AE4M33RZN, Fuzzy logic: Introduction, Fuzzy operators

Radomír Černoch

radomir.cernoch@fel.cvut.cz

2/11/2015

Faculty of Electrical Engineering, CTU in Prague

Plan of the lecture

Introduction

AMKR course so far Criticism of both approaches

Basic definitions

Crisp sets Vertical representation Horizontal representation Special cases of fuzzy sets **Operations on fuzzy sets** Negation Conjunction Disjunction Conjunction - disjunction duality Criteria for selecting operators Biblopgraphy

Description logics

<Ontology ontologyIRI="http://example.com/tea.owl" ...>
<Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/> <Declaration> <Class IRI="Tea"/> </Declaration> </ontology>

• A *description logic* is a decideable fragment of *first order logic* (FOL).

Description logics

<Ontology ontologyIRI="http://example.com/tea.owl" ...> <prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/> (Declaration) (Class TRT="Tea"/> </Declaration> </ontology>

- A description logic is a decideable fragment of first order logic (FOL).
- + Uses *concepts, roles* and *individuals* to capture structured knowledge.
- Does not capture imprecise or vague information. (See an example in a minute.)

(Photo by ICMA Photos under the CC-BY-SA 2.0.) • GPM is an **efficient representation** of large probability distributions.

(Photo by ICMA Photos under the CC-BY-SA 2.0.)

- GPM is an **efficient representation** of large probability distributions.
- + Captures uncertainty well.

(Photo by ICMA Photos under the CC-BY-SA 2.0.)

- GPM is an **efficient representation** of large probability distributions.
- + Captures uncertainty well.
- + Even unlikely events (tossing *head* 100 times in a row) can be processed.

(Photo by ICMA Photos under the CC-BY-SA 2.0.)

- GPM is an **efficient representation** of large probability distributions.
- + Captures uncertainty well.
- + Even unlikely events (tossing *head* 100 times in a row) can be processed.
- Cannot formulate complex statements explicitly, such as "Every object in the database has at least one..."

Example: Smoking friends (1)

To illustrate the limitations of DL and GPM, consider an example from [Domingos and Lowd, 2009].

(Image: Matthew Romack under the CC-BY-SA 2.0.)

Example: Smoking friends (1)

To illustrate the limitations of DL and GPM, consider an example from [Domingos and Lowd, 2009].

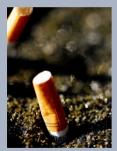
(Image: Matthew Romack under the CC-BY-SA 2.0.)

Obervation 1: High-school experience.

People start or stop smoking in groups of friends.

Example: Smoking friends (1)

To illustrate the limitations of DL and GPM, consider an example from [Domingos and Lowd, 2009].



(Image: Matthew Romack under the CC-BY-SA 2.0.)

Obervation 1: High-school experience.

People start or stop smoking in groups of friends.

Obervation 2: Six degrees of separation.

Everyone is on average approximately six steps away, by way of introduction, from any other person in the world, so that a chain of "a friend of a friend" statements can be made, on average, to connect any two people in six steps. [Wikipedia, 2012] To formalize the example, let's use description logic \mathscr{ALC} :

To formalize the example, let's use description logic \mathscr{ALC} :

Obervation 1: High-school experience.

If you have a friend, who is a smoker, you are a smoker as well:

 \exists friendOf \cdot Smoker \sqsubseteq Smoker

Example: Smoking friends (2)

To formalize the example, let's use description logic \mathscr{ALC} :

Obervation 1: High-school experience.

If you have a friend, who is a smoker, you are a smoker as well:

 \exists friendOf \cdot Smoker \sqsubseteq Smoker

Obervation 2: Six degrees of separation.

Joining the friendOf relation 1..6 times gives the *top relation*.

 $\mathsf{friendOf} \bigcirc ... \bigcirc \mathsf{friendOf} \sqsubseteq \top$

Example: Smoking friends (2)

To formalize the example, let's use description logic \mathscr{ALC} :

Obervation 1: High-school experience.

If you have a friend, who is a smoker, you are a smoker as well:

 \exists friendOf \cdot Smoker \sqsubseteq Smoker

Obervation 2: Six degrees of separation.

Joining the friendOf relation 1..6 times gives the *top relation*.

 $\mathsf{friendOf} \bigcirc ... \bigcirc \mathsf{friendOf} \sqsubseteq \top$

What is wrong with this model?

Example: Smoking friends (3)

• If there is one smoker, the whole world starts smoking. (Formally, an interpretation \mathscr{I} must satisfy Smoker^{\mathscr{I}} = \varnothing or Smoker^{\mathscr{I}} = Δ .)

