AE4M33RZN, Fuzzy logic: Fuzzy relations

Radomír Černoch
radomir.cernoch@fel.cvut.cz

$$
03 / 11 / 2013
$$

Faculty of Electrical Engineering, CTU in Prague

Plan of the lecture

Properties of fuzzy sets
Fuzzy implication and fuzzy properties
Fuzzy set inclusion and crisp predicates
Intermission: Probabilistic vs. fuzzy
Binary fuzzy relations
Quick revision of crisp relations
Fuzzyfication of crisp relations
Projection and cylindrical extension
Composition of fuzzy relations
Properties of fuzzy relations
Properties of fuzzy composition
Extensions
Biblopgraphy

Organizational:

- Next week, there will be a short test (max 5 points) during the tutorials.
- Tutorial slides will be updated today.
- Lecture slides have been updated. No more bugs I know about!
- This week we are having the last theoretical lecture.

Fuzzy implication

We already know fuzzy negation \neg, fuzzy conjunction \wedge_{\circ} and fuzzy disjunction $\stackrel{\circ}{\vee}$. Unfortunately, there is no nice formula...

Fuzzy implication

We already know fuzzy negation \neg, fuzzy conjunction \wedge_{ρ} and fuzzy disjunction $\stackrel{\circ}{\vee}$. Unfortunately, there is no nice formula...

Definition

Fuzzy implication is any function

$$
\begin{equation*}
\stackrel{0}{\Rightarrow}:[0,1]^{2} \rightarrow[0,1] \tag{1}
\end{equation*}
$$

which overlaps with the boolean implication on $x, y \in\{0,1\}$:

$$
\begin{equation*}
(x \underset{0}{\circ} y)=(x \Rightarrow y) . \tag{2}
\end{equation*}
$$

Residue implication

Despite the lack of a uniform definition of fuzzy implication, there is a useful class of implications:

Defintion

The R-implication (residuum, „reziduovaná implikace") is a function obtained from a fuzzy T-norm:

$$
\begin{equation*}
\alpha \underset{o}{\mathrm{R}} \beta=\sup \{\gamma \mid \alpha \wedge \gamma \leqslant \beta\} \tag{RI}
\end{equation*}
$$

R-implication: Examples (1)

Standard implication (Gödel) is derived from (RI) using the standard cojunction S :

$$
\alpha \stackrel{\mathrm{R}}{\stackrel{\mathrm{~s}}{\Rightarrow}} \beta= \begin{cases}1 & \text { if } \alpha \leqslant \beta \tag{3}\\ \beta & \text { otherwise }\end{cases}
$$

R-implication: Examples (2)

£ukasiewicz implication is derived from (RI) using the Łukasiewicz cojunction T :

$$
\alpha \stackrel{\mathrm{R}}{\stackrel{\mathrm{~L}}{\Rightarrow}} \beta= \begin{cases}1 & \text { if } \alpha \leqslant \beta \\ 1-\alpha+\beta & \text { otherwise }\end{cases}
$$

R-implication: Examples (3)

Algebraic implication (Gougen, Gaines) is derived from (RI) using the algebraic cojunction $\hat{\mathrm{A}}$:

$$
\alpha \underset{\mathrm{A}}{\stackrel{\mathrm{R}}{\Rightarrow}} \beta= \begin{cases}1 & \text { if } \alpha \leqslant \beta \tag{5}\\ \frac{\beta}{\alpha} & \text { otherwise }\end{cases}
$$

R-implication: Properties

Theorem 109.

Let \wedge_{o} be a continuous fuzzy conjunction. Then R-implication satisfies:

$$
\begin{align*}
& \alpha \stackrel{\mathrm{R}}{\Rightarrow} \beta=1 \text { iff } \alpha \leqslant \beta \tag{I1}\\
& \mathbf{1} \underset{\mathrm{O}}{\Rightarrow} \beta=\beta \tag{I2}\\
& \alpha \stackrel{\mathrm{R}}{\Rightarrow} \beta \text { is not increasing in } \alpha \text { and not decreasing in } \beta \tag{I3}
\end{align*}
$$

R-implication: Properties

Proof of theorem 109: Let's denote $\{\gamma \mid \alpha \wedge \gamma \leqslant \beta\}=\Gamma$.

