AE4M33RZN, Fuzzy logic: Fuzzy relations

Radomír Černoch

radomir.cernoch@fel.cvut.cz

Faculty of Electrical Engineering, CTU in Prague

26/11/2012

Organizational:

- Next week, there will be a short test (max 5 points).
- This week we are having the last theoretical lecture.

Fuzzy implication

We already know fuzzy negation \neg , fuzzy conjunction \land and fuzzy

discjunction $\overset{\circ}{\vee}$. What about other operators?

Definition

Fuzzy implication is any function

$$\stackrel{\circ}{\Rightarrow}: [0,1]^2 \to [0,1] \tag{1}$$

which overlaps with the boolean implication on $x, y \in \{0, 1\}$:

$$(x \stackrel{\circ}{\underset{\circ}{\circ}} y) = (x \Longrightarrow y) . \tag{2}$$

Residue implication

Despite the lack of a uniform definition of fuzzy implication, there is a useful class of implications:

Defintion

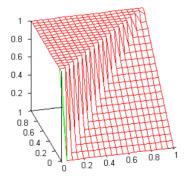
The *R-implication* (residuum, *"reziduovaná implikace"*) is a function obtained from a fuzzy T-norm:

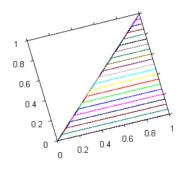
$$\alpha \stackrel{\mathbb{R}}{\underset{\circ}{\circ}} \beta = \sup\{ \gamma \mid \alpha \wedge \gamma \leqslant \beta \}$$
 (RI)

R-implication: Examples (1)

Standard implication (Gödel) is derived from (RI) using the standard cojunction \S :

$$\alpha \stackrel{\mathbb{R}}{\Longrightarrow} \beta = \begin{cases} \mathbf{1} & \text{if } \alpha \leqslant \beta \\ \beta & \text{otherwise} \end{cases}$$
 (3)

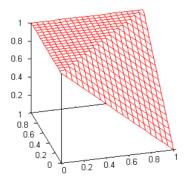


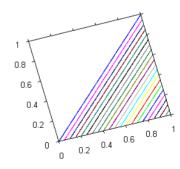


R-implication: Examples (2)

Łukasiewicz implication is derived from (RI) using the Łukasiewicz cojunction $\bigwedge\limits_L$:

$$\alpha \stackrel{\mathbb{R}}{\underset{\mathbb{L}}{\Longrightarrow}} \beta = \begin{cases} 1 & \text{if } \alpha \leq \beta \\ 1 - \alpha + \beta & \text{otherwise} \end{cases}$$
 (4)

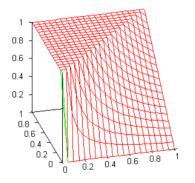


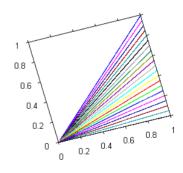


R-implication: Examples (3)

Algebraic implication (Gougen, Gaines) is derived from (RI) using the algebraic cojunction \wedge :

$$\alpha \stackrel{R}{\underset{A}{\Longrightarrow}} \beta = \begin{cases} \mathbf{1} & \text{if } \alpha \leqslant \beta \\ \frac{\beta}{\alpha} & \text{otherwise} \end{cases}$$
 (5)





R-implication: Properties

Theorem 207.

Let $\underset{\circ}{\wedge}$ be a continuous fuzzy conjunction. Then R-implication satisfies:

$$\alpha \stackrel{\mathbb{R}}{\underset{\circ}{\circ}} \beta = \mathbf{1} \text{ iff } \alpha \leqslant \beta \tag{11}$$

$$\mathbf{1} \stackrel{\mathrm{R}}{\circ} \beta = \beta \tag{12}$$

 $\alpha \stackrel{\mathbb{R}}{\underset{\circ}{\circ}} \beta$ is not increasing in α and not decreasing in β (13)

R-implication: Properties

Proof of theorem 207.

