AE4M33RZN, Fuzzy logic: Fuzzy relations

Radomír Černoch

radomir.cernoch@fel.cvut.cz

27/09/2014

Faculty of Electrical Engineering, CTU in Prague

Plan of the lecture

Properties of fuzzy sets

Fuzzy implication and fuzzy properties

Fuzzy set inclusion and crisp predicates

Intermission: Probabilistic vs. fuzzy

Binary fuzzy relations

Quick revision of crisp relations

Fuzzyfication of crisp relations

Projection and cylindrical extension

Composition of fuzzy relations

Properties of fuzzy relations

Properties of fuzzy composition

Extensions

Biblopgraphy

Organizational:

- Last week (2 weeks from now), there will be a short test (max 5 points) during the tutorials.
- This week we are having the last theoretical lecture.

Fuzzy implication

We already know fuzzy negation \neg , fuzzy conjunction \wedge and fuzzy disjunction $\overset{\circ}{\vee}$. Unfortunately, there is no nice formula...

Relations

Fuzzy implication

We already know fuzzy negation \neg , fuzzy conjunction \wedge and fuzzy

disjunction $\mathring{\vee}$. Unfortunately, there is no nice formula...

Definition

Fuzzy implication is any function

$$\stackrel{\circ}{\underset{\circ}{\circ}}: [0,1]^2 \to [0,1] \tag{1}$$

which overlaps with the boolean implication on $x, y \in \{0, 1\}$:

$$(x \stackrel{\circ}{\Rightarrow} y) = (x \Rightarrow y). \tag{2}$$

Residue implication

Despite the lack of a uniform definition of fuzzy implication, there is a useful class of implications:

Defintion

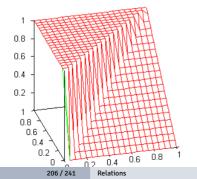
The *R-implication* (residuum, *"reziduovaná implikace"*) is a function obtained from a fuzzy T-norm:

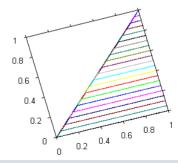
$$\alpha \stackrel{\mathbb{R}}{\underset{\circ}{\circ}} \beta = \sup \{ \gamma \mid \alpha \, \, \, \, \, \, \, \gamma \leq \beta \} \tag{RI}$$

R-implication: Examples (1)

Standard implication (Gödel) is derived from (RI) using the standard cojunction \S :

$$\alpha \stackrel{R}{\underset{S}{=}} \beta = \begin{cases} 1 & \text{if } \alpha \leq \beta \\ \beta & \text{otherwise} \end{cases}$$
 (3)

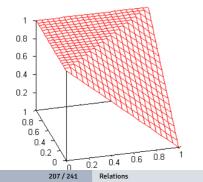


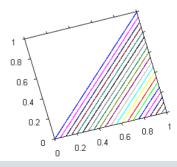


R-implication: Examples (2)

Łukasiewicz implication is derived from (RI) using the Łukasiewicz cojunction \triangle :

$$\alpha \stackrel{R}{\underset{L}{\Longrightarrow}} \beta = \begin{cases} \mathbf{1} & \text{if } \alpha \leq \beta \\ \mathbf{1} - \alpha + \beta & \text{otherwise} \end{cases}$$
 (4)

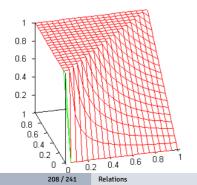


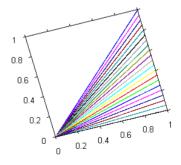


R-implication: Examples (3)

Algebraic implication (Gougen, Gaines) is derived from (RI) using the algebraic cojunction A:

$$\alpha \stackrel{R}{\underset{A}{\Longrightarrow}} \beta = \begin{cases} \mathbf{1} & \text{if } \alpha \leq \beta \\ \frac{\beta}{\alpha} & \text{otherwise} \end{cases}$$
 (5)





R-implication: Properties

Theorem 6.

