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Description logics

<Ontology ontologyIRI="http://example.com/tea.owl" ...>
<Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>
<Declaration>
<Class IRI="Tea"/>

</Declaration>
</Ontology>

• A description logic is a decideable fragment of
first order logic (FOL).

+ Uses concepts, roles and individuals to capture
structured knowledge.

– An unexpected fact in the𝒜Boxmight lead to a
contradiction, which is a pain.
(See an example in a minute.)
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Graphical probabilistic models

(Photo by ICMA Photos

under the CC-BY-SA 2.0.)

• GPM is an efficient representation of large
probability distributions.

+ Captures uncertainty well.

+ Even unlikely events (tossing head 100 times in a
row) can be processed.

– Cannot formulate complex statements explicitly,
such as “Every object in the database has at least
one...”
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Example: Smoking friends (1)

To illustrate the limitations of DL and GPM, consider an example from
[Domingos and Lowd, 2009].

(Image: Matthew Romack
under the CC-BY-SA 2.0.)

Obervation 1: High-school experience.
People start or stop smoking in groups of friends.

Obervation 2: Six degrees of separation.
Everyone is on average approximately six steps away,
by way of introduction, from any other person in the
world, so that a chain of “a friend of a friend”
statements can be made, on average, to connect any
two people in six steps. [Wikipedia, 2012]
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Example: Smoking friends (2)

To formalize the example, let's use description logic𝒜ℒ𝒞 :

Obervation 1:
High-school experience.
If you have a friend, who is a smoker,
you are a smoker as well:

∃ 𝖿𝗋𝗂𝖾𝗇𝖽𝖮𝖿 ⋅ 𝖲𝗆𝗈𝗄𝖾𝗋 ⊑ 𝖲𝗆𝗈𝗄𝖾𝗋

Obervation 2: Six
degrees of separation.
Joining the 𝖿𝗋𝗂𝖾𝗇𝖽𝖮𝖿 relation 6 times
gives the top relation.

𝖿𝗋𝗂𝖾𝗇𝖽𝖮𝖿 ○ ...○ 𝖿𝗋𝗂𝖾𝗇𝖽𝖮𝖿 ⊑⊤

Note: You have to assume 𝖿𝗋𝗂𝖾𝗇𝖽𝖮𝖿 is reflexive.

What is wrong with this model?
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Example: Smoking friends (3)

• If there is one smoker, the whole world starts smoking. (Formally, an
interpretationℐ must satisfy 𝖲𝗆𝗈𝗄𝖾𝗋ℐ = ∅ or 𝖲𝗆𝗈𝗄𝖾𝗋ℐ = Δ.)

• We start from reasonable assumptions and arrive at counter-intuitive
conclusion. What's wrong with our reasoning?

• We would like to express something like

(∃ 𝖿𝗋𝗂𝖾𝗇𝖽𝖮𝖿 ⋅ 𝖲𝗆𝗈𝗄𝖾𝗋 ⊑ 𝖲𝗆𝗈𝗄𝖾𝗋) is “mostly” true.

• Fuzzy logic can do that!
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Conclusion

All traditional logic habitually assumes that
precise symbols are being employed. It is
therefore not applicable to this terrestrial
life but only to an imagined celestial
existence.

Bertrand Russel [Russell, 1923]
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Crisp sets: Definition

• (Informally:) A crisp set („ostrá mno�ina“) X is a collection of objects
x ∈ X that can be finite, countable or overcountable.

• We will speak about sets with in relation to a universe set („univerzum“).

• The universe is usually denoted asΔ.
• Letℙ(Δ) be the powerset (a set of all subsets) ofΔ (the universe). Then

any crisp set is an element in the powerset of its universe: A ∈ ℙ(Δ).
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Crisp sets: Example

Equivalent ways of describing a crisp set in IN:

A = {1, 3, 5} (1)

A = {x ∈ IN | x ≤ 5 and x is odd} (2)

𝜇A(x) =

⎧⎪⎪
⎨⎪⎪⎩

0 x > 5

0 x is even

1 otherwise

(3)

𝜇A is called themembership function („charakteristická funkce“, „funkce
příslušnosti“).
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Membership function

If 𝜇A is a functionΔ → {0, 1}, the inversemembership function 𝜇-1
A returns

objects with the given membership degree:

𝜇-1
A(M) = {x ∈ Δ | 𝜇A(x) ∈ M} (4)

Example

𝜇-1
A({1}) = {1, 3, 5} (5)

Note
𝜇-1
A is not an inverse in a strict mathematical sense. The inverse ofΔ → {0, 1}

should be {0, 1} → Δ, but 𝜇-1
A ∶ ℙ({0, 1}) → ℙ(Δ).
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Check your knowledge:

𝜇∅ = ?
𝜇Δ = ?

