AE4M33RZN, Fuzzy logic: Fuzzy description logic

Radomír Černoch

radomir.cernoch@fel.cvut.cz

Faculty of Electrical Engineering, CTU in Prague

11/11/2013

Crisp description logic

Our treatment of fuzzy description logic is based on a family of crisp description logic SHIF(D) [Baader, 2003]:

- AL
 - atomic negation
 - intersection
 - universal restrictions
 - limited existential quantification
- C = full concept negation
- S = ALC + transitive roles
- \mathcal{H} = role hierarchies

- *I* = inverse properties
- *F*
- concept intersection
- universal restrictions
- limited existential quantification
- role restriction
- D = data types

SHIF concepts

Let A and R be the sets of *atomic concepts* and *atomic roles*.

Concept constructors

$C, D := \top \bot$	top and bottom concepts	(1)
A	atomic concept	(2)
¬ C	concept negation	(3)
C n D	intersection	(4)
C⊔D	concept union	(5)
Y R · C	full universal quantification	(6)
∃R·C	full existential quantification	(7)

Crisp description logic ontology

Ontology consists of $\mathscr{A}Box$ and $\mathscr{T}Box$. We use the set of individuals *I*:

MBox (Assertion Box)

Contains concept assertions $\langle i \in I : p \in P \rangle$ and role assertions $\langle (i, j \in I) : r \in R \rangle$.

$\mathcal{T}Box$ (Terminology Box)

Contains general concept inclusion (GCI) axioms $(C \sqsubseteq D)$ and role axioms (role hierarchy $(R_1 \sqsubseteq R_2)$, transitivity, ...).

Crisp description logic interpretation

Interpretation \mathscr{I} is a tuple $(\Delta^{\mathscr{I}}, \cdot^{\mathscr{I}})$ (interpretation domain, interpretation function), which maps

an individual to domain object an atomic concept to domain subsets an atomic role to subset of domain tuples
$$\begin{split} \mathbf{i}^{\mathcal{I}} &\in \Delta^{\mathcal{I}} \\ \mathsf{C}^{\mathcal{I}} &\subseteq \Delta^{\mathcal{I}} \\ \mathsf{R}^{\mathcal{I}} &\subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \end{split}$$

Crisp description logic interpretation

The non-atomic concepts are interpreted as follows:

non-atomic concept	its interpretation
Т	$\Delta^{\mathscr{J}}$
\perp	Ø
¬ C	$\Delta^{\mathscr{I}} \setminus C^{\mathscr{J}}$
СпD	$C^{\mathscr{I}} \cap D^{\mathscr{I}}$
СЦО	$C^{\mathscr{I}} \cup D^{\mathscr{I}}$
∀R · C	$\{x \mid \forall y \in \Delta^{\mathscr{I}}. ((x, y) \in \mathbb{R}^{\mathscr{I}}) \Longrightarrow (y \in \mathbb{C}^{\mathscr{I}})\}$
∃R·C	$\{x \mid \exists y \in \Delta^{\mathscr{I}}. ((x, y) \in R^{\mathscr{I}}) \land (y \in C^{\mathscr{I}})\}$

Crisp notion of truth

Axiom satisfaction

satisfied when
$i^{\mathscr{I}} \in C^{\mathscr{I}}$
$(i^{\mathscr{I}},j^{\mathscr{I}})\inR^{\mathscr{I}}$
$C^{\mathscr{I}} \sqsubseteq D^{\mathscr{I}}$
$R^\mathscr{I}$ is transitive

•••

- Concept C is *satisfiable* iff there is an interpretation *S* s.t.
 S ⊨< *i* : C > for some *i*.
- Interpretation *I* satisfies a knowledgebase *K* = *ABox* + *TBox* (or *I* is a model of *K*) iff *I* satisfies all its axioms.
- Axiom T is a logical consequence of K iff every model of K satisfies T.
 We write K ⊨ T.