Let \bigwedge be a continuous fuzzy conjunction. Then R-implication satisfies:

$$\alpha \stackrel{\mathbb{R}}{\underset{\circ}{\circ}} \beta = \mathbf{1} \text{ iff } \alpha \leq \beta$$
 (11)

$$\mathbf{1} \stackrel{R}{\underset{\circ}{\circ}} \beta = \beta \tag{12}$$

$$\alpha \stackrel{\mathbb{R}}{\longrightarrow} \beta$$
 is not increasing in α and not decreasing in β (13)

Relations

R-implication: Properties

Proof of theorem 6: Let's denote $\{\gamma \mid \alpha \land \gamma \leq \beta\} = \Gamma$.

- Proving (I3) uses monotonicity: Increasing α can only shrink Γ and increasing β can only enlarge Γ .
- Proving (I2) is easy: $1 \stackrel{\mathbb{R}}{\Rightarrow} \beta = \sup\{\gamma \mid 1 \stackrel{\wedge}{\Rightarrow} \gamma \leq \beta\}$. From definition of $\stackrel{\wedge}{\Rightarrow}$, we write $1 \stackrel{\mathbb{R}}{\Rightarrow} \beta = \sup\{\gamma \mid \gamma \leq \beta\} = \beta$.

R-implication: Properties

Proof of theorem 6 (contd.):

- For (I1) one needs to check 2 cases:
 - If $\alpha \leq \beta$, then $\mathbf{1} \in \Gamma$, because $\alpha \wedge \mathbf{1} = \alpha \leq \beta$ and therefore the condition $\alpha \wedge \gamma \leq \beta$ is true for all possible values of γ .
 - If $\alpha > \beta$, then $\mathbf{1} \notin \Gamma$, because $\alpha \wedge \mathbf{1} = \alpha > \beta$ and therefore the condition $\alpha \wedge \gamma \leq \beta$ is false for $\gamma = \mathbf{1}$.

S-implication

Defintion

The *S-implication* is a function obtained from a fuzzy disjunction $\mathring{\vee}$:

$$\alpha \stackrel{S}{\Longrightarrow} \beta = _{S} \alpha \stackrel{\circ}{\lor} \beta \tag{SI}$$

S-implication

Defintion

The *S-implication* is a function obtained from a fuzzy disjunction \forall :

$$\alpha \stackrel{S}{\Rightarrow} \beta = _{S} \alpha \stackrel{\circ}{\vee} \beta \tag{SI}$$

Example

Kleene-Dienes implication from §

$$\alpha \stackrel{S}{\underset{S}{\otimes}} \beta = \max(1 - \alpha, \beta) \tag{6}$$

Relations

Generalized fuzzy inclusion

Generalized fuzzy inclusion

Previously, we used the logical negation \neg to define the set complement, the conjunction \land to define the set intersection, etc.

Can we use the implication $\stackrel{\circ}{\underset{\circ}{\longrightarrow}}$ to define the fuzzy inclusion?

Generalized fuzzy inclusion

Previously, we used the logical negation \neg to define the set complement, the conjunction \land to define the set intersection, etc.

Can we use the implication $\stackrel{\circ}{\underset{\circ}{\longrightarrow}}$ to define the fuzzy inclusion?

Definition

The *generalized fuzzy inclusion* $\stackrel{\circ}{\subseteq}$ is a function that assigns a degree to the the inclusion of set $A \in \mathbb{F}(\Delta)$ in set $B \in \mathbb{F}(\Delta)$:

$$A \stackrel{\circ}{\underset{\circ}{\subset}} B = \inf\{A(x) \stackrel{\circ}{\underset{\circ}{\longrightarrow}} B(x) \mid x \in \Delta\}$$
 (7)

Generalized fuzzy inclusion: Example

Definition

The fuzzy $inclusion \subseteq$ is a predicate (assigns a true/false value) which hold for two fuzzy sets $A, B \in \mathbb{F}(\Delta)$ iff

$$\mu_A(x) \le \mu_B(x) \text{ for all } x \in \Delta.$$
 (8)

In vertical representation, the definition has a straightforward equivalent:

$$\mu_{A} \le \mu_{B} \tag{9}$$

In vertical representation, the definition has a straightforward equivalent:

$$\mu_{A} \le \mu_{B} \tag{9}$$

In horizontal representation, there is a theorem:

Theorem 2.