𝜇-1({0, 1}) = ?
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Check your knowledge:

𝜇∅ = 0

𝜇Δ = 1

𝜇-1({0, 1}) = Δ
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Fuzzy set

Definition
Fuzzy set („fuzzy mno�ina“) is an object A described by a generalized
membership function 𝜇A ∶ Δ → [0, 1].

For better readability, A(x) ≡ 𝜇A(x).

The set of all fuzzy subsets of a crisp universeΔ will be denoted as𝔽(Δ).
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Source: [Zimmermann, 2001]
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Fuzzy set: Properties (1)

• Cardinality is the size of a fuzzy set.

|A| = 
x∈

A(x) (6)

• Height of a fuzzy set is the highest value of the membership function.

Height(A) = sup {𝛼 | x ∈ Δ,A(x) = 𝛼} (7)
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Fuzzy set: Properties (2)

• Support („nosič“) is the set of objects contained in the fuzzy set “at least
a bit”.

Supp(A) = {x ∈ Δ | A(x) > 0} = 𝜇-1
A((0, 1]) (8)

• Core („jádro“) is the set of objects “fully contained” in the fuzzy set.

Core(A) = {x ∈ Δ | A(x) = 1} = 𝜇-1
A({1}) (9)
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Horizontal representation

The inverse membership fn. has the same def. in fuzzy and crisp world:

𝜇-1
A(M) = {x ∈ Δ | A(x) ∈ M} (10)

If |M| = 1, it defines the 𝛼-level („𝛼-hladina“) of a fuzzy set A (it is a crisp set).

The 𝛼-cut („𝛼-řez“) of a fuzzy set A is a crisp set

𝚁A(𝛼) = {x ∈ Δ | A(x) ≥ 𝛼} = 𝜇-1
A([𝛼, 1]) (11)

Sometimes we speak about a strong𝛼-cut („ostrý 𝛼-řez“), where≥ in the definition is
replaced by>.
For better readability A-1(x) ≡ 𝜇-1

A(x).

117 / 144 Basic fuzzy



Horizontal representation

The inverse membership fn. has the same def. in fuzzy and crisp world:

𝜇-1
A(M) = {x ∈ Δ | A(x) ∈ M} (10)

If |M| = 1, it defines the 𝛼-level („𝛼-hladina“) of a fuzzy set A (it is a crisp set).
The 𝛼-cut („𝛼-řez“) of a fuzzy set A is a crisp set

𝚁A(𝛼) = {x ∈ Δ | A(x) ≥ 𝛼} = 𝜇-1
A([𝛼, 1]) (11)

Sometimes we speak about a strong𝛼-cut („ostrý 𝛼-řez“), where≥ in the definition is
replaced by>.

For better readability A-1(x) ≡ 𝜇-1
A(x).

117 / 144 Basic fuzzy



Horizontal representation

The inverse membership fn. has the same def. in fuzzy and crisp world:

𝜇-1
A(M) = {x ∈ Δ | A(x) ∈ M} (10)

If |M| = 1, it defines the 𝛼-level („𝛼-hladina“) of a fuzzy set A (it is a crisp set).
The 𝛼-cut („𝛼-řez“) of a fuzzy set A is a crisp set

𝚁A(𝛼) = {x ∈ Δ | A(x) ≥ 𝛼} = 𝜇-1
A([𝛼, 1]) (11)

Sometimes we speak about a strong𝛼-cut („ostrý 𝛼-řez“), where≥ in the definition is
replaced by>.
For better readability A-1(x) ≡ 𝜇-1

A(x).