Let's denote $\{\gamma \mid \alpha \land \gamma \leq \beta\} = \gamma$.

- Proving (I3) uses monotonicity: Increasing α can only shrink γ and increasing β can only enlarge γ .
- Proving (I2) is easy: $\mathbf{1} \stackrel{\mathbb{R}}{\Rightarrow} \beta = \sup\{\gamma \mid \mathbf{1} \stackrel{\wedge}{\circ} \gamma \leqslant \beta\}$. From definition of

R-implication: Properties

Proof of theorem 207 (contd.).

- For (I1) one needs to check 2 cases:
 - If $\alpha \leq \beta$, then $\mathbf{1} \in \gamma$, because $\alpha \wedge \mathbf{1} = \alpha \leq \beta$ and therefore the condition $\alpha \wedge \gamma \leq \beta$ is true for all possible values of γ .
 - If $\alpha > \beta$, then $\mathbf{1} \notin \gamma$, because $\alpha \wedge \mathbf{1} = \alpha > \beta$ and therefore the condition $\alpha \wedge \gamma \leqslant \beta$ is false for $\gamma = \mathbf{1}$.

S-implication

Defintion

The *S-implication* is a function obtained from a fuzzy disjunction \vee :

$$\alpha \stackrel{S}{\Longrightarrow} \beta = \stackrel{\neg}{S} \alpha \stackrel{\circ}{\lor} \beta \tag{SI}$$

Example

Kleene-Dienes implication from $\overset{S}{\vee}$

$$\alpha \stackrel{S}{=} \beta = \max(1 - \alpha, \beta)$$
 (6)

Generalized fuzzy inclusion

Previously, we used the logical negation \neg to define the set complement, the conjunction \land to define the set intersection, etc.

Can we use the implication $\stackrel{\circ}{\Longrightarrow}$ to define the fuzzy inclusion?

Definition

The *generalized fuzzy inclusion* $\stackrel{\circ}{\subseteq}$ is a function that assigns a degree to the the inclusion of set $A \in \mathbb{F}(\Delta)$ in set $B \in \mathbb{F}(\Delta)$:

$$A \stackrel{\circ}{\subseteq} B = \inf\{A(x) \stackrel{\circ}{\Longrightarrow} B(x) \mid x \in \Delta\}$$
 (7)

Generalized fuzzy inclusion: Example

Fuzzy inclusion (non-generalized)

Definition

The fuzzy $inclusion \subseteq$ is a predicate (assigns a true/false value) which hold for two fuzzy sets $A, B \in \mathbb{F}(\Delta)$ iff

$$\mu_A(x) \leqslant \mu_B(x) \text{ for all } x \in \Delta.$$
 (8)

Fuzzy inclusion (non-generalized)

In vertical representation, the definition has a straightforward equivalent:

$$\mu_{A} \leqslant \mu_{B}$$
 (9)

In horizontal representation, there is a theorem:

Theorem 214.

Let $A, B \in \mathbb{F}(\Delta)$ if and only if

$$R_A(\alpha) \subseteq R_B(\alpha)$$
 for all $\alpha \in [0,1]$. (10)

Fuzzy inclusion (non-generalized)

Proof of theorem 214.

- \Rightarrow Assume $A \subseteq B$ and $x \in \mathbb{R}_A(\alpha)$ for some value α . If $\alpha \leqslant A(x)$, then $A(x) \leqslant B(x)$ (from the definition of $A \subseteq B$) and therefore $x \in \mathbb{R}_B(\alpha)$ and $\mathbb{R}_A(\alpha) \subseteq \mathbb{R}_B(\alpha)$.

Cutworhiness

We ended up with 2 equal definitions of set inclusion: using vertical and horizontal representation. Can we generalize this?