Let $A, B \in \mathbb{F}(\Delta)$ if and only if

$$R_A(\alpha) \subseteq R_B(\alpha)$$
 for all $\alpha \in [0,1]$. (10)

Proof of theorem 2.

- \Rightarrow Assume $A \subseteq B$ and $x \in \mathbb{R}_A(\alpha)$ for some value α . If $\alpha \leq A(x)$, then $A(x) \leq B(x)$ (from the definition of $A \subseteq B$) and therefore $x \in \mathbb{R}_B(\alpha)$ and $\mathbb{R}_A(\alpha) \subseteq \mathbb{R}_B(\alpha)$.

Cutworhiness

We ended up with 2 equal definitions of set inclusion: using vertical and horizontal representation. Can we generalize this?

Cutworhiness

We ended up with 2 equal definitions of set inclusion: using vertical and horizontal representation. Can we generalize this?

Cutworhiness

Let *P* be a predicate (returns true/false) over fuzzy sets. *P* is called *cutworthy* ("řezově dědičná vlastnost") if the implication holds:

$$P(A_1,...,A_n) \Rightarrow P(R_{A_1}(\alpha),...,R_{A_n}(\alpha)) \text{ for all } \alpha \in [0,1]$$
 (11)

Cutworhiness

We ended up with 2 equal definitions of set inclusion: using vertical and horizontal representation. Can we generalize this?

Cutworhiness

Let *P* be a predicate (returns true/false) over fuzzy sets. *P* is called *cutworthy* ("řezově dědičná vlastnost") if the implication holds:

$$P(A_1,...,A_n) \Rightarrow P(R_{A_1}(\alpha),...,R_{A_n}(\alpha)) \text{ for all } \alpha \in [0,1]$$
 (11)

There is a related notion: We define P as cut-consistent ("řezově konzistentní") using the same definition, but replacing \Rightarrow with \Leftrightarrow .

Cutworhiness: Examples

• The theorem 2 can be stated as: "Set inclusion is cut-consistent."

Brain teasers

- Strong normality of A is defined as A(x) = 1 for some $x \in \Delta$. ????
- Being crisp is ????

Cutworhiness: Examples

• The theorem 2 can be stated as: "Set inclusion is cut-consistent."

Brain teasers

- Strong normality of A is defined as A(x) = 1 for some $x \in \Delta$. Strong normality is **cut-consistent**: A is strongly-normal iff every its cut is non-empty iff every cut strongly normal.
- Being crisp is cutworthy, but not cut-consistent: Every cut is crisp by definition, therefore cutworthiness. But even non-crisp sets have crisp cuts, therefore the property is not not cut-consistent.

Google: "fuzzy"

Sources: M. Taylor's Weblog, M. Taylor's Weblog, Eddie's Trick Shop.

Google: "probability"

Sources: Life123, WhatWeKnowSoFar, Probability Problems.

Fuzzy vs. probability

• Vagueness vs. uncertainty.

Relations

Fuzzy vs. probability

· Vagueness vs. uncertainty.

• Fuzzy logic is functional.

Crisp relations

Definition

A binary crisp relation R from X onto Y is a subset of the cartesian product $X \times Y$:

$$R \in \mathbb{P}(X \times Y) \tag{12}$$

Crisp relations

Definition

A binary crisp relation R from X onto Y is a subset of the cartesian product $X \times Y$:

$$R \in \mathbb{P}(X \times Y) \tag{12}$$

Definition

The *inverse relation* R^{-1} to R is a relation from Y to X s.t.

$$R^{-1} = \{ (y, x) \in Y \times X \mid (x, y) \in R \}$$
 (13)

Crisp relations: Inverse

Definition

Let X, Y, Z be sets. Then the *compound* of relations $R \subseteq X \times Y$, $S \subseteq Y \times Z$ is the relation

$$R \cap S = \{(x, z) \in X \times Z \mid (x, y) \in R \text{ and } (y, z) \in S \text{ for some } y\}$$
 (14)

Relations

Crisp relations: Properties

The *identity* relation on Δ is $E = \{(x, x) \mid x \in \Delta\}$.