117 / 144 Basic fuzzy



= [0,28]
0.6-level = {40}

Support = [0,60]

0.6-cut = [0,40]

Core

The set “Age of Young
Men” with
its properties.
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Check your knowledge:

𝚁A(0) = ?
Core(A) = ?

Height(A) = sup {? | 𝚁A ?}
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Check your knowledge:

𝚁A(0) = Δ
Core(A) = 𝚁A(1)

Height(A) = sup {𝛼 ∈ [0, 1] | 𝚁A(𝛼) ≠ ∅}
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Converting vertical and horizontal representation

• Horizontal representation∼ the 𝛼-cuts 𝚁.
• Vertical representation∼ the characteristic function 𝜇.

1 ⇒ 2 : From the definition on the previous slide.

2 ⇒ 1 : By taking the “highest” 𝛼-level containing x:

A(x) = max{𝛼 ∈ [0, 1] | x ∈ 𝚁A(𝛼)} (12)
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Special cases of fuzzy sets

Definition
Fuzzy interval A is a fuzzy set onΔ = IR s.t.

• 𝚁A(𝛼) is a closed interval for all 𝛼 ∈ [0, 1]
• 𝚁A(1) is not empty.

• Supp(A) is finite (has a maximum and a minimum).

Special cases of fuzzy intervals

• Fuzzy number A is a fuzzy interval s.t. |Core(A)| = 1

• Trapezoidal interval will be denoted by ⟨a, b, c, d⟩.
• Triangular number will be denoted by ⟨a, b, c⟩ = ⟨a, b, b, c⟩.
• A crisp interval [a, b] is also ⟨a, a, b, b⟩.
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Operations on fuzzy sets

crisp set operation propositional operation
⋅ ∶ ℙ(Δ) → ℙ(Δ) ¬ ⋅ ∶ {0, 1} → {0, 1}
⋅ ∩ ⋅ ∶ ℙ(Δ) × ℙ(Δ) → ℙ(Δ) ⋅ ∧ ⋅ ∶ {0, 1}2 → {0, 1}
⋅ ∪ ⋅ ∶ ℙ(Δ) × ℙ(Δ) → ℙ(Δ) ⋅ ∨ ⋅ ∶ {0, 1}2 → {0, 1}

We can use the logical operators to define the set operators:

A = {x ∈ Δ | ¬(x ∈ A)} (LS1)

A ∩ B = {x ∈ Δ | (x ∈ A) ∧ (x ∈ B)} (LS2)

A ∪ B = {x ∈ Δ | (x ∈ A) ∨ (x ∈ B)} (LS3)

Therefore we will cover the logical negation, conjunction and disjunction. We
get the set operations “for free”.
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Therefore we will cover the logical negation, conjunction and disjunction. We
get the set operations “for free”.
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Fuzzy negation

Fuzzy negation is a non-increasing, involutive, unary function
¬∘ ∶ [0, 1] → [0, 1] s.t.

if 𝛼 ≤ 𝛽 then ¬∘ 𝛽 ≤ ¬∘ 𝛼 (N1)

¬∘ ¬∘ 𝛼 = 𝛼 (N2)

Example
Standard („standardní“), Łukasiewicz negation

¬
 𝛼 = 1 − 𝛼 (13)

The fuzzy set complement is a defined using (LS1).

123 / 144 Basic fuzzy



Fuzzy negation

Fuzzy negation is a non-increasing, involutive, unary function
¬∘ ∶ [0, 1] → [0, 1] s.t.

if 𝛼 ≤ 𝛽 then ¬∘ 𝛽 ≤ ¬∘ 𝛼 (N1)

¬∘ ¬∘ 𝛼 = 𝛼 (N2)

Example
Standard („standardní“), Łukasiewicz negation

¬
 𝛼 = 1 − 𝛼 (13)

The fuzzy set complement is a defined using (LS1).

123 / 144 Basic fuzzy



Fuzzy negation

Fuzzy negation is a non-increasing, involutive, unary function
¬∘ ∶ [0, 1] → [0, 1] s.t.

if 𝛼 ≤ 𝛽 then ¬∘ 𝛽 ≤ ¬∘ 𝛼 (N1)

¬∘ ¬∘ 𝛼 = 𝛼 (N2)

Example
Standard („standardní“), Łukasiewicz negation

¬
 𝛼 = 1 − 𝛼 (13)

The fuzzy set complement is a defined using (LS1).