- Proving (I3) uses monotonicity: Increasing α can only shrink Γ and increasing β can only enlarge Γ.
- Proving (12) is easy: $1 \underset{0}{\mathrm{R}} \beta=\sup \{\gamma \mid \mathbf{1} \hat{\rho} \gamma \leqslant \beta\}$. From definition of $\hat{\circ}$, we write $\mathrm{\imath} \stackrel{\mathrm{R}}{\Rightarrow} \beta=\sup \{\gamma \mid \gamma \leqslant \beta\}=\beta$.

R-implication: Properties

Proof of theorem 109 (contd.):

- For (I1) one needs to check 2 cases:
- If $\alpha \leqslant \beta$, then $\mathbf{1} \in \Gamma$, because $\alpha \wedge 1=\alpha \leqslant \beta$ and therefore the condition $\alpha \wedge \gamma \leqslant \beta$ is true for all possible values of γ.
- If $\alpha>\beta$, then $\mathbf{1} \notin \Gamma$, because $\alpha \wedge \mathbf{1}=\alpha>\beta$ and therefore the condition $\alpha \wedge \gamma \leqslant \beta$ is false for $\gamma=\mathbf{1}$.

S-implication

Defintion

The S-implication is a function obtained from a fuzzy disjunction $\stackrel{\circ}{\vee}$:

$$
\begin{equation*}
\alpha \stackrel{\mathrm{s}}{\Rightarrow} \beta=\underset{\mathrm{s}}{\mathrm{~s}} \alpha \stackrel{\circ}{\vee} \beta \tag{SI}
\end{equation*}
$$

S-implication

Defintion

The S-implication is a function obtained from a fuzzy disjunction $\stackrel{\circ}{\vee}$:

$$
\begin{equation*}
\alpha \stackrel{\mathrm{s}}{\Rightarrow} \beta=\underset{\mathrm{s}}{\mathrm{~s}} \alpha \stackrel{\circ}{\vee} \beta \tag{SI}
\end{equation*}
$$

Example

Kleene-Dienes implication from ${ }^{S}$

$$
\begin{equation*}
\alpha \stackrel{\mathrm{s}}{\stackrel{\mathrm{~s}}{\Rightarrow}} \beta=\max (1-\alpha, \beta) \tag{6}
\end{equation*}
$$

Generalized fuzzy inclusion

Generalized fuzzy inclusion

Previously, we used the logical negation $\neg \stackrel{\square}{\circ}$ to define the set complement, the conjunction \wedge_{ρ} to define the set intersection, etc.

Can we use the implication $\stackrel{\circ}{\Rightarrow}$ to define the the fuzzy inclusion?

Generalized fuzzy inclusion

Previously, we used the logical negation \neg to define the set complement, the conjunction \wedge_{ρ} to define the set intersection, etc.
Can we use the implication $\underset{0}{\circ}$ to define the the fuzzy inclusion?

Definition

The generalized fuzzy inclusion $\stackrel{\circ}{\square}$ is a function that assigns a degree to the the inclusion of set $A \in \mathbb{F}(\Delta)$ in set $B \in \mathbb{F}(\Delta)$:

$$
\begin{equation*}
A \underset{\bigcirc}{\stackrel{\circ}{\circ} B} B=\inf \{A(x) \underset{0}{\circ} B(x) \mid x \in \Delta\} \tag{7}
\end{equation*}
$$

Generalized fuzzy inclusion: Example

Fuzzy inclusion (non-generalized)