Example: Smoking friends (3)

- If there is one smoker, the whole world starts smoking. (Formally, an interpretation \mathscr{I} must satisfy Smoker^{\mathscr{I}} = \varnothing or Smoker^{\mathscr{I}} = Δ .)
- We start from **reasonable assumptions** and arrive at **counter-intuitive** conclusion. What's wrong with our reasoning?

Example: Smoking friends (3)

- If there is one smoker, the whole world starts smoking. (Formally, an interpretation \mathscr{I} must satisfy Smoker^{\mathscr{I}} = \varnothing or Smoker^{\mathscr{I}} = Δ .)
- We start from **reasonable assumptions** and arrive at **counter-intuitive** conclusion. What's wrong with our reasoning?
- We would like to express something like

 $(\exists friendOf \cdot Smoker \sqsubseteq Smoker)$ is "mostly" true.

Fuzzy logic can do that!

Conclusion

All traditional logic habitually assumes that precise symbols are being employed. It is therefore not applicable to this terrestrial life but only to an imagined celestial existence.

Bertrand Russel [Russell, 1923]

Crisp sets: Definition

• (Informally:) A *crisp set* ("ostrá množina") X is a collection of *objects* $x \in X$ that can be finite, countable or overcountable.

Crisp sets: Definition

- (Informally:) A *crisp set* ("ostrá množina") X is a collection of *objects* $x \in X$ that can be finite, countable or overcountable.
- We will speak about sets with in relation to a *universe* set ("univerzum").
- The universe is usually denoted as Δ .

Crisp sets: Definition

- (Informally:) A *crisp set* ("ostrá množina") X is a collection of *objects* $x \in X$ that can be finite, countable or overcountable.
- We will speak about sets with in relation to a *universe* set ("univerzum").
- The universe is usually denoted as $\Delta.$
- Let $\mathbb{P}(\Delta)$ be the *powerset* (a set of all subsets) of Δ (the universe). Then any crisp set is an element in the powerset of its universe: $A \in \mathbb{P}(\Delta)$.

Crisp sets: Example

Equivalent ways of describing a *crisp set* in \mathbb{N} :

$$A = \{1, 3, 5\}$$
(1)

$$A = \{x \in \mathbb{IN} \mid x \le 5 \text{ and } x \text{ is odd}\}$$
(2)

Equivalent ways of describing a *crisp set* in \mathbb{N} :

$$A = \{1, 3, 5\}$$
(1)

$$A = \{x \in \mathbb{N} \mid x \le 5 \text{ and } x \text{ is odd}\}$$
(2)

$$\mu_A(x) = \begin{cases} \mathbf{o} & x > 5\\ \mathbf{o} & x \text{ is even}\\ \mathbf{1} & \text{otherwise} \end{cases}$$
(3)

 $\mu_{\rm A}$ is called the membership function ("charakteristická funkce", "funkce příslušnosti").

If μ_A is a function $\Delta \rightarrow \{0, 1\}$, the *inverse membership function* μ_A^{-1} returns objects with the given membership degree:

$$\mu_A^{-1}(\boldsymbol{M}) = \{ \boldsymbol{x} \in \Delta \mid \mu_A(\boldsymbol{x}) \in \boldsymbol{M} \}$$
(4)

If μ_A is a function $\Delta \rightarrow \{0, 1\}$, the *inverse membership function* μ_A^{-1} returns objects with the given membership degree:

$$\mu_A^{-1}(\boldsymbol{M}) = \{ \boldsymbol{x} \in \Delta \mid \mu_A(\boldsymbol{x}) \in \boldsymbol{M} \}$$
(4)

Example

$$\mu_A^{-1}(\{1\}) = \{1, 3, 5\}$$
(5)

If μ_A is a function $\Delta \rightarrow \{0, 1\}$, the *inverse membership function* μ_A^{-1} returns objects with the given membership degree:

$$\mu_A^{-1}(\boldsymbol{M}) = \{ \boldsymbol{x} \in \Delta \mid \mu_A(\boldsymbol{x}) \in \boldsymbol{M} \}$$
(4)

Example

$$\mu_A^{-1}(\{1\}) = \{1, 3, 5\}$$
(5)

Note

 μ_A^{-1} is not an inverse in a strict mathematical sense. The inverse of $\Delta \to \{0, 1\}$ should be $\{0, 1\} \to \Delta$, but $\mu_A^{-1} \colon \mathbb{P}(\{0, 1\}) \to \mathbb{P}(\Delta)$. Check your knowledge:

$$\mu_{\varnothing} = ?$$

 $\mu_{\Delta} = ?$
 $\mu^{-1}(\{0, 1\}) = ?$

Check your knowledge:

$$\mu_{\varnothing} = \mathbf{o}$$
$$\mu_{\Delta} = \mathbf{i}$$
$$\mu^{-1}(\{\mathbf{o},\mathbf{i}\}) = \Delta$$

112 / 144 Basic fuzzy

Definition

Fuzzy set ("fuzzy množina") is an object A described by a generalized membership function $\mu_A : \Delta \rightarrow [0, 1]$.