123 / 144 Basic fuzzy



Fuzzy negation: More examples

• Cosine negation
¬
cos
𝛼 = (cos(𝜋𝛼) + 1)/2 (14)

• Sugeno negation

¬
S𝜆𝛼 =

1 − 𝛼
1 + 𝜆𝛼, 𝜆 > −1 (15)

• Yager negation
¬
Y𝜆𝛼 = (1 − 𝛼

𝜆)1/𝜆 (16)
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Fuzzy negation: Properties

The axioms (N1) and (N2) imply more properties of fuzzy negations:

Theorem 3
Every fuzzy negation¬∘ is a

• continuous

• decreasing

• bijective

• generalization of the propositional negation¬
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Fuzzy negation: Proof of 3

• Injective (f(a) = f(b) ⇒ a = b): Take 2 values, whose negations are

equal: ¬∘ 𝛼 = ¬∘ 𝛽. By (N2) 𝛼 = ¬∘
□
⏞¬∘ 𝛼. The□ can be substituted using

the assumption: ¬∘ ¬∘ 𝛼 = ¬∘ ¬∘ 𝛽. Using (N1) gives¬∘ ¬∘ 𝛽 = 𝛽. Therefore
𝛼 = 𝛽.

• Every non-increasing function (N1) which is injective, must be
decreasing. If 𝛼 < 𝛽WLOG, then¬∘ 𝛼 ≥ ¬∘ 𝛽. Then either¬∘ 𝛼 > ¬∘ 𝛽 and
¬∘ is decreasing, or¬∘ 𝛼 = ¬∘ 𝛽, which contradicts the injectivity.
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Fuzzy negation: Proof of 3

• Surjective ∀y∃x.f(x) = y: We seek a value of 𝛽 for each 𝛼 s.t. 𝛼 = ¬∘ 𝛽.
Using injectivity, the condition is equivalent to¬∘ 𝛼 = ¬∘ ¬∘ 𝛽. Using (N2),

we find the value of 𝛽 for any 𝛼: 𝛽 = ¬∘ 𝛼.

• Bijection is an injective and surjective function (by definition).

• Continuous: Every decreasing bijection is continuous.

• Boundary values: Let¬∘ 0 = 𝛼 and suppose that 𝛼 < 1. Then from

surjectivity, there must be some other 𝛽 > 0 s.t. ¬∘ 𝛽 = 1. This contracits

monotonicity, because¬∘ 0 < ¬∘ 𝛽. The other boundary value is proven
similarly.
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Fuzzy conjunctions (t-norms)

Fuzzy t-norm (triangluar norm, conjunction) is a binary, comutative,
operation∧∘ s.t.

𝛼 ∧∘ 𝛽 = 𝛽 ∧∘ 𝛼 (T1)

𝛼 ∧∘ (𝛽 ∧∘ 𝛾) = (𝛼 ∧∘ 𝛽) ∧∘ 𝛾 (T2)

if 𝛽 ≤ 𝛾 then (𝛼 ∧∘ 𝛽) ≤ (𝛼 ∧∘ 𝛾) (T3)

(𝛼 ∧∘ 1) = 𝛼 (T4)

The fuzzy set intersection is a defined using (LS2).

128 / 144 Basic fuzzy



Fuzzy conjunctions (t-norms)

Fuzzy t-norm (triangluar norm, conjunction) is a binary, comutative,
operation∧∘ s.t.

𝛼 ∧∘ 𝛽 = 𝛽 ∧∘ 𝛼 (T1)

𝛼 ∧∘ (𝛽 ∧∘ 𝛾) = (𝛼 ∧∘ 𝛽) ∧∘ 𝛾 (T2)

if 𝛽 ≤ 𝛾 then (𝛼 ∧∘ 𝛽) ≤ (𝛼 ∧∘ 𝛾) (T3)

(𝛼 ∧∘ 1) = 𝛼 (T4)

The fuzzy set intersection is a defined using (LS2).

