AE4M33RZN, Fuzzy logic: Fuzzy relations

Radomír Černoch

radomir.cernoch@fel.cvut.cz

03/11/2013

Faculty of Electrical Engineering, CTU in Prague

Plan of the lecture

Properties of fuzzy sets

Fuzzy implication and fuzzy properties Fuzzy set inclusion and crisp predicates Intermission: Probabilistic vs. fuzzy **Binary fuzzy relations Quick revision of crisp relations Fuzzyfication of crisp relations** Projection and cylindrical extension Composition of fuzzy relations Properties of fuzzy relations Properties of fuzzy composition Extensions Biblopgraphy

Organizational:

- Next week, there will be a short test (max 5 points) during the tutorials.
- Tutorial slides will be updated today.
- Lecture slides have been updated. No more bugs I know about!
- This week we are having the last theoretical lecture.

We already know fuzzy negation \neg , fuzzy conjunction \land and fuzzy

disjunction $\overset{\circ}{ee}$. Unfortunately, there is no nice formula...

We already know fuzzy negation \neg , fuzzy conjunction \land and fuzzy

disjunction $\overset{\,\,}{ee}$. Unfortunately, there is no nice formula...

Definition

Fuzzy implication is any function

$$\stackrel{\circ}{\underset{\circ}{\rightarrow}}: [0,1]^2 \to [0,1] \tag{1}$$

which overlaps with the boolean implication on $x, y \in \{0, 1\}$:

$$(x \stackrel{\circ}{\underset{\circ}{\Rightarrow}} y) = (x \Rightarrow y).$$
 (2)

Despite the lack of a uniform definition of fuzzy implication, there is a useful class of implications:

Defintion

The *R-implication* (residuum, *"reziduovaná implikace"*) is a function obtained from a fuzzy T-norm:

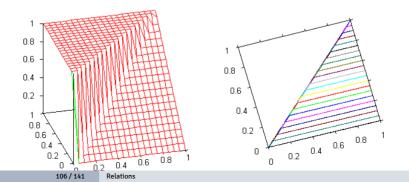
$$\alpha \stackrel{\mathbb{R}}{\underset{\circ}{\cong}} \beta = \sup\{\gamma \mid \alpha \land \gamma \leqslant \beta\}$$
(RI)

R-implication: Examples (1)

Standard implication (Gödel) is derived from (RI) using the standard cojunction ରু:

$$\alpha \xrightarrow[S]{R} \beta = \begin{cases} 1 & \text{if } \alpha \leq \beta \\ \beta & \text{otherwise} \end{cases}$$

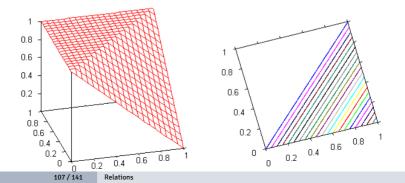
(3)



R-implication: Examples (2)

Łukasiewicz implication is derived from (RI) using the Łukasiewicz cojunction \uparrow :

$$\alpha \stackrel{R}{=}_{L} \beta = \begin{cases} 1 & \text{if } \alpha \leq \beta \\ 1 - \alpha + \beta & \text{otherwise} \end{cases}$$
(4)

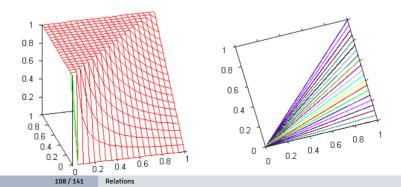


R-implication: Examples (3)

Algebraic implication (Gougen, Gaines) is derived from (RI) using the algebraic cojunction &:

$$\alpha \stackrel{\mathbb{R}}{\underset{A}{\cong}} \beta = \begin{cases} \mathbf{1} & \text{if } \alpha \leq \beta \\ \frac{\beta}{\alpha} & \text{otherwise} \end{cases}$$

(5)



R-implication: Properties

Theorem 109.