Relations

Crisp relations: Properties

The *identity* relation on Δ is $E = \{(x, x) \mid x \in \Delta\}$.

Then the relation $R \subseteq \Delta \times \Delta$ is called

The *identity* relation on Δ is $E = \{(x, x) \mid x \in \Delta\}$.

Then the relation $R \subseteq \Delta \times \Delta$ is called

property using logical connectives

using set axioms

The *identity* relation on Δ is $E = \{(x, x) \mid x \in \Delta\}$.

property	using logical connectives	using set axioms
reflexive	$\forall x. (x,x) \in R$	$E \subseteq R$

The *identity* relation on Δ is $E = \{(x, x) \mid x \in \Delta\}$.

property	using logical connectives	using set axioms
reflexive	$\forall x. (x, x) \in R$	$E \subseteq R$
symmetric	$(x,y)\in R \Rightarrow (y,x)\in R$	$R = R^{-1}$

The *identity* relation on Δ is $E = \{(x, x) \mid x \in \Delta\}$.

property	using logical connectives	using set axioms
reflexive	$\forall x. (x, x) \in R$	$E \subseteq R$
symmetric	$(x,y) \in R \Rightarrow (y,x) \in R$	$R = R^{-1}$
anti-symmetric	$(x,y) \in R \land (y,z) \in R \Rightarrow y = z$	$R \cap R^{-1} \subseteq E$

The *identity* relation on Δ is $E = \{(x, x) \mid x \in \Delta\}$.

property	using logical connectives	using set axioms
reflexive	$\forall x. (x, x) \in R$	$E \subseteq R$
symmetric	$(x,y) \in R \Rightarrow (y,x) \in R$	$R = R^{-1}$
anti-symmetric	$(x,y) \in R \land (y,z) \in R \Rightarrow y = z$	$R \cap R^{-1} \subseteq E$
transitive	$(x,y) \in R \land (y,z) \in R \Rightarrow (x,z) \in R$	$R \bigcirc R \subseteq R$

The *identity* relation on Δ is $E = \{(x, x) \mid x \in \Delta\}$.

property	using logical connectives	using set axioms	
reflexive	$\forall x. (x, x) \in R$	$E \subseteq R$	
symmetric	$(x,y) \in R \Rightarrow (y,x) \in R$	$R = R^{-1}$	
anti-symmetric	$(x,y) \in R \land (y,z) \in R \Rightarrow y = z$	$R \cap R^{-1} \subseteq E$	
transitive	$(x,y) \in R \land (y,z) \in R \Rightarrow (x,z) \in R$	$R \bigcirc R \subseteq R$	
partial order	reflexive, transitive and anti-symmetric		
equivalence	reflexive, transitive and symmetric		

Fuzzy relations

Definition

A binary fuzzy relation R from X onto Y is a fuzzy subset on the universe $X \times Y$.

$$R \in \mathbb{F}(X \times Y) \tag{15}$$

Definition

The *fuzzy inverse* relation $R^{-1} \in \mathbb{F}(Y \times X)$ to $R \in \mathbb{F}(X \times Y)$, s.t.

$$R(y,x) = R^{-1}(x,y)$$
 (16)

Projection

Defintion

Let $R \in \mathbb{F}(X \times Y)$ be a fuzzy binary relation. The *first* and second projection of R is

$$R^{(1)}(x) = \bigvee_{y \in Y}^{S} R(x, y)$$
 (17)

$$R^{(2)}(y) = \bigvee_{x \in X}^{S} R(x, y)$$
 (18)

Projection: Example

R	y_1	y_2	y_3	y_4	$\boldsymbol{y}_{\scriptscriptstyle 5}$	y_6	$R^{(1)}(x)$
X_1	0.1	0.2	0.4	0.8	1	0.8	?
X ₂	0.2	0.4	0.8	1	0.8	0.6	?
x_3	0.4	0.8	1	0.8	0.4	0.2	?
$R^{(2)}(y)$?	?	?	?	?	?	