128 / 144 Basic fuzzy



Fuzzy conjunctions: Examples

• Standard (Gödel, Zadeh)

𝛼 ∧ 𝛽 = min (𝛼, 𝛽) (17)

• Łukasiewicz
𝛼 ∧ 𝛽 = max (𝛼 + 𝛽 − 1, 0) (18)

• Algebraic product („součinová“)

𝛼 ∧ 𝛽 = 𝛼 ⋅ 𝛽 (19)

• Weak („drastická“)

𝛼 ∧ 𝛽 =

⎧⎪⎪
⎨⎪⎪⎩

𝛼 if 𝛽 = 1

𝛽 if 𝛼 = 1

0 otherwise

(20)
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Fuzzy conjunctions: Visualization [Wikipedia]

Standard

Łukasiewicz

Algebraic

Drastic
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Fuzzy conjunctions: Properties (1)

Theorem 4
The weak and standard conjunctions provide a lower and upper bound on all
possible conjunctions:

(𝛼 ∧ 𝛽) ≤ (𝛼 ∧∘ 𝛽) ≤ (𝛼 ∧ 𝛽) (21)

Proof: Assume WLOG 𝛼 ≤ 𝛽.
𝛽 = 1 The condition (T4) gives the same result for all conjunctions.

𝛽 < 1 𝛼 ∧ 𝛽 = 0, which gives the lower bound. The upper bound is rewritten

using the definition of standard conjunction (17): 𝛼 ∧ 𝛽 = 𝛼. From (T4)

follows that 𝛼 = 𝛼 ∧∘ 1 ≥ 𝛼 ∧∘ 𝛽. Together 𝛼 ∧ 𝛽 = 𝛼 ≥ 𝛼 ∧∘ 𝛽.

131 / 144 Basic fuzzy



Fuzzy conjunctions: Properties (2)

Theorem 5
The standard conjunction is the only idempotent conjunction:

𝛼 ∧∘ 𝛼 = 𝛼 (22)

Proof: Assume WLOG 𝛼 ≤ 𝛽.

𝛼=𝛼 ∧∘ 𝛼
(T3)
≤ 𝛼 ∧∘ 𝛽

(T3)
≤ 𝛼 ∧∘ 1

(T4)= 𝛼 (23)

Therefore 𝛼 ∧∘ 𝛽 = 𝛼. There is only one such conjunction: ∧ .
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Fuzzy disjunctions (s-norm)

Fuzzy s-norm (t-conorm, disjunction) is a binary operation
∘∨ s.t.

𝛼 ∘∨ 𝛽 = 𝛽 ∘∨ 𝛼 (S1)

𝛼 ∘∨ (𝛽 ∘∨ 𝛾) = (𝛼 ∘∨ 𝛽) ∘∨ 𝛾 (S2)

if 𝛽 ≤ 𝛾 then (𝛼 ∘∨ 𝛽) ≤ (𝛼 ∘∨ 𝛾) (S3)

(𝛼 ∘∨ 0) = 𝛼 (S4)

Union
The fuzzy set union is a defined using the disjunction:

𝜇A∪B(x) = 𝜇A(x)
∘∨ 𝜇B(x) (24)
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Fuzzy disjunctions: Examples (1)

• Standard (Gödel, Zadeh)

𝛼 ∨ 𝛽 = max(𝛼, 𝛽) (25)

• Łukasiewicz
𝛼 ∨ 𝛽 = min(𝛼 + 𝛽, 1) (26)

• Algebraic sum („součinová“)

𝛼 ∨ 𝛽 = 𝛼 + 𝛽 − 𝛼 ⋅ 𝛽 (27)
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Fuzzy disjunctions: Examples (2)

• Weak („drastická“)

𝛼 ∨ 𝛽 =

⎧⎪⎪
⎨⎪⎪⎩

𝛼 if 𝛽 = 0

𝛽 if 𝛼 = 0

1 otherwise

(28)

• Einstein

𝛼 ∨ 𝛽 = 𝛼 + 𝛽
1 + 𝛼𝛽 (29)
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Fuzzy disjunctions: Visualization [Wikipedia]

Standard

Łukasiewicz

Algebraic

Drastic
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Fuzzy disjunctions: Properties

• The standard and weak disjunctions provide a lower and upper bound on
all possible conjunctions:

(𝛼 ∨ 𝛽) ≤ (𝛼 ∘∨ 𝛽) ≤ (𝛼 ∨ 𝛽) (30)

• The standard disjunctions is the only idempotent conjunction:

𝛼 ∘∨ 𝛼 = 𝛼 (31)
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Conjunction - disjunction duality

A If∧∘ is a fuzzy conjunction, then 𝛼 ∘∨ 𝛽 = ¬∘ (¬∘ 𝛼 ∧∘ ¬∘ 𝛽) is a fuzzy
disjunction (dual to∧∘ w.r.t. ¬∘ ).