Let $\mathop{\wedge}\limits_{\circ}$ be a continuous fuzzy conjunction. Then R-implication satisfies:

$$\alpha \stackrel{R}{\to} \beta = 1 \text{ iff } \alpha \leq \beta \tag{11}$$

$$\mathbf{1} \stackrel{R}{\xrightarrow{\circ}} \boldsymbol{\beta} = \boldsymbol{\beta} \tag{12}$$

 $\alpha \stackrel{\mathbb{R}}{\underset{\circ}{\cong}} \beta$ is not increasing in α and not decreasing in β (I3)

Proof of theorem 109: Let's denote $\{\gamma \mid \alpha \land \gamma \leq \beta\} = \Gamma$.

- Proving (I3) uses monotonicity: Increasing α can only shrink Γ and increasing β can only enlarge Γ .
- Proving (I2) is easy: $\mathbf{1} \stackrel{\mathbb{R}}{\Rightarrow} \beta = \sup\{\gamma \mid \mathbf{1} \land \gamma \leq \beta\}$. From definition of

$$\bigwedge_{\circ}$$
, we write $\mathbf{1} \stackrel{\mathbb{R}}{\underset{\circ}{\longrightarrow}} \beta = \sup\{\gamma \mid \gamma \leq \beta\} = \beta$.

R-implication: Properties

Proof of theorem 109 (contd.):

- For (I1) one needs to check 2 cases:
 - If $\alpha \leq \beta$, then $\mathbf{1} \in \Gamma$, because $\alpha \land \mathbf{1} = \alpha \leq \beta$ and therefore the condition $\alpha \land \gamma \leq \beta$ is true for all possible values of γ .
 - If $\alpha > \beta$, then $\mathbf{1} \notin \Gamma$, because $\alpha \land \mathbf{1} = \alpha > \beta$ and therefore the condition $\alpha \land \gamma \leqslant \beta$ is false for $\gamma = \mathbf{1}$.

S-implication

Defintion

The *S-implication* is a function obtained from a fuzzy disjunction $\overset{\circ}{\vee}$:

$$\alpha \stackrel{s}{\underset{\circ}{\Rightarrow}} \beta = \frac{1}{s} \alpha \stackrel{\circ}{\lor} \beta$$
(SI)

S-implication

Defintion

The *S*-implication is a function obtained from a fuzzy disjunction $\breve{\vee}$:

$$\alpha \stackrel{\mathrm{S}}{\Longrightarrow} \beta = \operatorname{\overline{S}} \alpha \stackrel{\mathrm{o}}{\vee} \beta \tag{SI}$$

Example

Kleene-Dienes implication from \checkmark

$$\alpha \stackrel{s}{\longrightarrow} \beta = \max(1 - \alpha, \beta) \tag{6}$$

Generalized fuzzy inclusion

Generalized fuzzy inclusion

Previously, we used the logical negation \neg to define the set complement, the conjunction \land to define the set intersection, etc. Can we use the implication $\stackrel{\circ}{\rightarrow}$ to define the fuzzy inclusion?

Generalized fuzzy inclusion

Previously, we used the logical negation \neg to define the set

complement, the conjunction \bigwedge to define the set intersection, etc.

Can we use the implication $\stackrel{\circ}{\xrightarrow{}}$ to define the fuzzy inclusion?

Definition

The generalized fuzzy inclusion \subseteq is a function that assigns a degree to

the the inclusion of set $A \in \mathbb{F}(\Delta)$ in set $B \in \mathbb{F}(\Delta)$:

$$A \stackrel{\circ}{\underset{\circ}{\subseteq}} B = \inf\{A(x) \stackrel{\circ}{\underset{\circ}{\Rightarrow}} B(x) \mid x \in \Delta\}$$
(7)

Generalized fuzzy inclusion: Example

Definition

The *fuzzy inclusion* \subseteq is a predicate (assigns a true/false value) which hold for two fuzzy sets $A, B \in \mathbb{F}(\Delta)$ iff

 $\mu_A(\mathbf{x}) \leq \mu_B(\mathbf{x}) \text{ for all } \mathbf{x} \in \Delta.$ (8)

In vertical representation, the definition has a straightforward equivalent:

$$\mu_{\mathbf{A}} \leqslant \mu_{\mathbf{B}} \tag{9}$$

In vertical representation, the definition has a straightforward equivalent:

$$\mu_{A} \leqslant \mu_{B} \tag{9}$$

In horizontal representation, there is a theorem:

Theorem 116.

