \in C^{\mathcal{J}})\}$

Crisp notion of truth

Axiom satisfaction

axiom	satisfied when
$\langle i:C\rangle$	$\mathbf{i}^{\mathcal{J}} \in C^{\mathcal{J}}$
$\langle (i,j):R \rangle$	$(\mathbf{i}^{\mathscr{I}},\mathbf{j}^{\mathscr{I}})\inR^{\mathscr{I}}$
$\langle C \sqsubseteq D \rangle$	$C^{\mathscr{I}} \sqsubseteq D^{\mathscr{I}}$
transitive(R)	$R^\mathscr{I}$ is transitive

•••

- Concept C is satisfiable

- Concept C is *satisfiable* iff there is an interpretation \mathscr{I} s.t. $\mathscr{I} \models < i : C > \text{for some } i$.
- Interpretation \mathscr{I} satisfies a knowledgebase $\mathscr{K} = \mathscr{A}Box + \mathscr{T}Box$ (or \mathscr{I} is a model of \mathscr{K})

- Concept C is satisfiable iff there is an interpretation $\mathcal I$ s.t. $\mathscr{I} \models < i : C > \text{for some } i$
- Interpretation \mathscr{I} satisfies a knowledgebase $\mathscr{K} = \mathscr{A}Box + \mathscr{T}Box$ (or \mathscr{I} is a *model* of \mathcal{K}) iff \mathcal{I} satisfies all its axioms.
- Axiom T is a logical consequence of K

- Concept C is satisfiable iff there is an interpretation $\mathcal I$ s.t. $\mathscr{I} \models < i : C > \text{for some } i$
- Interpretation \mathscr{I} satisfies a knowledgebase $\mathscr{K} = \mathscr{A}Box + \mathscr{T}Box$ (or \mathscr{I} is a *model* of \mathcal{K}) iff \mathcal{I} satisfies all its axioms.
- Axiom T is a *logical consequence* of $\mathcal K$ iff every model of $\mathcal K$ satisfies T. We write $\mathcal{K} \models T$.

Basic idea

Basic idea

1. Keep the the previous slides intact.

Basic idea

- 1. Keep the the previous slides intact.
- 2. Add ∘ below and above every operation.

Basic idea

- 1. Keep the the previous slides intact.
- 2. Add ∘ below and above every operation.
- 3. Watch the semantic change.

Overview

We will show the **fuzzyDL** reasoner [Bobillo and Straccia, 2008] capabilities, which extends the $\mathcal{SH}I\mathcal{F}(\mathcal{D})$ family with fuzzy capabilities.

Concept constructors

We start with atomic concepts A. Derived concepts are on the next slide together with their interpretation. (Each concept is interpreted as a fuzzy subset of the domain.)

Fuzzy DL interpretation

Fuzzy interpretation ${\mathscr I}$ is a tuple $\Delta^{{\mathscr I}}$, ${\mathscr I}$ which maps

an individual to a domain object $i^{\mathcal{J}} \in \Delta^{\mathcal{J}}$ an atomic concept to a domain subsets $\mathsf{C}^{\mathcal{J}} \in \mathbb{F}(\Delta^{\mathcal{J}})$ an atomic role to a relation on the domain $\mathsf{R}^{\mathcal{J}} \in \mathbb{F}(\Delta^{\mathcal{J}} \times \Delta^{\mathcal{J}})$

C, D :=	interpretation of x
	0
Т	1
\boldsymbol{A}	$A^{\mathcal{I}}(x)$
¬ C	$ \begin{array}{c} A^{\mathscr{I}}(x) \\ \overline{S}^{\mathscr{C}}(x) \end{array} $

C, D :=	interpretation of x	
	0	
Т	1	
Α	$A^{\mathcal{I}}(x)$	
¬C	$\frac{A^{\mathscr{I}}(x)}{\overline{S}}C^{\mathscr{I}}(x)$	
C G D	$C^{\mathcal{F}}(x) \wedge D^{\mathcal{F}}(x)$	
СӸD	$C^\mathscr{I}(x) \overset{\wedge}{\underset{\mathrm{L}}{\wedge}} D^\mathscr{I}(x)$	