Cutworhiness

Let P be a predicate (returns true/false) over fuzzy sets. P is called cutworthy ("řezově dědičná vlastnost") if the implication holds:

$$P(A_1,...,A_n) \Rightarrow P(R_{A_1}(\alpha),...,R_{A_n}(\alpha)) \text{ for all } \alpha \in [0,1]$$
 (11)

There is a related notion: We define P as cut-consistent ("řezově konzistentní") using the same definition, but replacing \Rightarrow with \Leftrightarrow .

Cutworhiness: Examples

 The theorem 214 can be stated as: "Set inclusion is cut-consistent."

Brain teasers

- Strong normality of A is defined as A(x) = 1 for some $x \in \Delta$. :1ua1sisuo2-1n2 si λ 1jeuJou buoJ3 seuJou- λ 1buoJ3 si \forall
 - iff every cut strongly normal. iff every its cut is non-empty
- Being crisp is
 - therefore the property is not not cut-consistent.

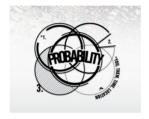
 But even non-crisp sets have crisp cuts, Every cut is crisp by definition, therefore cutworthiness.

 cutworthy, but not cut-consistent:

Google: "fuzzy"

Sources: M. Taylor's Weblog, M. Taylor's Weblog, Eddie's Trick Shop.

Google: "probability"



Sources: Life123, WhatWeKnowSoFar, Probability Problems.

Fuzzy vs. probability

· Vagueness vs. uncertainty.

• Fuzzy logic is functional.

Crisp relations

Definition

A binary crisp relation R from X onto Y is a subset of the cartesian product $X \times Y$:

$$R \in \mathbb{P}(X \times Y) \tag{12}$$

Definition

The *inverse relation* R^{-1} to R is a relation from Y to X s.t.

$$R^{-1} = \{ (y, x) \in Y \times X \mid (x, y) \in R \}$$
 (13)

Crisp relations: Inverse

Definition

Let X, Y, Z be sets. Then the *compound* of relations $R \subseteq X \times Y$, $S \subseteq Y \times Z$ is the relation

$$R \cap S = \{(x, z) \in X \times Z \mid (x, y) \in R \text{ and } (y, z) \in S \text{ for some } y\}$$
 (14)

Crisp relations: Properties

The *equality* relation on Δ is $E = \{(x, x) \mid x \in \Delta\}$.

Then the relation $R \subseteq \Delta \times \Delta$ is called

property	using logical connectives	using set axioms	
reflexive	$\forall x. (x, x) \in R$	$E \subseteq R$	
symmetric	$(x,y) \in R \Rightarrow (y,x) \in R$	$R = R^{-1}$	
anti-symmetric	$(x,y) \in R \land (y,z) \in R \Rightarrow y = z$	$R \cap R^{-1} \subseteq E$	
transitive	$(x,y) \in R \land (y,z) \in R \Rightarrow (x,z) \in R$	$R \bigcirc R \subseteq R$	
partial order	reflexive, transitive and anti-symmetric		
equivalence	reflexive, transitive and symmetric		

Fuzzy relations

Definition

A binary fuzzy relation R from X onto Y is a fuzzy subset on the universe $X \times Y$.

$$R \in \mathbb{F}(X \times Y) \tag{15}$$

Definition

The *fuzzy inverse* relation $R^{-1} \in \mathbb{F}(Y \times X)$ to $R \in \mathbb{F}(X \times Y)$, s.t.

$$R(y,x) = R^{-1}(x,y)$$
 (16)

Projection

Defintion

Let $R \in \mathbb{F}(X \times Y)$ be a fuzzy binary relation. The *first* and second projection of R is

$$R^{(1)}(x) = \bigvee_{y \in Y}^{S} R(x, y)$$
 (17)

$$R^{(2)}(y) = \bigvee_{x \in Y}^{S} R(x, y)$$
 (18)