Sometimes there is a total projection defined as

Relations

$$R^{(T)} = \bigvee_{x \in X} \bigvee_{y \in Y} R(x, y).$$

But we already know this notion as?

Projection: Example

R	y_1	y ₂	y_3	y_4	y_{5}	y_6	$R^{(1)}(x)$
	0.1						
X_2	0.2	0.4	0.8	1	0.8	0.6	1
x_3	0.4	0.8	1	0.8	0.4	0.2	1
$R^{(2)}(y)$	0.4	0.8	1	1	1	0.8	

Sometimes there is a total projection defined as

$$R^{(T)} = \bigvee_{x \in X} \bigvee_{y \in Y} R(x, y).$$

But we already know this notion as Height(R).

Cylindrical extension

Can we reconstruct a fuzzy relation from its projections? There is an unique largest relation with prescribed projections:

Cylindrical extension

Can we reconstruct a fuzzy relation from its projections? There is an unique largest relation with prescribed projections:

Definition

Let $A \in \mathbb{F}(X)$ and $B \in \mathbb{F}(Y)$ be fuzzy sets. The *cylindrical extension* ("cylindrické rozšíření", "kartézský součin fuzzy množin") is defined as

$$A \times B(x,y) = A(x) \underset{S}{\wedge} B(y)$$
 (19)

Cylindrical extension

Can we reconstruct a fuzzy relation from its projections? There is an unique largest relation with prescribed projections:

Definition

Let $A \in \mathbb{F}(X)$ and $B \in \mathbb{F}(Y)$ be fuzzy sets. The *cylindrical extension* ("cylindrické rozšíření", "kartézský součin fuzzy množin") is defined as

$$A \times B(x,y) = A(x) \underset{S}{\wedge} B(y)$$
 (19)

Brain teaser

Why can't there be a relation Q bigger than $A \times B$, whose projections are $Q^{(1)} = A$ and $Q^{(2)} = B$?

Cylindrical extension: Drawing

$$A(x) = \begin{cases} x - 1 & x \in [1, 2] \\ 3 - x & x \in [2, 3] \\ 0 & \text{otherwise} \end{cases}$$

$$B(x) = \begin{cases} x - 3 & x \in [3, 4] \\ 5 - x & x \in [4, 5] \\ 0 & \text{otherwise} \end{cases}$$

Composition of fuzzy relations

Definition

Let X, Y, Z be crisp sets. $R \in \mathbb{F}(X \times Y)$, $S \in \mathbb{F}(Y \times Z)$ and $\ \ \,$ some fuzzy conjunction. Then the $\ \ \,$ -composition (,, $\ \ \,$ -složená relace") is

$$R \bigcirc S(x,z) = \bigvee_{y \in Y}^{S} R(x,y) \wedge S(y,z)$$
 (20)

Composition of fuzzy relations

Definition

Let X, Y, Z be crisp sets. $R \in \mathbb{F}(X \times Y)$, $S \in \mathbb{F}(Y \times Z)$ and $\ \ \,$ some fuzzy conjunction. Then the $\ \ \,$ -composition (" $\ \ \,$ -složená relace") is

$$R \bigcirc S(x,z) = \bigvee_{y \in Y}^{S} R(x,y) \wedge S(y,z)$$
 (20)

1. For infinite domains, \bigvee^s is computed using the sup instead of max.

Composition of fuzzy relations

Definition

Let X, Y, Z be crisp sets. $R \in \mathbb{F}(X \times Y)$, $S \in \mathbb{F}(Y \times Z)$ and $^{\land}$ some fuzzy conjunction. Then the $^{\circ}$ -composition (" $^{\circ}$ -složená relace") is

$$R \bigcirc S(x,z) = \bigvee_{y \in Y}^{S} R(x,y) \wedge S(y,z)$$
 (20)

- 1. For infinite domains, \bigvee^s is computed using the sup instead of max.
- 2. Instead of the "for some y" in *crisp relations*, the disjunction "finds such a y" that maximizes the conjunction.