Definition

Fuzzy set ("fuzzy množina") is an object A described by a generalized membership function $\mu_A : \Delta \rightarrow [0, 1]$.

For better readability, $A(x) \equiv \mu_A(x)$.

Definition

Fuzzy set ("fuzzy množina") is an object A described by a generalized membership function $\mu_A : \Delta \rightarrow [0, 1]$.

For better readability, $A(x) \equiv \mu_A(x)$.

The set of all fuzzy subsets of a crisp universe Δ will be denoted as $\mathbb{F}(\Delta)$.

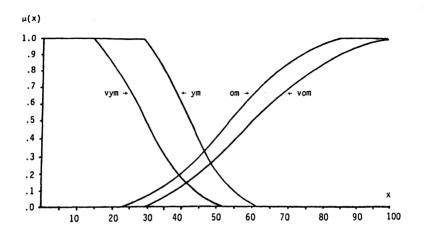


Figure 16–8. Empirical membership functions "Very Young Man," "Young Man," "Old Man," "Very Old Man."

Source: [Zimmermann, 2001]

Fuzzy set: Properties (1)

• Cardinality is the size of a fuzzy set.

$$|A| = \sum_{\mathbf{x} \in \Delta} A(\mathbf{x}) \tag{6}$$

Fuzzy set: Properties (1)

• Cardinality is the size of a fuzzy set.

$$|A| = \sum_{\mathbf{x} \in \Delta} A(\mathbf{x}) \tag{6}$$

• Height of a fuzzy set is the highest value of the membership function.

$$\operatorname{Height}(A) = \sup \left\{ \alpha \mid x \in \Delta, A(x) = \alpha \right\}$$
(7)

Fuzzy set: Properties (2)

• *Support* ("nosič") is the set of objects contained in the fuzzy set "at least a bit".

$$Supp(A) = \{x \in \Delta \mid A(x) > 0\} = \mu_A^{-1}((0, 1])$$
(8)

• Support ("nosič") is the set of objects contained in the fuzzy set "at least a bit".

Supp(A) = {
$$x \in \Delta | A(x) > o$$
} = $\mu_A^{-1}((o, 1])$ (8)

• Core ("jádro") is the set of objects "fully contained" in the fuzzy set.

$$Core(A) = \{x \in \Delta \mid A(x) = 1\} = \mu_A^{-1}(\{1\})$$
(9)

The inverse membership fn. has the same def. in fuzzy and crisp world:

$$\mu_A^{-1}(\boldsymbol{M}) = \{ \boldsymbol{x} \in \Delta \mid \boldsymbol{A}(\boldsymbol{x}) \in \boldsymbol{M} \}$$
(10)

If |M| = 1, it defines the α -level (" α -hladina") of a fuzzy set A (it is a crisp set).

The inverse membership fn. has the same def. in fuzzy and crisp world:

$$\mu_A^{-1}(\boldsymbol{M}) = \{ \boldsymbol{x} \in \Delta \mid \boldsymbol{A}(\boldsymbol{x}) \in \boldsymbol{M} \}$$
(10)

If |M| = 1, it defines the α -level (" α -hladina") of a fuzzy set A (it is a crisp set). The α -cut (" α -řez") of a fuzzy set A is a crisp set

$$\mathbb{R}_{A}(\alpha) = \{ x \in \Delta \mid A(x) \ge \alpha \} = \mu_{A}^{-1}([\alpha, 1])$$
(11)

Sometimes we speak about a *strong* α -*cut* ("ostrý α -řez"), where \geq in the definition is replaced by >.