Definition

The fuzzy inclusion \subseteq is a predicate (assigns a true/false value) which hold for two fuzzy sets $A, B \in \mathbb{F}(\Delta)$ iff

$$
\begin{equation*}
\mu_{A}(x) \leqslant \mu_{B}(x) \text { for all } x \in \Delta . \tag{8}
\end{equation*}
$$

Fuzzy inclusion (non-generalized)

In vertical representation, the definition has a straightforward equivalent:

$$
\begin{equation*}
\mu_{A} \leqslant \mu_{B} \tag{9}
\end{equation*}
$$

Fuzzy inclusion (non-generalized)

In vertical representation, the definition has a straightforward equivalent:

$$
\begin{equation*}
\mu_{A} \leqslant \mu_{B} \tag{9}
\end{equation*}
$$

In horizontal representation, there is a theorem:
Theorem 116.
Let $A, B \in \mathbb{F}(\Delta)$ if and only if

$$
\begin{equation*}
\mathrm{R}_{A}(\alpha) \subseteq \mathrm{R}_{B}(\alpha) \text { for all } \alpha \in[0,1] . \tag{10}
\end{equation*}
$$

Fuzzy inclusion (non-generalized)

Proof of theorem 116.

\Rightarrow Assume $A \subseteq B$ and $x \in R_{A}(\alpha)$ for some value α. If $\alpha \leqslant A(x)$, then $A(x) \leqslant B(x)$ (from the definition of $A \subseteq B$) and therefore $x \in R_{B}(\alpha)$ and $\mathrm{R}_{A}(\alpha) \subseteq \mathrm{R}_{B}(\alpha)$.
\Leftarrow Assume $R_{A}(\alpha) \subseteq R_{B}(\alpha)$. Firstly recall the horizontal-vertical translation formula: $\mu_{A}(x)=\sup \left\{\alpha \in[0,1] \mid x \in R_{A}(\alpha)\right\}$. Since $\left\{\alpha \mid x \in \mathrm{R}_{A}(\alpha)\right\} \subseteq\left\{\alpha \mid x \in \mathrm{R}_{B}(\alpha)\right\}$, the inequality $A(x) \leqslant \sup \left\{\alpha \mid x \in R_{B}(\alpha)\right\} \leqslant B(x)$ holds.

Cutworhiness

We ended up with 2 equal definitions of set inclusion: using vertical and horizontal representation. Can we generalize this?

Cutworhiness

We ended up with 2 equal definitions of set inclusion: using vertical and horizontal representation. Can we generalize this?

Cutworhiness

Let P be a predicate (returns true/false) over fuzzy sets. P is called cutworthy (,„̌̌ezově dědičná vlastnost") if the implication holds:

$$
\begin{equation*}
P\left(A_{1}, \ldots, A_{n}\right) \Rightarrow P\left(\mathrm{R}_{A_{1}}(\alpha), \ldots, \mathrm{R}_{A_{n}}(\alpha)\right) \text { for all } \alpha \in[0,1] \tag{11}
\end{equation*}
$$

Cutworhiness

We ended up with 2 equal definitions of set inclusion: using vertical and horizontal representation. Can we generalize this?

Cutworhiness

Let P be a predicate (returns true/false) over fuzzy sets. P is called cutworthy (,,řezově dědičná vlastnost") if the implication holds:

$$
\begin{equation*}
P\left(A_{1}, \ldots, A_{n}\right) \Rightarrow P\left(\mathrm{R}_{A_{1}}(\alpha), \ldots, \mathrm{R}_{A_{n}}(\alpha)\right) \text { for all } \alpha \in[0,1] \tag{11}
\end{equation*}
$$

There is a related notion: We define P as cut-consistent („řezově konzistentni"') using the same definition, but replacing \Rightarrow with \Leftrightarrow.

Cutworhiness: Examples

- The theorem 116 can be stated as: "Set inclusion is cut-consistent."

Brain teasers

- Strong normality of A is defined as $A(x)=1$ for some $x \in \Delta$. ? ? ? ?
- Being crisp is ? ? ? ?