Let $A, B \in \mathbb{F}(\Delta)$ if and only if

$$\mathbb{R}_{A}(\alpha) \subseteq \mathbb{R}_{B}(\alpha)$$
 for all $\alpha \in [0, 1]$. (10)

Proof of theorem 116.

- ⇒ Assume $A \subseteq B$ and $x \in \mathbb{R}_A(\alpha)$ for some value α . If $\alpha \leq A(x)$, then $A(x) \leq B(x)$ (from the definition of $A \subseteq B$) and therefore $x \in \mathbb{R}_B(\alpha)$ and $\mathbb{R}_A(\alpha) \subseteq \mathbb{R}_B(\alpha)$.
- $\leftarrow \text{ Assume } \mathbb{R}_{A}(\alpha) \subseteq \mathbb{R}_{B}(\alpha). \text{ Firstly recall the horizontal-vertical translation formula: } \mu_{A}(x) = \sup\{\alpha \in [0, 1] \mid x \in \mathbb{R}_{A}(\alpha)\}. \text{ Since } \{\alpha \mid x \in \mathbb{R}_{A}(\alpha)\} \subseteq \{\alpha \mid x \in \mathbb{R}_{B}(\alpha)\}, \text{ the inequality } A(x) \leq \sup\{\alpha \mid x \in \mathbb{R}_{B}(\alpha)\} \leq B(x) \text{ holds.}$

Cutworhiness

We ended up with 2 equal definitions of set inclusion: using vertical and horizontal representation. Can we generalize this?

Cutworhiness

We ended up with 2 equal definitions of set inclusion: using vertical and horizontal representation. Can we generalize this?

Cutworhiness

Let *P* be a predicate (returns true/false) over fuzzy sets. *P* is called *cutworthy* ("řezově dědičná vlastnost") if the implication holds:

$$P(A_1, ..., A_n) \Rightarrow P(\mathbb{R}_{A_1}(\alpha), ..., \mathbb{R}_{A_n}(\alpha)) \text{ for all } \alpha \in [0, 1]$$
 (11)

Cutworhiness

We ended up with 2 equal definitions of set inclusion: using vertical and horizontal representation. Can we generalize this?

Cutworhiness

Let *P* be a predicate (returns true/false) over fuzzy sets. *P* is called *cutworthy* ("řezově dědičná vlastnost") if the implication holds:

$$P(A_1, ..., A_n) \Rightarrow P(\mathbb{R}_{A_1}(\alpha), ..., \mathbb{R}_{A_n}(\alpha)) \text{ for all } \alpha \in [0, 1]$$
 (11)

There is a related notion: We define *P* as *cut-consistent* ("řezově konzistentní") using the same definition, but replacing \Rightarrow with \Leftrightarrow .

Cutworhiness: Examples

• The theorem 116 can be stated as: "Set inclusion is cut-consistent."

Brain teasers

- Strong normality of A is defined as A(x) = 1 for some x ∈ Δ.
 ????
- Being crisp is
 ????

Cutworhiness: Examples

• The theorem 116 can be stated as: "Set inclusion is cut-consistent."

Brain teasers

- Strong normality of A is defined as A(x) = 1 for some $x \in \Delta$. Strong normality is **cut-consistent**: A is strongly-normal iff every its cut is non-empty iff every cut strongly normal.
- Being crisp is

cutworthy, but not cut-consistent: Every cut is crisp by definition, therefore cutworthiness. But even **non-crisp sets** have crisp cuts, therefore the property is not not cut-consistent.

Google: "fuzzy"

Sources: M. Taylor's Weblog, M. Taylor's Weblog, Eddie's Trick Shop.

120 / 141 Relations

Google: "probability"

Sources: Life123, WhatWeKnowSoFar, Probability Problems.

121 / 141 Relations

Fuzzy vs. probability

• Vagueness vs. uncertainty.

Fuzzy vs. probability

• Vagueness vs. uncertainty.