The inverse membership fn. has the same def. in fuzzy and crisp world:

$$\mu_A^{-1}(\boldsymbol{M}) = \{ \boldsymbol{x} \in \Delta \mid \boldsymbol{A}(\boldsymbol{x}) \in \boldsymbol{M} \}$$
(10)

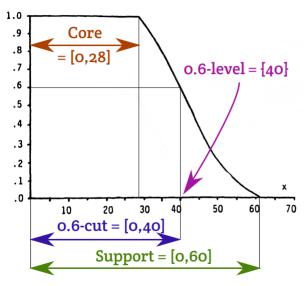
If |M| = 1, it defines the α -level (" α -hladina") of a fuzzy set A (it is a crisp set). The α -cut (" α -řez") of a fuzzy set A is a crisp set

$$\mathbb{R}_{A}(\alpha) = \{ x \in \Delta \mid A(x) \ge \alpha \} = \mu_{A}^{-1}([\alpha, 1])$$
(11)

Sometimes we speak about a *strong* α -*cut* ("ostrý α -řez"), where \geq in the definition is replaced by >.

For better readability $A^{-1}(x) \equiv \mu_A^{-1}(x)$.

μ(X)



The set "Age of Young Men" with its properties. Check your knowledge:

$$R_{A}(\mathbf{o}) = ?$$

$$Core(A) = ?$$

$$Height(A) = \sup \{? | R_{A} ?\}$$

Check your knowledge:

$$\begin{aligned} & \mathbb{R}_{A}(\mathbf{o}) = \Delta \\ & \text{Core}(A) = \mathbb{R}_{A}(\mathbf{i}) \\ & \text{Height}(A) = \sup \left\{ \alpha \in [\mathbf{o}, \mathbf{i}] \mid \mathbb{R}_{A}(\alpha) \neq \emptyset \right\} \end{aligned}$$

Converting vertical and horizontal representation

- Horizontal representation \sim the α -cuts R.
- Vertical representation \sim the characteristic function μ .
- $1 \Rightarrow 2$: From the definition on the previous slide.
- $a \Rightarrow 1$: By taking the "highest" α -level containing x:

$$A(x) = \max\{\alpha \in [0,1] \mid x \in \mathbb{R}_A(\alpha)\}$$
(12)

Definition

Fuzzy interval A is a fuzzy set on $\Delta = \mathbb{R}$ s.t.

• $\mathbb{R}_{A}(\alpha)$ is a closed interval for all $\alpha \in [0, 1]$

Definition

Fuzzy interval A is a fuzzy set on $\Delta = \mathbb{R}$ s.t.

- $\mathbb{R}_{A}(\alpha)$ is a closed interval for all $\alpha \in [0, 1]$
- $R_A(1)$ is not empty.

Definition

Fuzzy interval A is a fuzzy set on $\Delta = \mathbb{R}$ s.t.

- $R_A(\alpha)$ is a closed interval for all $\alpha \in [0, 1]$
- $R_A(1)$ is not empty.
- |Supp(A)| is bounded (has a maximum and a minimum).

Definition

Fuzzy interval A is a fuzzy set on $\Delta = \mathbb{R}$ s.t.

- $R_A(\alpha)$ is a closed interval for all $\alpha \in [0, 1]$
- $R_A(1)$ is not empty.
- |Supp(A)| is **bounded** (has a maximum and a minimum).

Special cases of fuzzy intervals

- Fuzzy number A is a fuzzy interval s.t. |Core(A)| = 1
- Trapezoidal interval will be denoted by $\langle a, b, c, d \rangle$.
- Triangular number will be denoted by $\langle a, b, c \rangle = \langle a, b, b, c \rangle$.
- A crisp interval [a, b] is also $\langle a, a, b, b \rangle$.

Operations on fuzzy sets

crisp set operation	propositional operation
$\overline{\cdot}: \mathbb{P}(\Delta) \to \mathbb{P}(\Delta)$	$\neg \cdot : [0,1] \rightarrow [0,1]$
$\cdot \cap \cdot : \mathbb{P}(\Delta) \times \mathbb{P}(\Delta) \to \mathbb{P}(\Delta)$	$\cdot \wedge \cdot : [0,1]^2 \rightarrow [0,1]$
$\cdots : \mathbb{P}(\Delta) \times \mathbb{P}(\Delta) \to \mathbb{P}(\Delta)$	$\cdot \lor \cdot : [0,1]^2 \rightarrow [0,1]$

crisp set operation	propositional operation
$\overline{\cdot}: \mathbb{P}(\Delta) \to \mathbb{P}(\Delta)$	$\neg\cdot:[0,1]\to[0,1]$
	$\cdot \wedge \cdot : [0,1]^2 \rightarrow [0,1]$
$\cdot \cup \cdot : \mathbb{P}(\Delta) \times \mathbb{P}(\Delta) \to \mathbb{P}(\Delta)$	$\cdot \lor \cdot : [0,1]^2 \rightarrow [0,1]$

We can use the logical operators to define the set operators:

$$\overline{A} = \{ x \in \Delta \mid \neg (x \in A) \}$$
(LS1)

$$A \cap B = \{x \in \Delta \mid (x \in A) \land (x \in B)\}$$
 (LS2)

$$A \cup B = \{x \in \Delta \mid (x \in A) \lor (x \in B)\}$$
 (LS3)

Therefore we will cover the logical negation, conjunction and disjunction. We get the set operations "for free".