Cutworhiness: Examples

- The theorem 116 can be stated as: "Set inclusion is cut-consistent."

Brain teasers

- Strong normality of A is defined as $A(x)=1$ for some $x \in \Delta$. Strong normality is cut-consistent: A is strongly-normal iff every its cut is non-empty iff every cut strongly normal.
- Being crisp is
cutworthy, but not cut-consistent: Every cut is crisp by definition, therefore cutworthiness. But even non-crisp sets have crisp cuts, therefore the property is not not cut-consistent.

Google: "fuzzy"

Sources: M. Taylor's Weblog, M. Taylor's Weblog, Eddie's Trick Shop.

Google: "probability"

Sources: Life123, WhatWeKnowSoFar, Probability Problems.

Fuzzy vs. probability

- Vagueness vs. uncertainty.

Fuzzy vs. probability

- Vagueness vs. uncertainty.
- Fuzzy logic is functional.

Crisp relations

Definition

A binary crisp relation R from X onto Y is a subset of the cartesian product $X \times Y$:

$$
\begin{equation*}
R \in \mathbb{P}(X \times Y) \tag{12}
\end{equation*}
$$

Crisp relations

Definition

A binary crisp relation R from X onto Y is a subset of the cartesian product $X \times Y$:

$$
\begin{equation*}
R \in \mathbb{P}(X \times Y) \tag{12}
\end{equation*}
$$

Definition

The inverse relation R^{-1} to R is a relation from Y to X s.t.

$$
\begin{equation*}
R^{-1}=\{(y, x) \in Y \times X \mid(x, y) \in R\} \tag{13}
\end{equation*}
$$

Crisp relations: Inverse

Definition

Let X, Y, Z be sets. Then the compound of relations $R \subseteq X \times Y, S \subseteq Y \times Z$ is the relation

$$
\begin{equation*}
R \bigcirc S=\{(x, z) \in X \times Z \mid(x, y) \in R \text { and }(y, z) \in S \text { for some } y\} \tag{14}
\end{equation*}
$$

Crisp relations: Properties

The identity relation on Δ is $E=\{(x, x) \mid x \in \Delta\}$.

Crisp relations: Properties

The identity relation on Δ is $E=\{(x, x) \mid x \in \Delta\}$.

Then the relation $R \subseteq \Delta \times \Delta$ is called

Crisp relations: Properties

The identity relation on Δ is $E=\{(x, x) \mid x \in \Delta\}$.

Then the relation $R \subseteq \Delta \times \Delta$ is called

property	using logical connectives	using set axioms

Crisp relations: Properties

The identity relation on Δ is $E=\{(x, x) \mid x \in \Delta\}$.

Then the relation $R \subseteq \Delta \times \Delta$ is called

property	using logical connectives	using set axioms
reflexive	$\forall x .(x, x) \in R$	$E \subseteq R$

Crisp relations: Properties

The identity relation on Δ is $E=\{(x, x) \mid x \in \Delta\}$.

Then the relation $R \subseteq \Delta \times \Delta$ is called

property	using logical connectives	using set axioms
reflexive	$\forall x .(x, x) \in R$	$E \subseteq R$
symmetric	$(x, y) \in R \Rightarrow(y, x) \in R$	$R=R^{-1}$

Crisp relations: Properties

The identity relation on Δ is $E=\{(x, x) \mid x \in \Delta\}$.

Then the relation $R \subseteq \Delta \times \Delta$ is called

property	using logical connectives	using set axioms
reflexive	$\forall x .(x, x) \in R$	$E \subseteq R$
symmetric	$(x, y) \in R \Rightarrow(y, x) \in R$	$R=R^{-1}$
anti-symmetric	$(x, y) \in R \wedge(y, z) \in R \Rightarrow y=z$	$R \cap R^{-1} \subseteq E$

Crisp relations: Properties

The identity relation on Δ is $E=\{(x, x) \mid x \in \Delta\}$.

