AE4M33RZN, Fuzzy logic: **Introduction, Fuzzy operators**

Radomír Černoch

radomir.cernoch@fel.cvut.cz

21/10/2013

Faculty of Electrical Engineering, CTU in Prague

Plan of the lecture

Introduction

AMKR course so far

Criticism of both approaches

Basic definitions

Crisp sets

Vertical representation

Horizontal representation

Special cases of fuzzy sets

Operations on fuzzy sets

Negation

Conjunction

Disjunction

Conjunction - disjunction duality

Criteria for selecting operators

Biblopgraphy

2/44

Description logics

 A description logic is a decideable fragment of first order logic (FOL).

Description logics

- A description logic is a decideable fragment of first order logic (FOL).
- + Uses concepts, roles and individuals to capture structured knowledge.

Description logics

- A description logic is a decideable fragment of first order logic (FOL).
- + Uses concepts, roles and individuals to capture structured knowledge.
- An unexpected fact in the ABox might lead to a contradiction, which is a pain.
 (See an example in a minute.)

 GPM is an efficient representation of large probability distributions.

- GPM is an efficient representation of large probability distributions.
- + Captures uncertainty well.

- · GPM is an efficient representation of large probability distributions.
- Captures uncertainty well.
- Even unlikely events (tossing head 100 times in a row) can be processed.

- GPM is an efficient representation of large probability distributions.
- + Captures uncertainty well.
- Even unlikely events (tossing head 100 times in a row) can be processed.
- Cannot formulate complex statements explicitly, such as "Every object in the database has at least one..."

To illustrate the limitations of DL and GPM, consider an example from [Domingos and Lowd, 2009].

(Image: Matthew Romack under the CC-BY-SA 2.0.)

To illustrate the limitations of DL and GPM, consider an example from [Domingos and Lowd, 2009].

(Image: Matthew Romack under the CC-BY-SA 2.0.)

Obervation 1: High-school experience.

People start or stop smoking in groups of friends.

To illustrate the limitations of DL and GPM, consider an example from [Domingos and Lowd, 2009].

(Image: Matthew Romack under the CC-BY-SA 2.0.)

Obervation 1: High-school experience.

People start or stop smoking in groups of friends.

Obervation 2: Six degrees of separation.

Everyone is on average approximately six steps away, by way of introduction, from any other person in the world, so that a chain of "a friend of a friend" statements can be made, on average, to connect any two people in six steps. [Wikipedia, 2012]

To formalize the example, let's use description logic \mathscr{ALE} :

To formalize the example, let's use description logic \mathscr{ALE} :

Obervation 1:

High-school experience.

If you have a friend, who is a smoker, you are a smoker as well:

∃friendOf · Smoker ⊑ Smoker

To formalize the example, let's use description logic \mathscr{ALE} :

Obervation 1: High-school experience.

If you have a friend, who is a smoker, you are a smoker as well:

∃friendOf · Smoker ⊑ Smoker

Obervation 2: Six degrees of separation.

Joining the friendOf relation 6 times gives the *top relation*.

 $friendOf \bigcirc ... \bigcirc friendOf \sqsubseteq \top$

Note: You have to assume friendOf is reflexive.

To formalize the example, let's use description logic \mathscr{ALC} :

Obervation 1:

High-school experience.

If you have a friend, who is a smoker, you are a smoker as well:

∃friendOf · Smoker ⊑ Smoker

Obervation 2: Six degrees of separation.

Joining the friendOf relation 6 times gives the *top relation*.

 $friendOf \bigcirc ... \bigcirc friendOf \sqsubseteq \top$

Note: You have to assume friendOf is reflexive.

What is wrong with this model?

• If there is one smoker, the whole world starts smoking. (Formally, an interpretation $\mathscr I$ must satisfy $\mathsf{Smoker}^{\mathscr I}=\varnothing$ or $\mathsf{Smoker}^{\mathscr I}=\Delta$.)

- If there is one smoker, the whole world starts smoking. (Formally, an interpretation \mathscr{I} must satisfy $\mathsf{Smoker}^{\mathscr{I}} = \varnothing$ or $\mathsf{Smoker}^{\mathscr{I}} = \Delta$.)
- We start from reasonable assumptions and arrive at counter-intuitive conclusion. What's wrong with our reasoning?