• Fuzzy logic is functional.

Crisp relations

Definition

A *binary crisp relation R* from X onto Y is a subset of the cartesian product $X \times Y$:

$$R \in \mathbb{P}(X \times Y) \tag{12}$$

Crisp relations

Definition

A *binary crisp relation R* from X onto Y is a subset of the cartesian product $X \times Y$:

$$R \in \mathbb{P}(X \times Y) \tag{12}$$

Definition

The *inverse relation* R⁻¹ to R is a relation from Y to X s.t.

$$R^{-1} = \{(y, x) \in Y \times X \mid (x, y) \in R\}$$
(13)

Crisp relations: Inverse

Definition

Let *X*, *Y*, *Z* be sets. Then the *compound* of relations $R \subseteq X \times Y$, $S \subseteq Y \times Z$ is the relation

$$R \bigcirc S = \{(x, z) \in X \times Z \mid (x, y) \in R \text{ and } (y, z) \in S \text{ for some } y\}$$
 (14)

Crisp relations: Properties

The *identity* relation on Δ is $E = \{(x, x) | x \in \Delta\}$.

Crisp relations: Properties

The *identity* relation on Δ is $E = \{(x, x) | x \in \Delta\}$.

Then the relation $\mathbf{R} \subseteq \Delta \times \Delta$ is called

Crisp relations: Properties

The *identity* relation on Δ is $E = \{(x, x) | x \in \Delta\}$.

property using logical connectives using set axioms	property	using logical connectives	using set axioms
---	----------	---------------------------	------------------

Crisp relations: Properties

The *identity* relation on Δ is $E = \{(x, x) | x \in \Delta\}$.

property	using logical connectives	using set axioms	
reflexive	$\forall x. (x, x) \in \mathbf{R}$	$E \subseteq R$	

property	using logical connectives	using set axioms	
reflexive	$\forall x. (x, x) \in R$	$E \subseteq R$	
symmetric	$(x,y) \in R \Rightarrow (y,x) \in R$	$R=R^{-1}$	

property	using logical connectives	using set axioms
reflexive	$\forall x. (x, x) \in \mathbf{R}$	$E \subseteq R$
symmetric	$(x,y) \in R \Rightarrow (y,x) \in R$	$R = R^{-1}$
anti-symmetric	$(x,y) \in R \land (y,z) \in R \Rightarrow y = z$	$R \cap R^{-1} \subseteq E$

property	using logical connectives	using set axioms
reflexive	$\forall x. (x, x) \in R$	$E \subseteq R$
symmetric	$(x,y) \in R \Longrightarrow (y,x) \in R$	$R = R^{-1}$
anti-symmetric	$(x,y) \in R \land (y,z) \in R \Longrightarrow y = z$	$R \cap R^{-1} \subseteq E$
transitive	$(x,y) \in R \land (y,z) \in R \Longrightarrow (x,z) \in R$	$R \bigcirc R \subseteq R$

property	using logical connectives using set axion			
reflexive	$\forall x. (x, x) \in \mathbf{R}$	$E \subseteq R$		
symmetric	$(x,y) \in R \Rightarrow (y,x) \in R$	$R=R^{-1}$		
anti-symmetric	$(x,y) \in R \land (y,z) \in R \Rightarrow y = z$	$R \cap R^{-1} \subseteq E$		
transitive	$(x,y) \in R \land (y,z) \in R \Longrightarrow (x,z) \in R$	$R \bigcirc R \subseteq R$		
partial order	reflexive, transitive and anti-symmetric			
equivalence	reflexive, transitive and symmetric			

Fuzzy relations

Definition

A *binary fuzzy relation R* from X onto Y is a fuzzy subset on the universe $X \times Y$.

$$R \in \mathbb{F}(X \times Y) \tag{15}$$

Definition

The *fuzzy inverse* relation $R^{-1} \in \mathbb{F}(Y \times X)$ to $R \in \mathbb{F}(X \times Y)$, s.t.

$$R(y, x) = R^{-1}(x, y)$$
 (16)