Then the relation $R \subseteq \Delta \times \Delta$ is called

property	using logical connectives	using set axioms
reflexive	$\forall x .(x, x) \in R$	$E \subseteq R$
symmetric	$(x, y) \in R \Rightarrow(y, x) \in R$	$R=R^{-1}$
anti-symmetric	$(x, y) \in R \wedge(y, z) \in R \Rightarrow y=z$	$R \cap R^{-1} \subseteq E$
transitive	$(x, y) \in R \wedge(y, z) \in R \Rightarrow(x, z) \in R$	$R \bigcirc R \subseteq R$

Crisp relations: Properties

The identity relation on Δ is $E=\{(x, x) \mid x \in \Delta\}$.

Then the relation $R \subseteq \Delta \times \Delta$ is called

property	using logical connectives	using set axioms
reflexive	$\forall x .(x, x) \in R$	$E \subseteq R$
symmetric	$(x, y) \in R \Rightarrow(y, x) \in R$	$R=R^{-1}$
anti-symmetric	$(x, y) \in R \wedge(y, z) \in R \Rightarrow y=z$	$R \cap R^{-1} \subseteq E$
transitive	$(x, y) \in R \wedge(y, z) \in R \Rightarrow(x, z) \in R$	$R \bigcirc R \subseteq R$
partial order	reflexive, transitive and anti-symmetric	
equivalence	reflexive, transitive and symmetric	

Fuzzy relations

Definition

A binary fuzzy relation R from X onto Y is a fuzzy subset on the universe $X \times Y$.

$$
\begin{equation*}
R \in \mathbb{F}(X \times Y) \tag{15}
\end{equation*}
$$

Definition

The fuzzy inverse relation $R^{-1} \in \mathbb{F}(Y \times X)$ to $R \in \mathbb{F}(X \times Y)$, s.t.

$$
\begin{equation*}
R(y, x)=R^{-1}(x, y) \tag{16}
\end{equation*}
$$

Projection

Defintion

Let $R \in \mathbb{F}(X \times Y)$ be a fuzzy binary relation. The first and second projection of R is

$$
\begin{align*}
& R^{(1)}(x)=\bigvee_{y \in Y}^{s} R(x, y) \tag{17}\\
& R^{(2)}(y)=\bigvee_{x \in X}^{s} R(x, y) \tag{18}
\end{align*}
$$

Projection: Example

R	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	$R^{(1)}(x)$
x_{1}	0.1	0.2	0.4	0.8	1	0.8	$?$
x_{2}	0.2	0.4	0.8	1	0.8	0.6	$?$
x_{3}	0.4	0.8	1	0.8	0.4	0.2	$?$
$R^{(2)}(y)$	$?$	$?$	$?$	$?$	$?$	$?$	

Sometimes there is a total projection defined as

$$
R^{(T)}=\bigvee_{x \in X} \bigvee_{y \in Y} R(x, y)
$$

But we already know this notion as ?

Projection: Example

R	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	$R^{(1)}(x)$
x_{1}	0.1	0.2	0.4	0.8	1	0.8	1
x_{2}	0.2	0.4	0.8	1	0.8	0.6	1
x_{3}	0.4	0.8	1	0.8	0.4	0.2	1
$R^{(2)}(y)$	0.4	0.8	1	1	1	0.8	

Sometimes there is a total projection defined as

$$
R^{(T)}=\bigvee_{x \in X} \bigvee_{y \in Y} R(x, y)
$$

But we already know this notion as $\operatorname{Height}(R)$.