- If there is one smoker, the whole world starts smoking. (Formally, an interpretation \mathscr{I} must satisfy $\mathsf{Smoker}^{\mathscr{I}} = \varnothing$ or $\mathsf{Smoker}^{\mathscr{I}} = \Delta$.)
- We start from reasonable assumptions and arrive at counter-intuitive conclusion. What's wrong with our reasoning?
- We would like to express something like
 (∃friendOf · Smoker

 Smoker) is "mostly" true.
- Fuzzy logic can do that!

Conclusion

All traditional logic habitually assumes that precise symbols are being employed. It is therefore not applicable to this terrestrial life but only to an imagined celestial existence.

Bertrand Russel [Russell, 1923]

Crisp sets: Definition

• (Informally:) A crisp set ("ostrá množina") X is a collection of objects $x \in X$ that can be finite, countable or overcountable.

Crisp sets: Definition

- (Informally:) A crisp set ("ostrá množina") X is a collection of objects $x \in X$ that can be finite, countable or overcountable.
- We will speak about sets with in relation to a universe set ("univerzum").
- The universe is usually denoted as Δ .

Crisp sets: Definition

- (Informally:) A crisp set ("ostrá množina") X is a collection of objects $x \in X$ that can be finite, countable or overcountable.
- We will speak about sets with in relation to a universe set ("univerzum").
- The universe is usually denoted as Δ .
- Let $\mathbb{P}(\Delta)$ be the *powerset* (a set of all subsets) of Δ (the universe). Then any crisp set is an element in the powerset of its universe: $A \in \mathbb{P}(\Delta)$.

Crisp sets: Example

Equivalent ways of describing a *crisp set* in \mathbb{N} :

$$A = \{1, 3, 5\} \tag{1}$$

$$A = \{x \in \mathbb{N} \mid x \le 5 \text{ and } x \text{ is odd}\}$$
 (2)

Crisp sets: Example

Equivalent ways of describing a *crisp set* in \mathbb{N} :

$$A = \{1, 3, 5\} \tag{1}$$

$$A = \{x \in \mathbb{N} \mid x \le 5 \text{ and } x \text{ is odd}\}$$
 (2)

$$\mu_{A}(x) = \begin{cases} o & x > 5 \\ o & x \text{ is even} \\ 1 & \text{otherwise} \end{cases}$$
 (3)

 $\mu_{\rm A}$ is called the *membership function* ("charakteristická funkce", "funkce příslušnosti").

Membership function

If μ_A is a function $\Delta \to \{0,1\}$, the inverse membership function μ_A^{-1} returns objects with the given membership degree:

$$\mu_A^{-1}(\mathbf{M}) = \{ \mathbf{x} \in \Delta \mid \mu_A(\mathbf{x}) \in \mathbf{M} \}$$
 (4)

Membership function

If μ_A is a function $\Delta \to \{ {\tt o,1} \}$, the *inverse membership function* $\mu_A^{\tt -1}$ returns objects with the given membership degree:

$$\mu_A^{-1}(\mathbf{M}) = \{ \mathbf{x} \in \Delta \mid \mu_A(\mathbf{x}) \in \mathbf{M} \}$$
 (4)

Example

$$\mu_A^{-1}(\{1\}) = \{1, 3, 5\}$$
(5)

Membership function

If μ_A is a function $\Delta \to \{ {\tt o,1} \}$, the *inverse membership function* $\mu_A^{\tt l}$ returns objects with the given membership degree:

$$\mu_A^{-1}(\mathbf{M}) = \{ \mathbf{x} \in \Delta \mid \mu_A(\mathbf{x}) \in \mathbf{M} \}$$
 (4)

Example

$$\mu_A^{-1}(\{1\}) = \{1, 3, 5\}$$
(5)

Note

 $\mu_A^{\mathbf{1}}$ is not an inverse in a strict mathematical sense. The inverse of $\Delta \to \{\mathbf{0},\mathbf{1}\}$ should be $\{\mathbf{0},\mathbf{1}\}\to\Delta$, but $\mu_A^{\mathbf{1}}:\mathbb{P}(\{\mathbf{0},\mathbf{1}\})\to\mathbb{P}(\Delta)$.