Fuzzy description logic

Basic idea

- **1.** Keep the the previous slides intact.
- 2. Add \circ below and above every operation.
- **3.** Watch the semantic change.

Overview

We will show the **fuzzyDL** reasoner [Bobillo and Straccia, 2008] capabilities, which extends the SHIF(D) family with fuzzy capabilities.

Concept constructors

We start with atomic concepts *A*. Derived concepts are on the next slide together with their interpretation. (Each concept is interpreted as a fuzzy subset of the domain.)

Fuzzy interpretation \mathscr{I} is a tuple $\Delta^{\mathscr{I}}$, $\cdot^{\mathscr{I}}$ which maps

an individual to a domain object an atomic concept to a domain subsets an atomic role to a relation on the domain

$$\begin{split} \mathbf{i}^{\mathscr{I}} &\in \Delta^{\mathscr{I}} \\ \mathsf{C}^{\mathscr{I}} &\in \mathbb{F}(\Delta^{\mathscr{I}}) \\ \mathsf{R}^{\mathscr{I}} &\in \mathbb{F}(\Delta^{\mathscr{I}} \times \Delta^{\mathscr{I}}) \end{split}$$

C, D :=	interpretation of x
\bot	0
Т	1
A	$A^{\mathscr{I}}(x)$
¬C	$\overline{S}^{C^{\mathscr{I}}}(\mathbf{x})$
C⊓D	$C^{\mathscr{I}}(\mathbf{x}) \underset{S}{\wedge} D^{\mathscr{I}}(\mathbf{x})$
СĻD	$C^{\mathscr{I}}(\mathbf{x}) \underset{L}{\wedge} D^{\mathscr{I}}(\mathbf{x})$
С⊔́D	$C^{\mathscr{I}}(x) \stackrel{S}{\vee} D^{\mathscr{I}}(x)$
СЦD	$C^{\mathscr{F}}(\mathbf{x}) \stackrel{\mathrm{L}}{\vee} D^{\mathscr{F}}(\mathbf{x})$
$C \xrightarrow{R}{S} D$	$C^{\mathscr{I}}(x) \xrightarrow{\mathbb{R}}_{S} D^{\mathscr{I}}(x)$
$C \stackrel{R}{\mapsto} D$	$C^{\mathscr{I}}(\mathbf{x}) \stackrel{\mathbb{R}}{\underset{\mathrm{L}}{\Longrightarrow}} D^{\mathscr{I}}(\mathbf{x})$
$C \xrightarrow{S}{i \to S} D$	$C^{\mathscr{I}}(x) \xrightarrow{S}{S} D^{\mathscr{I}}(x)$

C, D :=	interpretation of x
∃R · C	$\sup_{y} R^{\mathscr{I}}(x,y) \stackrel{\wedge}{\scriptscriptstyle{\circ}} C^{\mathscr{I}}(y)$
∀R · C	$\inf_{y} R^{\mathscr{I}}(x,y) \stackrel{\circ}{\Rightarrow} C^{\mathscr{I}}(y)$
(<i>n</i> C)	$ \begin{array}{c} n \cdot \mathbb{C}(x) \\ mod(\mathbb{C}^{\mathscr{I}}(x)) \end{array} $
mod(C)	
$w_1C_1 + \ldots + w_kC_k$	$w_1 C_1^{\mathscr{I}}(x) + + w_k C_k^{\mathscr{I}}(x)$
$C \leqq n$	$\begin{cases} C^{\mathscr{I}}(\mathbf{x}) & C^{\mathscr{I}}(\mathbf{x}) \leqq n\\ \mathbf{o} & \text{otherwise} \end{cases}$

Male \sqcap Female $\neq \bot$

Modifiers

Modifier is a function that alters the membership function.

Example

Linear modifier of degree c is

$$a = \frac{c}{c+1}$$
$$b = \frac{1}{c+1}$$

Fuzzy DL ontology

Ontology consists of $\mathscr{A}Box$ and $\mathscr{T}Box$:

MBox (Assertion Box)

Contains concept assertions $\langle i \in I : p \in P | \alpha \rangle$ and role assertions $\langle (i, j \in I) : r \in R | \alpha \rangle$.