Cylindrical extension

Can we reconstruct a fuzzy relation from its projections? There is an unique largest relation with prescribed projections:

Cylindrical extension

Can we reconstruct a fuzzy relation from its projections? There is an unique largest relation with prescribed projections:

Definition

Let $A \in \mathbb{F}(X)$ and $B \in \mathbb{F}(Y)$ be fuzzy sets. The cylindrical extension („cylindrické rozšíření", „kartézský součin fuzzy množin") is defined as

$$
\begin{equation*}
A \times B(x, y)=A(x) \wedge_{\mathrm{S}} B(y) \tag{19}
\end{equation*}
$$

Cylindrical extension

Can we reconstruct a fuzzy relation from its projections? There is an unique largest relation with prescribed projections:

Definition

Let $A \in \mathbb{F}(X)$ and $B \in \mathbb{F}(Y)$ be fuzzy sets. The cylindrical extension („cylindrické rozšíření", „kartézský součin fuzzy množin") is defined as

$$
\begin{equation*}
A \times B(x, y)=A(x) \wedge_{\mathrm{S}} B(y) \tag{19}
\end{equation*}
$$

Brain teaser

Why can't there be a relation Q bigger than $A \times B$, whose projections are $Q^{(1)}=A$ and $Q^{(2)}=B$?

Cylindrical extension: Drawing

$$
A(x)= \begin{cases}x-1 & x \in[1,2] \\ 3-x & x \in[2,3] \\ 0 & \text { otherwise }\end{cases}
$$

$$
B(x)= \begin{cases}x-3 & x \in[3,4] \\ 5-x & x \in[4,5] \\ 0 & \text { otherwise }\end{cases}
$$

Composition of fuzzy relations

Definition

Let X, Y, Z be crisp sets. $R \in \mathbb{F}(X \times Y), S \in \mathbb{F}(Y \times Z)$ and \wedge_{\circ} some fuzzy conjunction. Then the $\bigcirc \bigcirc-$-composition („○-složená relace") is

$$
\begin{equation*}
R \bigcirc S(x, z)=\bigvee_{y \in Y}^{S} R(x, y) \wedge S(y, z) \tag{20}
\end{equation*}
$$

Composition of fuzzy relations

Definition

Let X, Y, Z be crisp sets. $R \in \mathbb{F}(X \times Y), S \in \mathbb{F}(Y \times Z)$ and \wedge_{\circ} some fuzzy conjunction. Then the $\bigcirc \bigcirc-c o m p o s i t i o n ~(„ \bigcirc-s l o z ̌ e n a ́ ~ r e l a c e ") ~ i s ~$

$$
\begin{equation*}
R \bigcirc S(x, z)=\bigvee_{y \in Y}^{S} R(x, y) \wedge S(y, z) \tag{20}
\end{equation*}
$$

1. For infinite domains, \bigvee^{s} is computed using the sup instead of max.

Composition of fuzzy relations

Definition

Let X, Y, Z be crisp sets. $R \in \mathbb{F}(X \times Y), S \in \mathbb{F}(Y \times Z)$ and \wedge_{\circ} some fuzzy conjunction. Then the $\bigcirc \bigcirc-$-composition („○-složená relace") is

$$
\begin{equation*}
R \bigcirc S(x, z)=\bigvee_{y \in Y}^{S} R(x, y) \wedge S(y, z) \tag{20}
\end{equation*}
$$

1. For infinite domains, \bigvee^{s} is computed using the sup instead of max.
2. Instead of the " for some y " in crisp relations, the disjunction "finds such a y " that maximizes the conjunction.

Example of a fuzzy relation

$$
R(x, y)= \begin{cases}x+y & x, y \in\left[0, \frac{1}{2}\right] \\ 0 & \text { otherwise }\end{cases}
$$

$S(x, y)= \begin{cases}x \cdot y & x, y \in[0,1] \\ 0 & \text { otherwise }\end{cases}$

Properties of fuzzy relations

Then the relation $R \subseteq \Delta \times \Delta$ is called

Properties of fuzzy relations

Then the relation $R \subseteq \Delta \times \Delta$ is called
property \quad using set axioms