B If
∘∨ is a fuzzy disjunction, then 𝛼 ∧∘ 𝛽 = ¬∘ (¬∘ 𝛼

∘∨ ¬∘ 𝛽) is a fuzzy

conjunction (dual to
∘∨ w.r.t. ¬∘ ).

Theorems

• Łukasiewicz operations∧ ,
∨ are dual w.r.t. standard negation.

• Algebraic operations∧,
∨ are dual w.r.t. standard negation.

• Standard operations∧ ,
∨ are dual w.r.t. any negation.

• Weak operations ∧,∨ are dual w.r.t. any negation.

138 / 144 Basic fuzzy



Conjunction - disjunction duality

A If∧∘ is a fuzzy conjunction, then 𝛼 ∘∨ 𝛽 = ¬∘ (¬∘ 𝛼 ∧∘ ¬∘ 𝛽) is a fuzzy
disjunction (dual to∧∘ w.r.t. ¬∘ ).

B If
∘∨ is a fuzzy disjunction, then 𝛼 ∧∘ 𝛽 = ¬∘ (¬∘ 𝛼

∘∨ ¬∘ 𝛽) is a fuzzy

conjunction (dual to
∘∨ w.r.t. ¬∘ ).

Theorems

• Łukasiewicz operations∧ ,
∨ are dual w.r.t. standard negation.

• Algebraic operations∧,
∨ are dual w.r.t. standard negation.

• Standard operations∧ ,
∨ are dual w.r.t. any negation.

• Weak operations ∧,∨ are dual w.r.t. any negation.

138 / 144 Basic fuzzy



Conjunction - disjunction duality

A If∧∘ is a fuzzy conjunction, then 𝛼 ∘∨ 𝛽 = ¬∘ (¬∘ 𝛼 ∧∘ ¬∘ 𝛽) is a fuzzy
disjunction (dual to∧∘ w.r.t. ¬∘ ).

B If
∘∨ is a fuzzy disjunction, then 𝛼 ∧∘ 𝛽 = ¬∘ (¬∘ 𝛼

∘∨ ¬∘ 𝛽) is a fuzzy

conjunction (dual to
∘∨ w.r.t. ¬∘ ).

Theorems

• Łukasiewicz operations∧ ,
∨ are dual w.r.t. standard negation.

• Algebraic operations∧,
∨ are dual w.r.t. standard negation.

• Standard operations∧ ,
∨ are dual w.r.t. any negation.

• Weak operations ∧,∨ are dual w.r.t. any negation.

138 / 144 Basic fuzzy



Degree of membership
for 20 items into the
sets “make of metal”,
“being a container”
and “being a metalic
container”.
[Zimmermann, 2001]
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Scatterplot of
membership degree for
“being a metalic
container” vs. “make
of metal”∧ “being a

container”. (standard
conjunction).
[Zimmermann, 2001]
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Scatterplot of
membership degree for
“being a metalic
container” vs. “make
of metal”∧ “being a

container” (algebraic
conjunction).
[Zimmermann, 2001]
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Criteria for selecting operators (1)

1. Axiomatic strength: The set of valid theorems may differ based on the
choice of t-norms and s-norms (see tutorials).

2. Empirical fit: Using fuzzy theory for a model of the real world, the
chosen operator should match the real behavior of the system.

3. Adaptability: Operators in a generic system should be able to fit several
use cases. One way of increasing adaptibility is to use operators with
parameters (e.g. Yager and Sugeno negations).
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Criteria for selecting operators (2)

4. Computational efficiency: Evaluating e.g. the standard negation is
usually faster than the Yager negation, which contains the power.

5. Aggregating behavior: When the operators combines a large number of
operands, does the value tends to go to 0 (conjunction) or 1 (disjunction).
The standard operators behave differently than the algebraic ones.
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