Example of a fuzzy relation

$$R(x,y) = \begin{cases} x+y & x,y \in \left[0,\frac{1}{2}\right] \\ \text{o} & \text{otherwise} \end{cases} \qquad S(x,y) = \begin{cases} x\cdot y & x,y \in \left[0,\frac{1}{2}\right] \\ \text{o} & \text{otherwise} \end{cases}$$

Then the relation $R \subseteq \Delta \times \Delta$ is called

Relations

Then the relation $R \subseteq \Delta \times \Delta$ is called

property

using set axioms

reflexive E ⊂ R	property	using set axioms
TOTAL DELL	reflexive	$E \subseteq R$

property	using set axioms
reflexive	$E \subseteq R$
symmetric	$R = R^{-1}$

property	using set axioms
reflexive	$E \subseteq R$
symmetric	$R = R^{-1}$
o-anti-symmetric	$R \cap R^{-1} \subseteq E$

property	using set axioms
reflexive	$E \subseteq R$
symmetric	$R = R^{-1}$
∘-anti-symmetric	$R \cap R^{-1} \subseteq E$
o-transitive	$R \underset{\circ}{\bigcirc} R \subseteq R$

property	using set axioms
reflexive	$E \subseteq R$
symmetric	$R = R^{-1}$
o-anti-symmetric	$R \cap R^{-1} \subseteq E$
o-transitive	$R \underset{\circ}{\bigcirc} R \subseteq R$
∘-partial order	reflexive, o-transitive and o-anti-symmetric
∘-equivalence	reflexive, o-transitive and o-symmetric

Properties in a finite domain

If the universe Δ is finite, the relation can be written as a matrix. Their properties are reflected in the relation's matrix:

- Reflexivity: Cells on the main diagonal?.
- Symmetricity: Cells symmetric over the main diagonal?.
- Anti-symmetricity: Cells symmetric over the main diagonal?.
 - For S- and A-anti-symmetricity, ?.
 - For L-anti-symmetricity, ?.

Relations

Transitivity: More difficult (see example on the next slide).

Properties in a finite domain

If the universe Δ is finite, the relation can be written as a matrix. Their properties are reflected in the relation's matrix:

- Reflexivity: Cells on the main diagonal are 1.
- Symmetricity: Cells symmetric over the main diagonal are equal.
- Anti-symmetricity: Cells symmetric over the main diagonal have conjunction equal to zero.
 - For S- and A-anti-symmetricity, one of the elements must be zero.
 - For L-anti-symmetricity, their sum must be less or equal to 1.
- Transitivity: More difficult (see example on the next slide).

Example on fuzzy relation properties

Let $\Delta = \{A, B, C, D\}$ and $R \in \mathbb{F}(\Delta \times \Delta)$.

R	Α	В	С	D
Α		0.5		0.1
В			0.2	
С				
D		0.2		

Fill the missing cells in the table to make R

- a) S-equivalence
- b) A-equivalence

Properties of fuzzy composition

Theorem 1

Let R, S and T be relations (defined over sets that "make sense") The following equations hold:

Relations

Properties of fuzzy composition

Theorem 1.