Fuzzy negation

Fuzzy negation is a non-increasing, involutive, unary function \neg_{o} : [0,1] \rightarrow [0,1] s.t.

if
$$\alpha \leq \beta$$
 then $\neg \beta \leq \neg \alpha$ (N1)
 $\neg \neg \alpha = \alpha$ (N2)

Fuzzy negation

Fuzzy negation is a non-increasing, involutive, unary function \neg_{\circ} : [0,1] \rightarrow [0,1] s.t.

$$\text{if } \alpha \leq \beta \text{ then } \neg \beta \leq \neg \alpha \tag{N1}$$

$$\neg \neg \alpha = \alpha$$
 (N2)

Example

Standard ("standardní"), Łukasiewicz negation

$$\sum_{s} \alpha = 1 - \alpha \tag{13}$$

Fuzzy negation

Fuzzy negation is a non-increasing, involutive, unary function \neg_{\circ} : [0,1] \rightarrow [0,1] s.t.

$$\text{if } \alpha \leq \beta \text{ then } \neg \beta \leq \neg \alpha \tag{N1}$$

$$\neg \neg \alpha = \alpha$$
 (N2)

Example

Standard ("standardní"), Łukasiewicz negation

$$\sum_{S} \alpha = 1 - \alpha \tag{13}$$

The fuzzy set *complement* is a defined using (LS1).

Fuzzy negation: More examples

Cosine negation

$$\neg \alpha = (\cos(\pi \alpha) + 1)/2$$
 (14)

Sugeno negation

$$\sum_{s\lambda} \alpha = \frac{1-\alpha}{1+\lambda\alpha}, \quad \lambda > -1$$
 (15)

Yager negation

$$\prod_{\mathbf{y}\lambda} \alpha = (\mathbf{1} - \alpha^{\lambda})^{\mathbf{y}/\lambda}$$
(16)

The axioms (N1) and (N2) imply more properties of fuzzy negations:

Theorem 125

```
Every fuzzy negation \begin{tabular}{ll} \hline \end{tabular} is a
```

- continuous
- decreasing
- bijective
- generalization of the propositional negation \neg

Fuzzy negation: Proof of 125

- Injective $(f(\alpha) = f(b) \Rightarrow \alpha = b)$: Take 2 values, whose negations are equal: $\neg \alpha = \neg \beta$. By (N2) $\alpha = \neg \neg \alpha$. The \Box can be substituted using the assumption: $\neg \neg \alpha = \neg \neg \beta$. Using (N1) gives $\neg \neg \beta = \beta$. Therefore $\alpha = \beta$.
- Every non-increasing function (N1) which is injective, must be decreasing. If $\alpha < \beta$ WLOG, then $\neg \alpha \ge \neg \beta$. Then either $\neg \alpha > \neg \beta$ and \neg is decreasing, or $\neg \alpha = \neg \beta$, which contradicts the injectivity.

Fuzzy negation: Proof of 125

- Surjective $\forall y \exists x.f(x) = y$: We seek a value of β for each α s.t. $\alpha = \neg_{\beta} \beta$. Using injectivity, the condition is equivalent to $\neg_{\beta} \alpha = \neg_{\beta} \neg_{\beta} \beta$. Using (N2), we find the value of β for any α : $\beta = \neg_{\alpha} \alpha$.
- **Bijection** is an injective and surjective function (by definition).
- Continuous: Every decreasing bijection is continuous.
- Boundary values: Let ¬₀ o = α and suppose that α < 1. Then from surjectivity, there must be some other β > o s.t. ¬β = 1. This contracits monotonicity, because ¬₀ o < ¬β. The other boundary value is proven similarly.