Projection

Defintion

Let $R \in \mathbb{F}(X \times Y)$ be a fuzzy binary relation. The *first* and second projection of *R* is

$$R^{(1)}(x) = \bigvee_{y \in Y}^{S} R(x, y)$$
(17)
$$R^{(2)}(y) = \bigvee_{x \in X}^{S} R(x, y)$$
(18)

Projection: Example

R	y 1	y 2	y ₃	y 4	y_5	y_6	$R^{(1)}(x)$
<i>x</i> ₁	0.1	0.2	0.4	0.8	1	0.8	?
x2	0.2	0.4	0.8	1	0.8	0.6	?
x ₃	0.4	0.8	1	0.8	0.4	0.2	?
$R^{(2)}(y)$?	?	?	?	?	?	

Sometimes there is a total projection defined as

$$R^{(T)} = \bigvee_{x \in X} \bigvee_{y \in Y} R(x, y) .$$

But we already know this notion as?

Projection: Example

R	y_1	y 2	y ₃	y 4	\boldsymbol{y}_5	\boldsymbol{y}_6	$R^{(1)}(x)$
<i>x</i> ₁	0.1	0.2	0.4	0.8	1	0.8	1
	0.2						
x ₃	0.4	0.8	1	0.8	0.4	0.2	1
$R^{(2)}(y)$	0.4	0.8	1	1	1	0.8	

Sometimes there is a total projection defined as

$$R^{(T)} = \bigvee_{x \in X} \bigvee_{y \in Y} R(x, y)$$

But we already know this notion as Height(R).

Cylindrical extension

Can we reconstruct a fuzzy relation from its projections? There is an unique largest relation with prescribed projections:

Cylindrical extension

Can we reconstruct a fuzzy relation from its projections? There is an unique largest relation with prescribed projections:

Definition

Let $A \in \mathbb{F}(X)$ and $B \in \mathbb{F}(Y)$ be fuzzy sets. The *cylindrical extension* ("cylindrické rozšíření", "kartézský součin fuzzy množin") is defined as

$$A \times B(x, y) = A(x) \underset{S}{\wedge} B(y)$$
(19)

Cylindrical extension

Can we reconstruct a fuzzy relation from its projections? There is an unique largest relation with prescribed projections:

Definition

Let $A \in \mathbb{F}(X)$ and $B \in \mathbb{F}(Y)$ be fuzzy sets. The *cylindrical extension* ("cylindrické rozšíření", "kartézský součin fuzzy množin") is defined as

$$A \times B(x, y) = A(x) \underset{S}{\wedge} B(y)$$
(19)

Brain teaser

Why can't there be a relation Q bigger than $A \times B$, whose projections are $Q^{(1)} = A$ and $Q^{(2)} = B$?

Cylindrical extension: Drawing

$$A(x) = \begin{cases} x - 1 & x \in [1, 2] \\ 3 - x & x \in [2, 3] \\ 0 & \text{otherwise} \end{cases}$$

$$B(x) = \begin{cases} x - 3 & x \in [3, 4] \\ 5 - x & x \in [4, 5] \\ 0 & \text{otherwise} \end{cases}$$

Composition of fuzzy relations

Definition

Let X, Y, Z be crisp sets. $R \in \mathbb{F}(X \times Y)$, $S \in \mathbb{F}(Y \times Z)$ and \wedge some fuzzy

conjunction. Then the \bigcirc -composition (" \bigcirc -složená relace") is

$$R_{\bigcirc} S(x,z) = \bigvee_{y \in Y}^{S} R(x,y) \bigwedge_{\circ} S(y,z)$$
(20)

Composition of fuzzy relations

Definition

Let X, Y, Z be crisp sets. $R \in \mathbb{F}(X \times Y)$, $S \in \mathbb{F}(Y \times Z)$ and \wedge some fuzzy

conjunction. Then the \bigcirc -composition (" \bigcirc -složená relace") is

$$R_{\bigcirc} S(x,z) = \bigvee_{y \in Y}^{S} R(x,y) \stackrel{\wedge}{_{\odot}} S(y,z)$$
(20)