Projection: Example

R	y_1	y ₂	y_3	y_4	y_5	y ₆	$R^{(1)}(x)$
<i>x</i> ₁	0.1	0.2	0.4	0.8	1	8.0	τ
X ₂	0.2	0.4	0.8	1	0.8	0.6	τ
<i>x</i> ₃	0.4	0.8	1	0.8	0.4	0.2	ī
$R^{(2)}(y)$	٥.4	8.0	Ţ	8.0	ۇ .0	2.0	

Cylindrical extension

Can we reconstruct a fuzzy relation from its projections? There is an unique largest relation with prescribed projections:

Definition

Let $A \in \mathbb{F}(X)$ and $B \in \mathbb{F}(Y)$ be fuzzy sets. The *cylindrical extension* ("cylindrické rozšíření", "kartézský součin fuzzy množin") is defined as

$$A \times B(x,y) = A(x) \wedge_{S} B(y)$$
 (19)

Brain teaser

Why can't there be a relation Q bigger than $A \times B$, whose projections are $Q^{(1)} = A$ and $Q^{(2)} = B$?

Cylindrical extension: Drawing

$$A(x) = \begin{cases} x - 1 & x \in [1, 2] \\ 3 - x & x \in [2, 3] \\ 0 & \text{otherwise} \end{cases}$$

$$B(x) = \begin{cases} x - 3 & x \in [3, 4] \\ 5 - x & x \in [4, 5] \\ 0 & \text{otherwise} \end{cases}$$

Composition of fuzzy relations

Definition

Let X, Y, Z be crisp sets. $R \in \mathbb{F}(X \times Y)$, $S \in \mathbb{F}(Y \times Z)$ and $\ \ \,$ some fuzzy conjunction. Then the $\ \ \,$ -composition (" $\ \ \,$ -složená relace") is

$$R \bigcirc S(x,z) = \bigvee_{y \in Y}^{S} R(x,y) \wedge S(y,z)$$
 (20)

- 1. For infinite domains, \bigvee^s is computed using the sup instead of max.
- 2. Instead of the "for some y" in *crisp relations*, the disjunction "finds such a y" that maximizes the conjunction.

Example of a fuzzy relation

$$R(x,y) = \begin{cases} x+y & x,y \in \left[0,\frac{1}{2}\right] \\ \text{o} & \text{otherwise} \end{cases} \qquad S(x,y) = \begin{cases} x\cdot y & x,y \in \left[0,1\right] \\ \text{o} & \text{otherwise} \end{cases}$$

Properties of fuzzy relations

Then the relation $R \subseteq \Delta \times \Delta$ is called

property	using set axioms
reflexive	$E\subseteq R$
symmetric	$R = R^{-1}$
∘-anti-symmetric	$R \cap R^{-1} \subseteq E$
o-transitive	$R \underset{\circ}{\bigcirc} R \subseteq R$
∘-partial order	reflexive, o-transitive and o-anti-symmetric
∘-equivalence	reflexive, o-transitive and o-symmetric

Properties in a finite domain

If the universe Δ is finite, the relation can be written as a matrix. Their properties are reflected in the relation's matrix:

- Reflexivity: Cells on the main diagonal τ
 σιε.
- Symmetricity: Cells symmetric over the main diagonal penbə əae.
- Anti-symmetricity: Cells symmetric over the main diagonal oaəz oq penbə uoqqoun(uoo əneq.
 - For S- and A-anti-symmetricity, olds and strample off to ono.
 - For L-anti-symmetricity, T of lenps to ssel ed tsum mus tient.
- Transitivity: More difficult (see example on the next slide).

Example on fuzzy relation properties

Let $\Delta = \{A, B, C, D\}$ and $R \in \mathbb{F}(\Delta \times \Delta)$.

R	Α	В	С	D
Α		0.5		0.1
В			0.2	
С				
D		0.2		

Fill the missing cells in the table to make R

- a) S-equivalence
- b) A-equivalence

Theorem 234.