Check your knowledge:

$$\mu_{\varnothing} = ?$$

$$\mu_{\Delta} = ?$$

$$\mu^{-1}(\{\mathbf{0}, \mathbf{1}\}) = ?$$

Check your knowledge:

$$\mu_{\varnothing} = \mathbf{o}$$
 $\mu_{\Delta} = \mathbf{1}$
 $\mu^{-1}(\{\mathbf{o}, \mathbf{1}\}) = \Delta$

Fuzzy set

Definition

Fuzzy set ("fuzzy množina") is an object A described by a generalized membership function $\mu_A:\Delta\to [{\tt o,1}].$

Fuzzy set

Definition

Fuzzy set ("fuzzy množina") is an object A described by a generalized membership function $\mu_A: \Delta \to [0,1]$.

For better readability, $A(x) \equiv \mu_A(x)$.

Fuzzy set

Definition

Fuzzy set ("fuzzy množina") is an object A described by a generalized membership function $\mu_A: \Delta \to [0,1]$.

For better readability, $A(x) \equiv \mu_A(x)$.

The set of all fuzzy subsets of a crisp universe Δ will be denoted as $\mathbb{F}(\Delta)$.

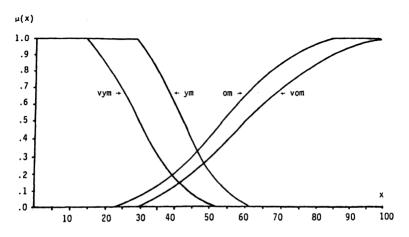


Figure 16–8. Empirical membership functions "Very Young Man," "Young Man," "Old Man," "Very Old Man."

Source: [Zimmermann, 2001]

Fuzzy set: Properties (1)

· Cardinality is the size of a fuzzy set.

$$|A| = \sum_{\mathbf{x} \in \Delta} A(\mathbf{x}) \tag{6}$$

Fuzzy set: Properties (1)

· Cardinality is the size of a fuzzy set.

$$|A| = \sum_{x \in \Delta} A(x) \tag{6}$$

• Height of a fuzzy set is the highest value of the membership function.

$$Height(A) = \sup \{ \alpha \mid x \in \Delta, A(x) = \alpha \}$$
 (7)

Fuzzy set: Properties (2)

 Support ("nosič") is the set of objects contained in the fuzzy set "at least a bit".

Supp(A) =
$$\{x \in \Delta \mid A(x) > o\} = \mu_A^{-1}((o, 1])$$
 (8)

Fuzzy set: Properties (2)

 Support ("nosič") is the set of objects contained in the fuzzy set "at least a bit".

Supp(A) =
$$\{x \in \Delta \mid A(x) > o\} = \mu_A^{-1}((o, 1])$$
 (8)

• Core ("jádro") is the set of objects "fully contained" in the fuzzy set.

Core(A) =
$$\{x \in \Delta \mid A(x) = 1\} = \mu_A^{-1}(\{1\})$$
 (9)

Horizontal representation

The α -level (" α -hladina") of a fuzzy set A is a crisp set

$$\mu_A^{-1}(\mathbf{M}) = \{ x \in \Delta \mid A(x) \in \mathbf{M} \}$$
 (10)

Horizontal representation

The α -level (" α -hladina") of a fuzzy set A is a crisp set

$$\mu_A^{-1}(\mathbf{M}) = \{ \mathbf{x} \in \Delta \mid A(\mathbf{x}) \in \mathbf{M} \}$$
 (10)

The α -cut (" α -řez") of a fuzzy set A is a crisp set

$$R_{\mathbf{A}}(\alpha) = \{ x \in \Delta \mid \mathbf{A}(x) \geqslant \alpha \} = \mu_{\mathbf{A}}^{-1}([\alpha, 1])$$
(11)

Sometimes we speak about a *strong* α -cut ("ostrý α -řez"), where \geqslant in the definition is replaced by >.