Fuzzy t-norm (triangluar norm, conjunction) is a binary, comutative, operation \bigwedge s.t.

$$\alpha \wedge \beta = \beta \wedge \alpha \tag{T1}$$

$$\alpha \wedge (\beta \wedge \gamma) = (\alpha \wedge \beta) \wedge \gamma$$
 (T2)

$$\text{if } \beta \leq \gamma \text{ then } (\alpha \land \beta) \leq (\alpha \land \gamma) \tag{T3}$$

$$(\alpha \wedge \mathbf{1}) = \alpha \tag{T4}$$

Fuzzy t-norm (triangluar norm, conjunction) is a binary, comutative, operation \bigwedge s.t.

$$\alpha \wedge \beta = \beta \wedge \alpha \tag{T1}$$

$$\alpha \wedge (\beta \wedge \gamma) = (\alpha \wedge \beta) \wedge \gamma$$
 (T2)

$$\text{if } \beta \leq \gamma \text{ then } (\alpha \land \beta) \leq (\alpha \land \gamma) \tag{T3}$$

$$(\alpha \wedge \mathbf{1}) = \alpha \tag{T4}$$

The fuzzy set *intersection* is a defined using (LS2).

Fuzzy conjunctions: Examples

• Standard (Gödel, Zadeh)

$$\alpha \wedge_{S} \beta = \min(\alpha, \beta)$$
(17)

Łukasiewicz

$$\alpha \bigwedge_{L} \beta = \max \left(\alpha + \beta - \mathbf{1}, \mathbf{0} \right) \tag{18}$$

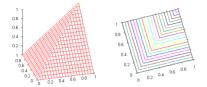
Algebraic product ("součinová")

$$\alpha \wedge \beta = \alpha \cdot \beta \tag{19}$$

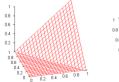
• Weak ("drastická")

$$\alpha \bigotimes_{W} \beta = \begin{cases} \alpha & \text{if } \beta = 1 \\ \beta & \text{if } \alpha = 1 \\ \text{o otherwise} \end{cases}$$
(20)

Fuzzy conjunctions: Visualization [Wikipedia]



Standard



Algebraic

Łukasiewicz

Drastic

130 / 144 Basic fuzzy

Fuzzy conjunctions: Properties (1)

Theorem 131

The weak and standard conjunctions provide a lower and upper bound on all possible conjunctions:

$$(\alpha \bigwedge_{\mathsf{W}} \beta) \le (\alpha \bigwedge_{\circ} \beta) \le (\alpha \bigwedge_{\mathsf{S}} \beta)$$
(21)

Proof: Assume WLOG $\alpha \leq \beta$.

 $\beta = 1$ The condition (T4) gives the same result for all conjunctions. $\beta < 1$ $\alpha \bigotimes \beta = 0$, which gives the lower bound. The upper bound is rewritten using the definition of standard conjunction (17): $\alpha \bigotimes \beta = \alpha$. From (T4) and (T3) follows that $\alpha = \alpha \bigotimes 1 \ge \alpha \bigotimes \beta$. Together $\alpha \bigotimes \beta = \alpha \ge \alpha \bigotimes \beta$.

Theorem 132

The standard conjunction is the only *idempotent* conjunction:

$$\alpha \wedge \alpha = \alpha \tag{22}$$

Proof: Assume WLOG $\alpha \leq \beta$.

$$\alpha = \alpha \stackrel{\wedge}{_{\circ}} \alpha \stackrel{(T_3)}{_{\leq}} \alpha \stackrel{\wedge}{_{\circ}} \beta \stackrel{(T_3)}{_{\leq}} \alpha \stackrel{\wedge}{_{\circ}} \mathbf{1} \stackrel{(T_4)}{_{=}} \alpha$$
(23)

Therefore $\alpha \land \beta = \alpha$. There is only one such conjunction: §.

Fuzzy disjunctions (s-norm)

Fuzzy s-norm (t-conorm, disjunction) is a binary operation $\overset{\circ}{\vee}$ s.t.

$$\alpha \stackrel{\circ}{\vee} \beta = \beta \stackrel{\circ}{\vee} \alpha \tag{S1}$$

$$\alpha \stackrel{\circ}{\vee} (\beta \stackrel{\circ}{\vee} \gamma) = (\alpha \stackrel{\circ}{\vee} \beta) \stackrel{\circ}{\vee} \gamma$$
 (S2)

$$\text{if } \beta \leq \gamma \text{ then } (\alpha \overset{\circ}{\vee} \beta) \leq (\alpha \overset{\circ}{\vee} \gamma) \tag{S3}$$

$$(\alpha \stackrel{\circ}{\vee} \mathbf{o}) = \alpha \tag{S4}$$

Fuzzy disjunctions (s-norm)