$\mathcal{T}Box$ (Terminology Box)

GCI axioms $\langle C \sqsubseteq D | \alpha \rangle$ state that "C is D at least by α ".

Besides GCI, there are role hierarchy axioms $\langle R_1 \sqsubseteq R_2 \rangle$, transitivity axioms and definitions of inverse relations.

Notion of a fuzzy truth

Fuzzy axioms

axiom	satisfied if
$\langle i : C \alpha \rangle$	$C^{\mathscr{F}}(i^{\mathscr{F}}) \geq \alpha$
$\langle (i,j) : R \alpha \rangle$	$R^{\mathscr{I}}(i^{\mathscr{I}},j^{\mathscr{I}}) \geq \alpha$
$\langle C \sqsubseteq D \mid \alpha \rangle$	$C \stackrel{\circ}{\subseteq} D \ge \alpha$
$\langle R_1 \sqsubseteq R_2 \rangle$	$R_{1}^{\mathscr{I}} \subseteq R_{2}^{\mathscr{I}}$
$\langle transitive R angle$	<i>R</i> is ∘-transitive
$\langle R_1 = R_2^{-1} \rangle$	$R_{1}^{\mathscr{I}} = (R_{2}^{\mathscr{I}})^{\text{-}1}$

Using these definitions, the notions of *logical consequence* and *satisfiability* (of both concepts and axioms) remains the same. More on slide 207. What can you ask the reasoner?

Best/Worst Degree Bound

What is the minimal degree of an axiom that \mathcal{K} ensures?

$$glb(\mathcal{K}, \tau) = \sup\{\alpha \mid \mathcal{K} \vDash \langle \tau \ge \alpha \rangle\}$$
$$wub(\mathcal{K}, \tau) = \inf\{\alpha \mid \mathcal{K} \vDash \langle \tau \le \alpha \rangle\}$$

where τ is an axiom of type $\langle i : C \rangle$ or $\langle (i, j) : R \rangle$ or $\langle C \sqsubseteq D \rangle$.

- From an empty \mathcal{K} , you cannot infer anything and therefore $glb(\mathcal{K}, \tau) = o$ and $wub(\mathcal{K}, \tau) = i$ (if using atomic concepts only). Only by adding new axioms into \mathcal{K} , the bounds "tighten up".
- What happens if $glb(\mathcal{K}, \tau) \ge wub(\mathcal{K}, \tau)$ for some axiom τ ?

What can you ask the reasoner?

Best Satisfiability Bound

What is the maximal degree of satisfiability of C?

$$glb(\mathcal{K}, \mathsf{C}) = \sup_{\mathscr{I}} \sup_{x \in \Delta} \{\mathsf{C}^{\mathscr{I}}(x) \,|\, \mathscr{I} \models \mathscr{K}\}\,.$$

This is a generalization of *concept satisfiability*.

Homework

Next time we will see a reasoning algorithm for fuzzy DL. Please read [Straccia and Bobillo, 2008]:

Basic idea of the fuzzyDL solver:

Straccia, Umberto and Fernando Bobillo. **"Mixed integer programming,** general concept inclusions and fuzzy description logics." Mathware & Soft Computing 14, no. 3 (2008): 247-259.

Where can you find the article? Google scholar is a place to start.

Bibliography

Baader, F. (2003).

The Description Logic Handbook: Theory, Implementation, and Applications.

Cambridge University Press.

Bobillo, O. and Straccia, U. (2008). fuzzydl: An expressive fuzzy description logic reasoner. In In Proc. FUZZ-IEEE-2008, IEEE Computer Society, pages 923--930.

Straccia, U. and Bobillo, F. (2008).

Mixed integer programming, general concept inclusions and fuzzy description logics.

Mathware and Soft Computing, 14(3):247--259.