Let *R*, *S* and *T* be relations (defined over sets that "make sense") The following equations hold:

$$R \bigcirc E = R, \ E \bigcirc R = R$$
 (21)

$$(R \bigcirc S)^{-1} = S^{-1} \bigcirc R^{-1} \tag{22}$$

$$R \bigcirc (S \bigcirc T) = (R \bigcirc S) \bigcirc T \tag{23}$$

$$(R \overset{S}{\cup} S) \underset{\bigcirc}{\circ} T = (R \underset{\bigcirc}{\circ} T) \overset{S}{\cup} (S \underset{\bigcirc}{\circ} T)$$
 (24)

$$R \bigcirc (S \overset{S}{\cup} T) = (R \bigcirc S) \overset{S}{\cup} (R \bigcirc T)$$
 (25)

Properties of fuzzy composition

Theorem 1.

Let *R*, *S* and *T* be relations (defined over sets that "make sense") The following equations hold:

$$R \bigcirc E = R, \ E \bigcirc R = R \tag{21}$$

$$(R \bigcirc S)^{-1} = S^{-1} \bigcirc R^{-1} \tag{22}$$

$$R \bigcirc (S \bigcirc T) = (R \bigcirc S) \bigcirc T \tag{23}$$

$$(R \overset{S}{\cup} S) \underset{\bigcirc}{\circ} T = (R \underset{\bigcirc}{\circ} T) \overset{S}{\cup} (S \underset{\bigcirc}{\circ} T)$$
 (24)

$$R \bigcirc (S \overset{S}{\cup} T) = (R \bigcirc S) \overset{S}{\cup} (R \bigcirc T)$$
 (25)

(21) describes the identity element, (22) the inverse of composition,

(23) is the asociativity, (24) and (25) the right- and left-distributivity.

Proof of 1.

Proving (21) and (22) is trivial.

$$"R \circ (S \circ T)"(x, w) = \bigvee_{y}^{S} R(x, y) \circ "S \circ T"(y, w)$$

$$= \bigvee_{y}^{S} R(x, y) \circ \left(\bigvee_{z}^{S} S(y, z) \circ T(z, w)\right)$$

$$= \bigvee_{y}^{S} \bigvee_{z}^{S} R(x, y) \circ S(y, z) \circ T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \circ S(y, z) \circ T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \circ S(y, z) \circ T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \circ S(y, z) \circ T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \circ S(y, z) \circ T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \circ S(y, z) \circ T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \circ S(y, z) \circ T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \circ S(y, z) \circ T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \circ S(y, z) \circ T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \circ S(y, z) \circ T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \circ S(y, z) \circ T(z, w)$$

Proof of 1 (contd.).

$$=\bigvee_{z}^{S}\bigvee_{u}^{S}R(x,y) \wedge S(y,z) \wedge T(z,w)$$
 (30)

$$=\bigvee_{z}^{S}\left(\bigvee_{y}^{S}R(x,y) \wedge S(y,z)\right) \wedge T(z,w)$$
 (31)

$$=\bigvee_{z}^{S}"R \bigcirc S"(x,z) \wedge T(z,w)$$
 (32)

$$= "R \bigcirc S \bigcirc T"(x, w) \tag{33}$$

Proof of (24) and (25) is similar (uses the distributivity law), only shorter. See [Navara and Olšák, 2001] for details.

• ...a ε-reflective relation

$$R(x,x) \ge \varepsilon \tag{34}$$

• ...a ε-reflective relation

$$R(x,x) \ge \varepsilon \tag{34}$$

• ...a weakly reflexive relation

$$R(x,y) \le R(x,x)$$
 and $R(y,x) \le R(x,x)$ for all x,y (35)

...a ε-reflective relation

$$R(x,x) \ge \varepsilon$$
 (34)

...a weakly reflexive relation

$$R(x,y) \le R(x,x)$$
 and $R(y,x) \le R(x,x)$ for all x,y (35)

- Relation is 1-reflective iff reflexive.
- If a relation is reflexive, then it is weakly reflexive.

...a non-involutive negation by refusing (N2)

and adopting a weaker axiom

Example

Gödel negation

$$\frac{1}{G}\alpha = \begin{cases}
1 & \alpha = 0 \\
0 & \text{otherwise}
\end{cases}$$
(36)

Bibliography

Navara, M. and Olšák, P. (2001). Základy fuzzy množin. Nakladatelství ČVUT.