313 / 322

C, D :=	interpretation of x
	0
Т	1
Α	$A^{\mathscr{I}}(x)$
¬C	$\frac{1}{S}C^{\mathscr{I}}(x)$
C G D	$C^{\mathscr{I}}(x) \wedge D^{\mathscr{I}}(x)$
СŪD	$C^{\mathscr{I}}(x) \wedge D^{\mathscr{I}}(x)$
$C\stackrel{S}{\sqcup}D$	$C^{\mathscr{I}}(x)\overset{S}{\vee}D^{\mathscr{I}}(x)$
$C \sqcap D$	$C^{\mathscr{I}}(x) \stackrel{L}{\vee} D^{\mathscr{I}}(x)$

C, D :=	interpretation of x
	0
Т	1
Α	$A^{\mathcal{I}}(x)$
¬ C	$\frac{1}{S}C^{\mathscr{I}}(x)$
C G D	$C^{\mathscr{I}}(x) \wedge D^{\mathscr{I}}(x)$
СÜD	$C^{\mathscr{I}}(x) \overset{\wedge}{\underset{\mathrm{L}}{\wedge}} D^{\mathscr{I}}(x)$
CÖD	$C^{\mathscr{I}}(x)\overset{S}{\vee}D^{\mathscr{I}}(x)$
СРР	$C^{\mathscr{I}}(x) \stackrel{L}{\vee} D^{\mathscr{I}}(x)$
$C \stackrel{R}{\vdash_S} D$	$C^{\mathscr{I}}(x) \stackrel{R}{\Longrightarrow} D^{\mathscr{I}}(x)$
$C \stackrel{R}{\vdash} D$	$C^{\mathscr{I}}(x) \stackrel{\mathrm{R}}{\underset{\mathrm{L}}{\longrightarrow}} D^{\mathscr{I}}(x)$
$C \stackrel{S}{\mapsto} D$	$C^{\mathscr{I}}(x) \stackrel{S}{\underset{S}{\Longrightarrow}} D^{\mathscr{I}}(x)$

C, D :=	interpretation of x
3 · AE	$\sup_{y} R^{\mathscr{J}}(x,y) \wedge C^{\mathscr{J}}(y)$
$A \cdot C$	$\inf_{y} R^{\mathscr{I}}(x,y) \stackrel{\circ}{\Rightarrow} C^{\mathscr{I}}(y)$

C, D :=	interpretation of x
∃R·C	$\sup_{y} R^{\mathscr{I}}(x,y) \wedge C^{\mathscr{I}}(y)$
$\forallR\cdotC$	$\inf_{y} R^{\mathscr{I}}(x,y) \overset{\circ}{\underset{\circ}{\Rightarrow}} C^{\mathscr{I}}(y)$
(n C)	$n \cdot C(x)$ $mod(C^{\mathcal{I}}(x))$
mod(C)	$mod(C^{\mathscr{I}}(x))$

C, D :=	interpretation of x
3 · AE	$\sup_{y} R^{\mathscr{I}}(x,y) \wedge C^{\mathscr{I}}(y)$
$\forallR\cdotC$	$\inf_{y} R^{\mathscr{I}}(x,y) \stackrel{\circ}{\Rightarrow} C^{\mathscr{I}}(y)$
(n C)	$n \cdot C(x)$
mod(C)	$n \cdot C(x)$ $mod(C^{\mathscr{I}}(x))$
$w_1 \subset_1 + + w_k \subset_k$	$w_1C_1^{\mathscr{I}}(x) + + w_kC_k^{\mathscr{I}}(x)$

C, D :=	interpretation of x
∃R·C	$\sup_{y} R^{\mathscr{J}}(x,y) \wedge C^{\mathscr{J}}(y)$
$\forallR\cdotC$	$\inf_{y} R^{\mathscr{I}}(x,y) \stackrel{\circ}{\Rightarrow} C^{\mathscr{I}}(y)$
(n C)	$n \cdot C(x)$
mod(C)	$n \cdot C(x)$ $mod(C^{\mathscr{I}}(x))$
$w_1C_1 + + w_kC_k$	$w_1 C_1^{\mathscr{I}}(x) + + w_k C_k^{\mathscr{I}}(x)$
C	$\begin{cases} C^{\mathscr{I}}(x) & C^{\mathscr{I}}(x) \leq n \\ o & \text{otherwise} \end{cases}$

314 / 322

Male \sqcap Female \neq \bot

Modifiers

Modifier is a function that alters the membership function.