Fuzzy s-norm (t-conorm, disjunction) is a binary operation $\stackrel{\circ}{\vee}$ s.t.

$$\alpha \stackrel{\circ}{\vee} \beta = \beta \stackrel{\circ}{\vee} \alpha \tag{S1}$$

$$\alpha \stackrel{\circ}{\vee} (\beta \stackrel{\circ}{\vee} \gamma) = (\alpha \stackrel{\circ}{\vee} \beta) \stackrel{\circ}{\vee} \gamma$$
 (S2)

if
$$\beta \le \gamma$$
 then $(\alpha \stackrel{\circ}{\vee} \beta) \le (\alpha \stackrel{\circ}{\vee} \gamma)$ (S3)

$$(\alpha \stackrel{\circ}{\vee} \mathbf{o}) = \alpha \tag{S4}$$

Union

The fuzzy set *union* is a defined using the disjunction:

$$\mu_{A\cup B}(\mathbf{x}) = \mu_A(\mathbf{x}) \stackrel{\circ}{\vee} \mu_B(\mathbf{x})$$
(24)

Fuzzy disjunctions: Examples (1)

• Standard (Gödel, Zadeh)

$$\alpha \stackrel{S}{\vee} \beta = \max(\alpha, \beta) \tag{25}$$

Łukasiewicz

$$\alpha \stackrel{\mathrm{L}}{\forall} \beta = \min(\alpha + \beta, \mathbf{1}) \tag{26}$$

• Algebraic sum ("součinová")

$$\alpha \stackrel{A}{\vee} \beta = \alpha + \beta - \alpha \cdot \beta \tag{27}$$

Fuzzy disjunctions: Examples (2)

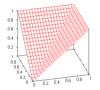
• Weak ("drastická")

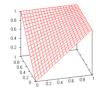
$$\alpha \bigvee^{W} \beta = \begin{cases} \alpha & \text{if } \beta = \mathbf{o} \\ \beta & \text{if } \alpha = \mathbf{o} \\ 1 & \text{otherwise} \end{cases}$$
(28)

Einstein

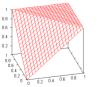
$$\alpha \stackrel{\mathrm{E}}{\vee} \beta = \frac{\alpha + \beta}{\mathbf{1} + \alpha \beta} \tag{29}$$

Fuzzy disjunctions: Visualization [Wikipedia]

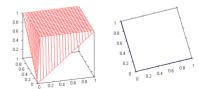




Standard



Algebraic



Łukasiewicz

Drastic

• The standard and weak disjunctions provide a lower and upper bound on all possible conjunctions:

$$(\alpha \stackrel{S}{\vee} \beta) \le (\alpha \stackrel{\circ}{\vee} \beta) \le (\alpha \stackrel{W}{\vee} \beta)$$
(30)

• The standard and weak disjunctions provide a lower and upper bound on all possible conjunctions:

$$(\alpha \stackrel{S}{\vee} \beta) \le (\alpha \stackrel{\circ}{\vee} \beta) \le (\alpha \stackrel{W}{\vee} \beta)$$
(30)

• The standard disjunctions is the only *idempotent* conjunction:

$$\alpha \stackrel{\circ}{\vee} \alpha = \alpha \tag{31}$$

Conjunction - disjunction duality

A If $\stackrel{\wedge}{_{\circ}}$ is a fuzzy conjunction, then $\alpha \stackrel{\vee}{_{\circ}} \beta = \stackrel{-}{_{\circ}} (\stackrel{-}{_{\circ}} \alpha \stackrel{-}{_{\circ}} \stackrel{-}{_{\circ}} \beta)$ is a fuzzy disjunction (dual to $\stackrel{\wedge}{_{\circ}}$ w.r.t. $\stackrel{-}{_{\circ}}$).

Conjunction - disjunction duality

A If \uparrow is a fuzzy conjunction, then $\alpha \lor \beta = \neg (\neg \alpha \land \neg \beta)$ is a fuzzy disjunction (dual to \land w.r.t. \neg).

B If $\overset{\circ}{\vee}$ is a fuzzy disjunction, then $\alpha \land \beta = \neg (\neg \alpha \overset{\circ}{\vee} \neg \beta)$ is a fuzzy conjunction (dual to $\overset{\circ}{\vee}$ w.r.t. \neg).

Conjunction - disjunction duality

A If $\stackrel{\wedge}{_{\circ}}$ is a fuzzy conjunction, then $\alpha \stackrel{\vee}{_{\circ}} \beta = \neg (\neg \alpha \stackrel{\wedge}{_{\circ}} \neg \beta)$ is a fuzzy disjunction (dual to $\stackrel{\wedge}{_{\circ}}$ w.r.t. \neg).