Horizontal representation

The α -level (" α -hladina") of a fuzzy set A is a crisp set

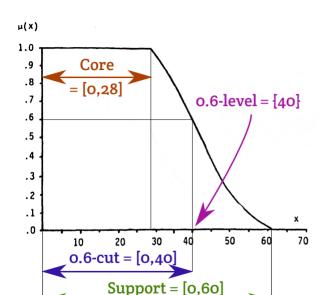
$$\mu_A^{-1}(M) = \{ x \in \Delta \mid A(x) \in M \}$$
 (10)

The α -cut (" α -řez") of a fuzzy set A is a crisp set

$$R_{\mathbf{A}}(\alpha) = \{ x \in \Delta \mid \mathbf{A}(x) \geqslant \alpha \} = \mu_{\mathbf{A}}^{-1}([\alpha, 1])$$
(11)

Sometimes we speak about a *strong* α -cut ("ostrý α -řez"), where \geqslant in the definition is replaced by >.

For better readability $A^{-1}(x) \equiv \mu_A^{-1}(x)$.



The set "Age of Young Men" with its properties.

Check your knowledge:

$$R_A(o) = ?$$
 $Core(A) = ?$
 $Height(A) = \sup \{? \mid R_A ?\}$

Check your knowledge:

$$\begin{split} & \mathbf{R}_A(\mathbf{o}) = \Delta \\ & \mathrm{Core}(A) = \mathbf{R}_A(\mathbf{i}) \\ & \mathrm{Height}(A) = \sup \left\{ \alpha \in [\mathbf{o}, \mathbf{i}] \mid \mathbf{R}_A(\alpha) \neq \varnothing \right\} \end{split}$$

Converting vertical and horizontal representation

- Horizontal representation \sim the α -cuts R.
- Vertical representation \sim the characteristic function μ .
- $1 \Rightarrow 2$: From the definition on the previous slide.
- $2 \Rightarrow 1$: By taking the "highest" α -level containing x:

$$A(x) = \max\{\alpha \in [0,1] \mid x \in \mathbb{R}_A(\alpha)\}$$
 (12)

Special cases of fuzzy sets

Definition

Fuzzy interval A is a fuzzy set on $\Delta = \mathbb{R}$ s.t.

- $R_A(\alpha)$ is a closed interval for all $\alpha \in [0,1]$
- $R_A(1)$ is not empty.
- |Supp(A)| is finite (has a maximum and a minimum).

Special cases of fuzzy intervals

- Fuzzy number A is a fuzzy interval s.t. |Core(A)| = 1
- Trapezoidal interval will be denoted by $\langle a, b, c, d \rangle$.
- Triangular number will be denoted by $\langle a, b, c \rangle = \langle a, b, b, c \rangle$.
- A crisp interval [a, b] is also $\langle a, a, b, b \rangle$.

Operations on fuzzy sets

crisp set operation	propositional operation
$\overline{\cdot}: \mathbb{P}(\Delta) \to \mathbb{P}(\Delta)$	$\neg \cdot : \{o, i\} \to \{o, i\}$
$\cdot \cap \cdot : \mathbb{P}(\Delta) \times \mathbb{P}(\Delta) \to \mathbb{P}(\Delta)$	$\cdot \wedge \cdot : \{0,1\}^2 \to \{0,1\}$
$ \cdot \cap \cdot : \mathbb{P}(\Delta) \times \mathbb{P}(\Delta) \to \mathbb{P}(\Delta) $ $ \cdot \cup \cdot : \mathbb{P}(\Delta) \times \mathbb{P}(\Delta) \to \mathbb{P}(\Delta) $	$\cdot \vee \cdot : \{0,1\}^2 \to \{0,1\}$

Operations on fuzzy sets

crisp set operation	propositional operation
$\overline{\cdot}: \mathbb{P}(\Delta) \to \mathbb{P}(\Delta)$	$\neg \cdot : \{o, i\} \to \{o, i\}$
$\cdot \cap \cdot : \mathbb{P}(\Delta) \times \mathbb{P}(\Delta) \to \mathbb{P}(\Delta)$	$\cdot \wedge \cdot : \{0,1\}^2 \to \{0,1\}$
$\cdot \cup \cdot : \mathbb{P}(\Delta) \times \mathbb{P}(\Delta) \to \mathbb{P}(\Delta)$	$\cdot \vee \cdot : \{0,1\}^2 \to \{0,1\}$

We can use the **logical operators** to define the **set operators**:

$$\overline{A} = \{ x \in \Delta \mid \neg (x \in A) \}$$
 (LS1)

$$A \cap B = \{x \in \Delta \mid (x \in A) \land (x \in B)\}$$
 (LS2)

$$A \cup B = \{x \in \Delta \mid (x \in A) \lor (x \in B)\}$$
 (LS3)

Therefore we will cover the logical negation, conjunction and disjunction. We get the set operations "for free".