Example

Linear modifier of degree c is

$$a = \frac{c}{c+1}$$

$$b = \frac{1}{c+1}$$

Fuzzy DL ontology

Ontology consists of $\mathscr{A}\mathit{Box}$ and $\mathscr{T}\mathit{Box}$:

Fuzzy DL ontology

Ontology consists of $\mathscr{A}\textit{Box}$ and $\mathscr{T}\textit{Box}$:

Contains concept assertions $\langle i \in I : C \mid \alpha \rangle$ and role assertions $\langle (i, j \in I) : R \mid \alpha \rangle$.

Fuzzy DL ontology

Ontology consists of $\mathscr{A}\mathit{Box}$ and $\mathscr{T}\mathit{Box}$:

$\mathscr{A}Box$ (Assertion Box)

Contains concept assertions $\langle i \in I : C \mid \alpha \rangle$ and role assertions $\langle (i, j \in I) : R \mid \alpha \rangle$.

$\mathcal{T}Box$ (Terminology Box)

GCI axioms $\langle C \sqsubseteq D \mid \alpha \rangle$ state that "C is D at least by α ".

Besides GCI, there are role hierarchy axioms $\langle R_1 \sqsubseteq R_2 \rangle$, transitivity axioms and definitions of inverse relations.

Fuzzy axioms

axiom	satisfied if
$\langle i: C \alpha \rangle$	$C^{\mathcal{J}}(\mathbf{i}^{\mathcal{J}}) \geq \alpha$

Fuzzy DL

Fuzzy axioms

axiom	satisfied if
$\langle i: C \alpha \rangle$	$ \begin{array}{c} C^{\mathcal{I}}(\mathbf{i}^{\mathcal{I}}) \geq \alpha \\ R^{\mathcal{I}}(\mathbf{i}^{\mathcal{I}}, \mathbf{j}^{\mathcal{I}}) \geq \alpha \end{array} $
$\langle (i,j) : R \alpha \rangle$	$R^{\mathscr{I}}(\mathbf{i}^{\mathscr{I}},\mathbf{j}^{\mathscr{I}}) \geq \alpha$
$\langle C \sqsubseteq D \mid \alpha \rangle$	$C \stackrel{\circ}{\subseteq} D \ge \alpha$

Fuzzy axioms

axiom	satisfied if
$\langle i:C \alpha\rangle$	$C^{\mathscr{I}}(i^{\mathscr{I}}) \geq \alpha$
$\langle (i,j) : R \alpha \rangle$	$R^{\mathscr{J}}(\mathbf{i}^{\mathscr{J}},\mathbf{j}^{\mathscr{J}}) \geq \alpha$
$\langle C \sqsubseteq D \mid \alpha \rangle$	$C \stackrel{\circ}{\varsigma} D \ge \alpha$
$\langle R_1 \sqsubseteq R_2 \rangle$	$R_{1}^{\mathcal{J}} \subseteq R_{2}^{\mathcal{J}}$
$\langle transitive R \rangle$	<i>R</i> is ∘-transitive

Fuzzy axioms

axiom	satisfied if
$\langle i:C \alpha\rangle$	$C^{\mathcal{I}}(i^{\mathcal{I}}) \geq \alpha$
$\langle (i,j) : R \alpha \rangle$	$R^{\mathscr{I}}(\mathbf{i}^{\mathscr{I}},\mathbf{j}^{\mathscr{I}}) \geq \alpha$
$\langle C \sqsubseteq D \mid \alpha \rangle$	$C \stackrel{\circ}{\subseteq} D \ge \alpha$
$\langle R_1 \sqsubseteq R_2 \rangle$	$R_1^{\mathscr{I}} \subseteq R_2^{\mathscr{I}}$
$\langle transitive R \rangle$	<i>R</i> is ∘-transitive
$\langle R_1 = R_2^{-1} \rangle$	$R_1^{\mathscr{I}} = (R_2^{\mathscr{I}})^{-1}$

Fuzzy axioms

axi	om	satisfied if
$-\langle i :$	$C \alpha\rangle$	$C^{\mathscr{I}}(i^{\mathscr{I}}) \geq \alpha$
$\langle (i)$	$(j): R \alpha \rangle$	$R^{\mathscr{I}}(\mathbf{i}^{\mathscr{I}},\mathbf{j}^{\mathscr{I}}) \geq \alpha$
⟨C	$\sqsubseteq D \mid \alpha \rangle$	$C \stackrel{\circ}{\subseteq} D \ge \alpha$
-⟨R	$_{1} \sqsubseteq R_{2} \rangle$	$R_1^{\mathscr{I}} \subseteq R_2^{\mathscr{I}}$
⟨tr	ansitive $R angle$	R is ∘-transitive
⟨R	$_{1}=R_{2}^{-1}\rangle$	$R_{\scriptscriptstyle 1}^{\mathscr{I}} = (R_{\scriptscriptstyle 2}^{\mathscr{I}})^{\scriptscriptstyle -1}$

Using these definitions, the notions of *logical* consequence and satisfiability (of both concepts and axioms) remains the same.