Properties of fuzzy relations

Then the relation $R \subseteq \Delta \times \Delta$ is called

property	using set axioms
reflexive	$E \subseteq R$

Properties of fuzzy relations

Then the relation $R \subseteq \Delta \times \Delta$ is called

property	using set axioms
reflexive	$E \subseteq R$
symmetric	$R=R^{-1}$

Properties of fuzzy relations

Then the relation $R \subseteq \Delta \times \Delta$ is called

property	using set axioms
reflexive	$E \subseteq R$
symmetric	$R=R^{-1}$
o-anti-symmetric	$R \bigcap_{0} R^{-1} \subseteq E$

Properties of fuzzy relations

Then the relation $R \subseteq \Delta \times \Delta$ is called

property	using set axioms
reflexive	$E \subseteq R$
symmetric	$R=R^{-1}$
o-anti-symmetric	$R \bigcap_{0} R^{-1} \subseteq E$
o-transitive	$R \bigcirc_{0} R \subseteq R$

Properties of fuzzy relations

Then the relation $R \subseteq \Delta \times \Delta$ is called

property	using set axioms
reflexive	$E \subseteq R$
symmetric	$R=R^{-1}$
o-anti-symmetric	$R \cap R^{-1} \subseteq E$
o-transitive	$R \bigcirc R \subseteq R$
o-partial order	reflexive, o-transitive and o-anti-symmetric
o-equivalence	reflexive, o-transitive and o-symmetric

Properties in a finite domain

If the universe Δ is finite, the relation can be written as a matrix. Their properties are reflected in the relation's matrix:

- Reflexivity: Cells on the main diagonal ?.
- Symmetricity: Cells symmetric over the main diagonal ?.
- Anti-symmetricity: Cells symmetric over the main diagonal ?.
- For S- and A-anti-symmetricity, ?.
- For L-anti-symmetricity, ?.
- Transitivity: More difficult (see example on the next slide).

Properties in a finite domain

If the universe Δ is finite, the relation can be written as a matrix. Their properties are reflected in the relation's matrix:

- Reflexivity: Cells on the main diagonal are 1.
- Symmetricity: Cells symmetric over the main diagonal are equal.
- Anti-symmetricity: Cells symmetric over the main diagonal have conjunction equal to zero.
- For S- and A-anti-symmetricity, one of the elements must be zero.
- For L-anti-symmetricity, their sum must be less or equal to 1.
- Transitivity: More difficult (see example on the next slide).

Example on fuzzy relation properties

$$
\text { Let } \Delta=\{A, B, C, D\} \text { and } R \in \mathbb{F}(\Delta \times \Delta) \text {. }
$$

R	A	B	C	D
A		0.5		0.1
B			0.2	
C				
D		0.2		

Fill the missing cells in the table to make R
a) S-equivalence
b) A-equivalence

Properties of fuzzy composition

Theorem 136.
Let R, S and T be relations (defined over sets that "make sense") The following equations hold:

Properties of fuzzy composition

Theorem 136.

Let R, S and T be relations (defined over sets that "make sense") The following equations hold:

$$
\begin{align*}
& R \bigcirc E=R, E \bigcirc R=R \tag{21}\\
& (R \bigcirc S)^{-1}=S^{-1} \bigcirc R^{-1} \tag{22}\\
& R \bigcirc(S \bigcirc T)=(R \bigcirc S) \bigcirc T \tag{23}\\
& (R \cup S) \bigcirc T=(R \bigcirc T) \cup(S \bigcirc T) \tag{24}\\
& R \circ(S \stackrel{S}{\cup} T)=(R \circ S) \stackrel{S}{\cup}(R \bigcirc T) \tag{25}
\end{align*}
$$

Properties of fuzzy composition

Theorem 136.

Let R, S and T be relations (defined over sets that "make sense") The following equations hold:

$$
\begin{align*}
& R \bigcirc E=R, E \bigcirc R=R \tag{21}\\
& (R \bigcirc S)^{-1}=S^{-1} \bigcirc R^{-1} \tag{22}\\
& R \bigcirc(S \bigcirc T)=(R \bigcirc S) \bigcirc T \tag{23}\\
& (R \cup S) \underset{\circ}{S} T=(R \bigcirc T) \cup(S \bigcirc T) \tag{24}\\
& R \odot(S \cup T)=(R \odot S) \stackrel{S}{\cup}(R \bigcirc T) \tag{25}
\end{align*}
$$

Proof of 136.