Fuzzy negation

Fuzzy negation is a non-increasing, involutive, unary function $\neg: [0,1] \rightarrow [0,1]$ s.t.

if
$$\alpha \le \beta$$
 then $\neg \beta \le \neg \alpha$ (N1)

Fuzzy negation

Fuzzy negation is a non-increasing, involutive, unary function $\neg: [0,1] \rightarrow [0,1]$ s.t.

if
$$\alpha \le \beta$$
 then $\neg \beta \le \neg \alpha$ (N1)

Example

Standard ("standardní"), Łukasiewicz negation

$$\frac{1}{S}\alpha = 1 - \alpha \tag{13}$$

Fuzzy negation

Fuzzy negation is a non-increasing, involutive, unary function $\neg: [0,1] \rightarrow [0,1]$ s.t.

if
$$\alpha \le \beta$$
 then $\neg \beta \le \neg \alpha$ (N1)

Example

Standard ("standardní"), Łukasiewicz negation

$$\frac{1}{S}\alpha = 1 - \alpha \tag{13}$$

The fuzzy set complement is a defined using (LS1).

Fuzzy negation: More examples

· Cosine negation

$$\underset{\cos}{\neg} \alpha = (\cos(\pi\alpha) + 1)/2 \tag{14}$$

· Sugeno negation

$$_{S\lambda}^{-}\alpha = \frac{1-\alpha}{1+\lambda\alpha}, \ \lambda > -1$$
 (15)

· Yager negation

$$_{Y\lambda}^{\neg} \alpha = (\mathbf{1} - \alpha^{\lambda})^{\mathbf{1}/\lambda}$$
 (16)

Fuzzy negation: Properties

The axioms (N1) and (N2) imply more properties of fuzzy negations:

Theorem 25

Every fuzzy negation \neg is a

- continuous
- decreasing
- bijective
- generalization of the propositional negation \neg

Fuzzy negation: Proof of 25

- Injective $(f(a) = f(b) \Rightarrow a = b)$: Take 2 values, whose negations are equal: $\neg \alpha = \neg \beta$. By (N2) $\alpha = \neg \overline{\alpha}$. The \square can be substituted using the assumption: $\neg \neg \alpha = \neg \beta$. Using (N1) gives $\neg \neg \beta = \beta$. Therefore $\alpha = \beta$.
- Every non-increasing function (N1) which is injective, must be decreasing. If $\alpha < \beta$ WLOG, then $\neg \alpha \geqslant \neg \beta$. Then either $\neg \alpha > \neg \beta$ and \neg is decreasing, or $\neg \alpha = \neg \beta$, which contradicts the injectivity.

Fuzzy negation: Proof of 25

- Surjective $\forall y \exists x. f(x) = y$: We seek a value of β for each α s.t. $\alpha = \neg \beta$. Using injectivity, the condition is equivalent to $\neg \alpha = \neg \beta$. Using (N2), we find the value of β for any α : $\beta = \neg \alpha$.
- Bijection is an injective and surjective function (by definition).
- Continuous: Every decreasing bijection is continuous.
- Boundary values: Let $\neg o = \alpha$ and suppose that $\alpha < 1$. Then from surjectivity, there must be some other $\beta > o$ s.t. $\neg \beta = 1$. This contracits monotonicity, because $\neg o < \neg \beta$. The other boundary value is proven similarly.

Fuzzy conjunctions (t-norms)

Fuzzy t-norm (triangluar norm, conjunction) is a binary, comutative, operation \land s.t.

$$\alpha \wedge \beta = \beta \wedge \alpha \tag{T1}$$

$$\alpha \wedge (\beta \wedge \gamma) = (\alpha \wedge \beta) \wedge \gamma \tag{T2}$$

if
$$\beta \leqslant \gamma$$
 then $(\alpha \land \beta) \leqslant (\alpha \land \gamma)$ (T3)

$$(\alpha \wedge 1) = \alpha \tag{T4}$$

Fuzzy conjunctions (t-norms)

Fuzzy t-norm (triangluar norm, conjunction) is a binary, comutative, operation \land s.t.

$$\alpha \wedge \beta = \beta \wedge \alpha \tag{T1}$$

$$\alpha \wedge (\beta \wedge \gamma) = (\alpha \wedge \beta) \wedge \gamma \tag{T2}$$

if
$$\beta \leqslant \gamma$$
 then $(\alpha \land \beta) \leqslant (\alpha \land \gamma)$ (T3)

$$(\alpha \wedge \mathbf{1}) = \alpha \tag{T4}$$

The fuzzy set intersection is a defined using (LS2).