More on slide 317.

318 / 322

Best/Worst Degree Bound

What is the minimal degree of an axiom that \mathcal{K} ensures?

$$glb(\mathcal{K}, \tau) = \sup\{\alpha \mid \mathcal{K} \vDash \langle \tau \ge \alpha \rangle\}$$

$$lub(\mathcal{K}, \tau) = \inf\{\alpha \mid \mathcal{K} \vDash \langle \tau \le \alpha \rangle\}$$

where τ is an axiom of type $\langle i : C \rangle$ or $\langle (i,j) : R \rangle$ or $\langle C \sqsubseteq D \rangle$.

Best/Worst Degree Bound

What is the minimal degree of an axiom that \mathcal{K} ensures?

glb(
$$\mathcal{K}$$
, τ) = sup{ $\alpha \mid \mathcal{K} \vDash \langle \tau \ge \alpha \rangle$ }
lub(\mathcal{K} , τ) = inf{ $\alpha \mid \mathcal{K} \vDash \langle \tau \le \alpha \rangle$ }

where τ is an axiom of type $\langle i : C \rangle$ or $\langle (i,j) : R \rangle$ or $\langle C \sqsubseteq D \rangle$.

• From an empty \mathcal{K} , you cannot infer anything and therefore $glb(\mathcal{K},\tau)=o$ and $lub(\mathcal{K},\tau)=i$ (if using atomic concepts only). Only by adding new axioms into \mathcal{K} , the bounds "tighten up".

Best/Worst Degree Bound

What is the minimal degree of an axiom that \mathcal{K} ensures?

glb(
$$\mathcal{K}$$
, τ) = sup{ $\alpha \mid \mathcal{K} \vDash \langle \tau \ge \alpha \rangle$ }
lub(\mathcal{K} , τ) = inf{ $\alpha \mid \mathcal{K} \vDash \langle \tau \le \alpha \rangle$ }

where τ is an axiom of type $\langle i : C \rangle$ or $\langle (i,j) : R \rangle$ or $\langle C \sqsubseteq D \rangle$.

- From an empty \mathcal{K} , you cannot infer anything and therefore $glb(\mathcal{K},\tau)=o$ and $lub(\mathcal{K},\tau)=i$ (if using atomic concepts only). Only by adding new axioms into \mathcal{K} , the bounds "tighten up".
- What happens if $glb(\mathcal{K}, \tau) \ge lub(\mathcal{K}, \tau)$ for some axiom τ ?

Best Satisfiability Bound

What is the maximal degree of satisfiability of C?

$$\operatorname{glb}(\mathcal{K},\mathsf{C}) = \sup_{\mathscr{I}} \sup_{x \in \Delta} \{\mathsf{C}^{\mathscr{I}}(x) \,|\, \mathscr{I} \vDash \mathscr{K}\}\,.$$

Best Satisfiability Bound

What is the maximal degree of satisfiability of C?

$$\operatorname{glb}(\mathcal{K},\mathsf{C}) = \sup_{\mathcal{I}} \sup_{x \in \Delta} \{\mathsf{C}^{\mathcal{I}}(x) \,|\, \mathcal{I} \vDash \mathcal{K}\}\,.$$

This is a generalization of concept satisfiability.

Homework

Next time we will see a reasoning algorithm for fuzzy DL. Please read [Straccia and Bobillo, 2008]:

Basic idea of the fuzzyDL solver:

Straccia, Umberto and Fernando Bobillo. "Mixed integer programming, general concept inclusions and fuzzy description logics."
Mathware & Soft Computing 14, no. 3 (2008): 247-259.

Where can you find the article? Google scholar is a place to start.

Bibliography

The Description Logic Handbook: Theory, Implementation, and Applications.

Cambridge University Press.

Bobillo, O. and Straccia, U. (2008).

fuzzydl: An expressive fuzzy description logic reasoner.

In In Proc. FUZZ-IEEE-2008. IEEE Computer Society, pages 923--930.

Straccia, U. and Bobillo, F. (2008).

Mixed integer programming, general concept inclusions and fuzzy description logics.

Mathware and Soft Computing, 14(3):247--259.