1. For infinite domains, \bigvee^s is computed using the sup instead of max.

Composition of fuzzy relations

Definition

Let X, Y, Z be crisp sets. $R \in \mathbb{F}(X \times Y)$, $S \in \mathbb{F}(Y \times Z)$ and \wedge some fuzzy

conjunction. Then the $_$ -composition (" $_$ -složená relace") is

$$R_{\bigcirc} S(x,z) = \bigvee_{y \in Y}^{S} R(x,y) \stackrel{\wedge}{_{\odot}} S(y,z)$$
(20)

- 1. For infinite domains, \bigvee^s is computed using the sup instead of max.
- 2. Instead of the "for some y" in *crisp relations*, the disjunction "finds such a y" that maximizes the conjunction.

Example of a fuzzy relation

$$R(x,y) = \begin{cases} x+y & x,y \in \left[0,\frac{1}{2}\right] \\ \text{o otherwise} \end{cases} \qquad S(x,y) = \begin{cases} x\cdot y & x,y \in \left[0,1\right] \\ \text{o otherwise} \end{cases}$$

Then the relation $\mathbf{R} \subseteq \Delta \times \Delta$ is called

property

using set axioms

property	using set axioms
reflexive	$E \subseteq R$

property	using set axioms
reflexive	$E \subseteq R$
symmetric	$R = R^{-1}$

property	using set axioms
reflexive	$E \subseteq R$
symmetric	$R = R^{-1}$
o-anti-symmetric	$R \cap_{\mathcal{O}} R^{-1} \subseteq E$

property	using set axioms
reflexive	$E \subseteq R$
symmetric	$R = R^{-1}$
◦-anti-symmetric	$R \cap_{\circ} R^{-1} \subseteq E$
o-transitive	$R \bigcirc R \subseteq R$

property	using set axioms
reflexive	$E \subseteq R$
symmetric	$R = R^{-1}$
◦-anti-symmetric	$R \cap_{\mathcal{O}} R^{-1} \subseteq E$
o-transitive	$R \bigcirc R \subseteq R$
 partial order 	reflexive, \circ -transitive and \circ -anti-symmetric
o-equivalence	reflexive, \circ -transitive and \circ -symmetric

If the universe Δ is finite, the relation can be written as a matrix. Their properties are reflected in the relation's matrix:

- Reflexivity: Cells on the main diagonal ?.
- Symmetricity: Cells symmetric over the main diagonal ?.
- Anti-symmetricity: Cells symmetric over the main diagonal ?.
 - For S- and A-anti-symmetricity, ?.
 - For L-anti-symmetricity, ?.
- Transitivity: More difficult (see example on the next slide).

If the universe Δ is finite, the relation can be written as a matrix. Their properties are reflected in the relation's matrix:

- **Reflexivity:** Cells on the main diagonal are 1.
- Symmetricity: Cells symmetric over the main diagonal are equal.
- Anti-symmetricity: Cells symmetric over the main diagonal have conjunction equal to zero.
 - For S- and A-anti-symmetricity, one of the elements must be zero.
 - For L-anti-symmetricity, their sum must be less or equal to 1.
- Transitivity: More difficult (see example on the next slide).

Let $\Delta = \{A, B, C, D\}$ and $R \in \mathbb{F}(\Delta \times \Delta)$.

R	A	В	С	D
Α		0.5		0.1
В			0.2	
С				
D		0.2		

Fill the missing cells in the table to make *R*

- a) S-equivalence
- b) A-equivalence

Theorem 6.

Let *R*, *S* and *T* be relations (defined over sets that "make sense") The following equations hold:

Theorem 6.

Let *R*, *S* and *T* be relations (defined over sets that "make sense") The following equations hold:

$$R_{\bigcirc} E = R, \ E_{\bigcirc} R = R \tag{21}$$

$$(R \bigcirc S)^{-1} = S^{-1} \oslash R^{-1}$$
(22)

$$R_{\bigcirc}(S_{\bigcirc}T) = (R_{\bigcirc}S)_{\bigcirc}T$$
(23)

$$(R \stackrel{S}{\cup} S)_{\bigcirc} T = (R_{\bigcirc} T) \stackrel{S}{\cup} (S_{\bigcirc} T)$$
(24)

$$R_{\bigcirc}(S \stackrel{S}{\cup} T) = (R_{\bigcirc}S) \stackrel{S}{\cup} (R_{\bigcirc}T)$$
(25)

Theorem 6.