Fuzzy conjunctions: Examples

Standard (Gödel, Zadeh)

$$\alpha \wedge \beta = \min(\alpha, \beta) \tag{17}$$

Łukasiewicz

$$\alpha \wedge \beta = \max (\alpha + \beta - 1, 0)$$
 (18)

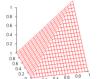
Algebraic product ("součinová")

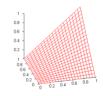
$$\alpha \wedge \beta = \alpha \cdot \beta \tag{19}$$

Weak ("drastická")

$$\alpha \bigwedge_{W} \beta = \begin{cases} \alpha & \text{if } \beta = 1\\ \beta & \text{if } \alpha = 1\\ \text{o otherwise} \end{cases}$$
 (20)

Fuzzy conjunctions: Visualization [Wikipedia]





Standard

Algebraic

Łukasiewicz

Drastic

Fuzzy conjunctions: Properties (1)

Theorem 31

The weak and standard conjunctions provide a lower and upper bound on all possible conjunctions:

$$(\alpha \underset{\mathsf{W}}{\wedge} \beta) \leqslant (\alpha \underset{\circ}{\wedge} \beta) \leqslant (\alpha \underset{\mathsf{S}}{\wedge} \beta) \tag{21}$$

Proof: Assume WLOG $\alpha \leq \beta$.

 $\beta = 1$ The condition (T4) gives the same result for all conjunctions.

 $\beta < 1$ $\alpha \wedge \beta = 0$, which gives the lower bound. The upper bound is rewritten using the definition of standard conjunction (17): $\alpha \wedge \beta = \alpha$. From (T4) follows that $\alpha = \alpha \land 1 \ge \alpha \land \beta$. Together $\alpha \land \beta = \alpha \ge \alpha \land \beta$.

Fuzzy conjunctions: Properties (2)

Theorem 32

The standard conjunction is the only *idempotent* conjunction:

$$\alpha \wedge \alpha = \alpha$$
 (22)

Proof: Assume WLOG $\alpha \leq \beta$.

$$\alpha = \alpha \wedge \alpha \stackrel{(T_3)}{\leqslant} \alpha \wedge \beta \stackrel{(T_3)}{\leqslant} \alpha \wedge 1 \stackrel{(T_4)}{=} \alpha$$
 (23)

Therefore $\alpha \wedge \beta = \alpha$. There is only one such conjunction: δ .

Fuzzy disjunctions (s-norm)

Fuzzy s-norm (t-conorm, disjunction) is a binary operation \vee s.t.

$$\alpha \stackrel{\circ}{\vee} \beta = \beta \stackrel{\circ}{\vee} \alpha \tag{S1}$$

$$\alpha \stackrel{\circ}{\vee} (\beta \stackrel{\circ}{\vee} \gamma) = (\alpha \stackrel{\circ}{\vee} \beta) \stackrel{\circ}{\vee} \gamma \tag{S2}$$

if
$$\beta \leqslant \gamma$$
 then $(\alpha \overset{\circ}{\vee} \beta) \leqslant (\alpha \overset{\circ}{\vee} \gamma)$ (S3)

$$(\alpha \stackrel{\circ}{\vee} \mathbf{o}) = \alpha$$
 (S4)

Fuzzy disjunctions (s-norm)

Fuzzy s-norm (t-conorm, disjunction) is a binary operation $\check{\vee}$ s.t.