B If $\overset{\circ}{\vee}$ is a fuzzy disjunction, then $\alpha \land \beta = \neg (\neg \alpha \overset{\circ}{\vee} \neg \beta)$ is a fuzzy conjunction (dual to $\overset{\circ}{\vee}$ w.r.t. \neg).

Theorems

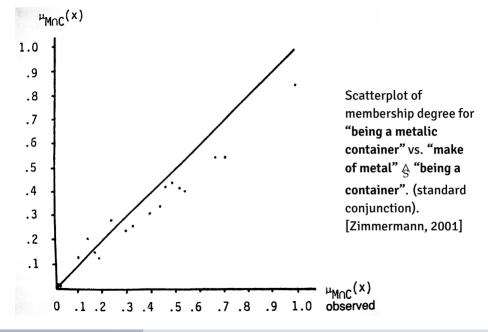
- Łukasiewicz operations \bigwedge , \bigvee are dual w.r.t. standard negation.
- Standard operations ${}_{\bigotimes}, {}^{\bigotimes}$ are dual w.r.t. any negation.
- Weak operations ${}_{\bigwedge}, {}^{\bigvee}$ are dual w.r.t. any negation.

138 / 144 Basic fuzzy

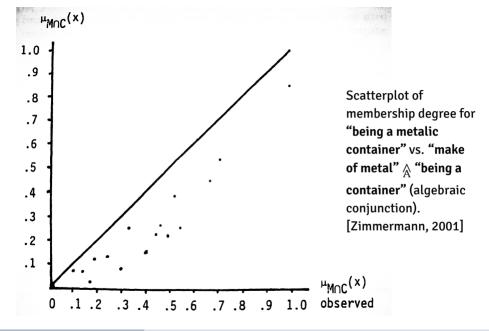
Stimulus x		$\mu_{\rm M}(x)$	$\mu_{\rm C}(x)$	$\mu_{M\cap C}(x)$
1.	bag	0.000	0.985	0.007
2.	baking tin	0.908	0.419	0.517
3.	ballpoint pen	0.215	0.149	0.170
4.	bathtub	0.552	0.804	0.674
5.	book wrapper	0.023	0.454	0.007
6.	car	0.501	0.437	0.493
7.	cash register	0.692	0.400	0.537
8.	container	0.847	1.000	1.000
9.	fridge	0.424	0.623	0.460
10.	Hollywood swing	0.318	0.212	0.142
11.	kerosene lamp	0.481	0.310	0.401
12.	nail	1.000	0.000	0.000
13.	parkometer	0.663	0.335	0.437
14.	pram	0.283	0.448	0.239
15.	press	0.130	0.512	0.101
16.	shovel	0.325	0.239	0.301
17.	silver spoon	0.969	0.256	0.330
18.	sledgehammer	0.480	0.012	0.023
19.	water bottle	0.564	0.961	0.714
20.	wine barrel	0.127	0.980	0.185

Table 16–2. Empirically determined grades of membership.

Degree of membership for 20 items into the sets **"make of metal"**, **"being a container"** and **"being a metalic container"**. [Zimmermann, 2001]



^{140/144} Basic fuzzy



Criteria for selecting operators (1)

- 1. Axiomatic strength: The set of valid theorems may differ based on the choice of t-norms and s-norms (see tutorials).
- 2. **Empirical fit:** Using fuzzy theory for a model of the real world, the chosen operator should match the real behavior of the system.
- 3. Adaptability: Operators in a generic system should be able to fit several use cases. One way of increasing adaptibility is to use operators with parameters (e.g. Yager and Sugeno negations).

Criteria for selecting operators (2)

- 4. **Computational efficiency:** Evaluating e.g. the standard negation is usually faster than the Yager negation, which contains the power.
- Aggregating behavior: When the operators combines a large number of operands, does the value tends to go to 0 (conjunction) or 1 (disjunction). The standard operators behave differently than the algebraic ones.

Bibliography

Domingos, P. and Lowd, D. (2009).

Markov Logic: An Interface Layer for Artificial Intelligence. Morgan & Claypool.

📄 Russell, B. (1923).

Vagueness.

In Australasian Journal of Psychology and Philosophy, page 84–92.

Wikipedia (2012).

Six degrees of separation — Wikipedia, the free encyclopedia. [Online; accessed 15-October-2012].

Zimmermann, H.-J. (2001).Fuzzy Set Theory and its Applications.

Springer.