Proving (21) and (22) is trivial.

$$
\begin{align*}
" R \bigcirc(S \bigcirc T) "(x, w) & =\bigvee_{y}^{s} R(x, y) \wedge_{\circ} " S \bigcirc T^{\prime \prime}(y, w) \tag{26}\\
& \left.=\bigvee_{y}^{s} R(x, y) \wedge \bigvee_{\circ}^{s} S(y, z) \wedge_{o} T(z, w)\right) \tag{27}\\
& =\bigvee_{y}^{s} \bigvee_{z}^{s} R(x, y) \wedge_{\circ} S(y, z) \wedge_{\circ} T(z, w) \tag{28}\\
& =\bigvee_{z}^{s} \bigvee_{y}^{s} R(x, y) \wedge_{\circ} S(y, z) \wedge_{\circ} T(z, w) \tag{29}
\end{align*}
$$

Proof of 136 (contd.).

$$
\begin{align*}
& =\bigvee_{z}^{S} \bigvee_{y}^{s} R(x, y) \wedge S(y, z) \wedge_{\circ} T(z, w) \tag{30}\\
& =\bigvee_{z}^{s}\left(\bigvee_{y}^{s} R(x, y) \wedge_{o} S(y, z)\right) \wedge_{\circ} T(z, w) \tag{31}\\
& =\bigvee_{z}^{S} " R \bigcirc S^{\prime \prime}(x, z) \wedge_{\circ} T(z, w) \tag{32}\\
& =" R \bigcirc S \bigcirc T \text { " }(x, w) \tag{33}
\end{align*}
$$

Proof of (24) and (25) is similar (uses the distributivity law), only shorter. See [Navara and Olšák, 2001] for details.

Extensions: Sometimes it is useful to consider...

- ...a ε-reflective relation

$$
\begin{equation*}
R(x, x) \geqslant \varepsilon \tag{34}
\end{equation*}
$$

Extensions: Sometimes it is useful to consider...

- ...a ε-reflective relation

$$
\begin{equation*}
R(x, x) \geqslant \varepsilon \tag{34}
\end{equation*}
$$

- ...a weakly reflexive relation

$$
\begin{equation*}
R(x, y) \leqslant R(x, x) \text { and } R(y, x) \leqslant R(x, x) \text { for all } x, y \tag{35}
\end{equation*}
$$

Extensions: Sometimes it is useful to consider...

- ...a ε-reflective relation

$$
\begin{equation*}
R(x, x) \geqslant \varepsilon \tag{34}
\end{equation*}
$$

- ...a weakly reflexive relation

$$
\begin{equation*}
R(x, y) \leqslant R(x, x) \text { and } R(y, x) \leqslant R(x, x) \text { for all } x, y \tag{35}
\end{equation*}
$$

- Relation is 1 -reflective iff reflexive.
- If a relation is reflexive, then it is weakly reflexive.

Extensions: Sometimes it is useful to consider...

- ...a non-involutive negation by refusing (N2)

$$
\stackrel{\neg \neg \alpha \neq \alpha}{\circ}
$$

and adopting a weaker axiom

$$
\begin{equation*}
\neg \neg 0=1 \text { and } \neg \neg 1=0 \tag{No}
\end{equation*}
$$

Example

Gödel negation

$$
\underset{\mathrm{G}}{\neg} \alpha= \begin{cases}1 & \alpha=\mathrm{o} \tag{36}\\ 0 & \text { otherwise }\end{cases}
$$

Bibliography

围 Navara, M. and Olšák, P. (2001).
Základy fuzzy množin. Nakladatelství ČVUT.