Let *R*, *S* and *T* be relations (defined over sets that "make sense") The following equations hold:

$$R_{\bigcirc} E = R, \ E_{\bigcirc} R = R \tag{21}$$

$$(R \bigcirc S)^{-1} = S^{-1} \oslash R^{-1}$$
(22)

$$R_{\bigcirc}(S_{\bigcirc}T) = (R_{\bigcirc}S)_{\bigcirc}T$$
(23)

$$(R \stackrel{S}{\cup} S)_{\bigcirc} T = (R_{\bigcirc} T) \stackrel{S}{\cup} (S_{\bigcirc} T)$$
(24)

$$R_{\bigcirc}(S \stackrel{S}{\cup} T) = (R_{\bigcirc}S) \stackrel{S}{\cup} (R_{\bigcirc}T)$$
(25)

(21) describes the *identity element*, (22) the *inverse of composition*,(23) is the *asociativity*, (24) and (25) the *right-* and *left-distributivity*.

Proof of 6.

Proving (21) and (22) is trivial.

$${}^{'}R_{\bigcirc}(S_{\bigcirc}T)^{''}(x,w) = \bigvee_{y}^{S} R(x,y) \wedge {}^{''}S_{\bigcirc}T^{''}(y,w)$$
(26)
$$= \bigvee_{y}^{S} R(x,y) \wedge \left(\bigvee_{z}^{S} S(y,z) \wedge T(z,w)\right)$$
(27)
$$= \bigvee_{y}^{S} \bigvee_{z}^{S} R(x,y) \wedge S(y,z) \wedge T(z,w)$$
(28)
$$= \bigvee_{z}^{S} \bigvee_{y}^{S} R(x,y) \wedge S(y,z) \wedge T(z,w)$$
(29)

Relations

Proof of 6 (contd.).

$$= \bigvee_{z}^{s} \bigvee_{y}^{s} R(x, y) \stackrel{\wedge}{_{\circ}} S(y, z) \stackrel{\wedge}{_{\circ}} T(z, w)$$
(30)

$$=\bigvee_{z}\left(\bigvee_{y}R(x,y)\wedge S(y,z)\right)\wedge T(z,w)$$
(31)

$$=\bigvee_{z}^{S} "R_{\bigcirc} S"(x,z) \wedge T(z,w)$$
(32)

$$= "R \circ S \circ T"(x, w)$$
(33)

Proof of (24) and (25) is similar (uses the distributivity law), only shorter. See [Navara and Olšák, 2001] for details.

• ...a *ε-reflective* relation

 $R(x,x) \ge \varepsilon \tag{34}$

• ...a *ε-reflective* relation

$$R(x,x) \ge \varepsilon \tag{34}$$

• ...a weakly reflexive relation

 $R(x, y) \leq R(x, x)$ and $R(y, x) \leq R(x, x)$ for all x, y (35)

• ...a *ε-reflective* relation

$$\mathbf{R}(\mathbf{x},\mathbf{x}) \ge \varepsilon \tag{34}$$

• ...a weakly reflexive relation

 $R(x,y) \leq R(x,x)$ and $R(y,x) \leq R(x,x)$ for all x,y (35)

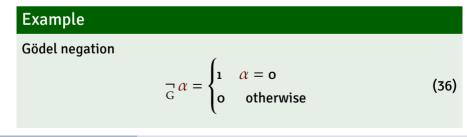
- Relation is 1-reflective iff reflexive.
- If a relation is reflexive, then it is weakly reflexive.

• ...a non-involutive negation by refusing (N2)

$$\neg \neg \alpha \neq \alpha$$

and adopting a weaker axiom

$$\neg \neg \circ = 1$$
 and $\neg \neg 1 = 0$ (NO)



Navara, M. and Olšák, P. (2001). Základy fuzzy množin. Nakladatelství ČVUT.