Let *R*, *S* and *T* be relations (defined over sets that "make sense") The following equations hold:

$$R \bigcirc E = R, \ E \bigcirc R = R$$
 (21)

$$(R \bigcirc S)^{-1} = S^{-1} \bigcirc R^{-1}$$
 (22)

$$R \bigcirc (S \bigcirc T) = (R \bigcirc S) \bigcirc T$$
 (23)

$$(R \bigcap^{S} S) {}_{\bigcirc} T = (R {}_{\bigcirc} T) {}_{\bigcirc} (S {}_{\bigcirc} T)$$
 (24)

$$R \bigcirc (S \bigcap^{S} T) = (R \bigcirc S) \bigcirc (R \bigcirc T)$$
 (25)

(21) describes the *identity element*, (22) the *inverse of composition*, (23) is the *asociativity*, (24) and (25) the *right*- and *left-distributivity*.

Proof of 234.

Proving (21) and (22) is trivial.

$$"R \bigcirc (S \bigcirc T)"(x, w) = \bigvee_{y}^{S} R(x, y) \wedge "S \bigcirc T"(y, w)$$

$$= \bigvee_{y}^{S} R(x, y) \wedge \left(\bigvee_{z}^{S} S(y, z) \wedge T(z, w)\right)$$

$$= \bigvee_{y}^{S} \bigvee_{z}^{S} R(x, y) \wedge S(y, z) \wedge T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \wedge S(y, z) \wedge T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \wedge S(y, z) \wedge T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \wedge S(y, z) \wedge T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \wedge S(y, z) \wedge T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \wedge S(y, z) \wedge T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \wedge S(y, z) \wedge T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \wedge S(y, z) \wedge T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \wedge S(y, z) \wedge T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \wedge S(y, z) \wedge T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \wedge S(y, z) \wedge T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \wedge S(y, z) \wedge T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \wedge S(y, z) \wedge T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \wedge S(y, z) \wedge T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \wedge S(y, z) \wedge T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \wedge S(y, z) \wedge T(z, w)$$

$$= \bigvee_{z}^{S} \bigvee_{z}^{S} R(x, y) \wedge S(y, z) \wedge T(z, w)$$

Proof of 234 (contd.).

$$=\bigvee_{z}^{s}\bigvee_{w}^{s}R(x,y)\wedge S(y,z)\wedge T(z,w)$$
 (30)

$$=\bigvee_{z}^{S}\left(\bigvee_{y}^{S}R(x,y) \wedge S(y,z)\right) \wedge T(z,w)$$
 (31)

$$=\bigvee_{z}^{s}"R\bigcirc S"(x,z) \wedge T(z,w)$$
 (32)

$$= "R \bigcirc S \bigcirc T"(x, w) \tag{33}$$

Proof of (24) and (25) is similar (uses the distributivity law), only shorter. See [Navara and Olšák, 2001] for details.

Extensions: Sometimes it is useful to consider...

• ...a ε -reflective relation

$$R(x,x) \geqslant \varepsilon$$
 (34)

...a weakly reflexive relation

$$R(x,y) \le R(x,x)$$
 and $R(y,x) \le R(x,x)$ for all x,y (35)

- Relation is 1-reflective iff reflexive.
- If a relation is reflexive, then it is weakly reflexive.

Extensions: Sometimes it is useful to consider...

...a non-involutive negation by refusing (N2)

$$\neg \neg \alpha \neq \alpha$$

and adopting a weaker axiom

$$\neg \neg o = 1$$
 and $\neg \neg 1 = o$ (N0)

Example

Gödel negation

$$\vec{G} \alpha = \begin{cases} 1 & \alpha = 0 \\ 0 & \text{otherwise} \end{cases}$$
(36)

Bibliography

Navara, M. and Olšák, P. (2001). Základy fuzzy množin. Nakladatelství ČVUT.