$$\alpha \stackrel{\circ}{\vee} \beta = \beta \stackrel{\circ}{\vee} \alpha \tag{S1}$$

$$\alpha \stackrel{\circ}{\vee} (\beta \stackrel{\circ}{\vee} \gamma) = (\alpha \stackrel{\circ}{\vee} \beta) \stackrel{\circ}{\vee} \gamma \tag{S2}$$

if
$$\beta \leqslant \gamma$$
 then $(\alpha \overset{\circ}{\vee} \beta) \leqslant (\alpha \overset{\circ}{\vee} \gamma)$ (S3)

$$(\alpha \stackrel{\circ}{\vee} \mathbf{o}) = \alpha$$
 (S4)

Union

The fuzzy set union is a defined using the disjunction:

$$\mu_{A\cup B}(x) = \mu_A(x) \stackrel{\circ}{\vee} \mu_B(x) \tag{24}$$

Fuzzy disjunctions: Examples (1)

• Standard (Gödel, Zadeh)

$$\alpha \stackrel{S}{\vee} \beta = \max(\alpha, \beta) \tag{25}$$

Łukasiewicz

$$\alpha \stackrel{\mathrm{L}}{\vee} \beta = \min(\alpha + \beta, 1) \tag{26}$$

• Algebraic sum ("součinová")

$$\alpha \stackrel{\triangle}{\vee} \beta = \alpha + \beta - \alpha \cdot \beta \tag{27}$$

Fuzzy disjunctions: Examples (2)

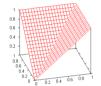
· Weak ("drastická")

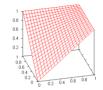
$$\alpha \stackrel{\mathsf{W}}{\vee} \beta = \begin{cases} \alpha & \text{if } \beta = \mathsf{o} \\ \beta & \text{if } \alpha = \mathsf{o} \\ 1 & \text{otherwise} \end{cases}$$
 (28)

Einstein

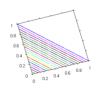
$$\alpha \stackrel{E}{\vee} \beta = \frac{\alpha + \beta}{\mathbf{1} + \alpha \beta} \tag{29}$$

Fuzzy disjunctions: Visualization [Wikipedia]

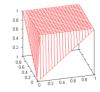




Standard



Algebraic



Łukasiewicz

Drastic

Fuzzy disjunctions: Properties

 The standard and weak disjunctions provide a lower and upper bound on all possible conjunctions:

$$(\alpha \overset{S}{\vee} \beta) \leqslant (\alpha \overset{\circ}{\vee} \beta) \leqslant (\alpha \overset{W}{\vee} \beta)$$
 (30)

Fuzzy disjunctions: Properties

 The standard and weak disjunctions provide a lower and upper bound on all possible conjunctions:

$$(\alpha \overset{S}{\vee} \beta) \le (\alpha \overset{\circ}{\vee} \beta) \le (\alpha \overset{W}{\vee} \beta)$$
 (30)

• The standard disjunctions is the only *idempotent* conjunction:

$$\alpha \stackrel{\circ}{\vee} \alpha = \alpha$$
 (31)

Conjunction - disjunction duality

A If $\stackrel{\wedge}{\wedge}$ is a fuzzy conjunction, then $\alpha \stackrel{\circ}{\vee} \beta = \stackrel{\neg}{\circ} (\stackrel{\neg}{\circ} \alpha \stackrel{\wedge}{\wedge} \stackrel{\neg}{\circ} \beta)$ is a fuzzy disjunction (dual to $\stackrel{\wedge}{\wedge}$ w.r.t. $\stackrel{\neg}{\circ}$).

Conjunction - disjunction duality

- A If $\[\wedge \]$ is a fuzzy conjunction, then $\[\alpha \] \[\mathring{\lor} \] \beta = \[\neg \] \[(\neg \[\alpha \] \land \[\neg \] \beta) \]$ is a fuzzy disjunction (dual to $\[\wedge \]$ w.r.t. $\[\neg \]$).
- B If $\overset{\circ}{\vee}$ is a fuzzy disjunction, then $\alpha \overset{\circ}{\wedge} \beta = \overset{\circ}{\circ} (\overset{\circ}{\circ} \alpha \overset{\circ}{\vee} \overset{\circ}{\circ} \beta)$ is a fuzzy conjunction (dual to $\overset{\circ}{\vee}$ w.r.t. $\overset{\circ}{\circ}$).

Conjunction - disjunction duality

- A If $\[\wedge \]$ is a fuzzy conjunction, then $\[\alpha \] \[\mathring{\lor} \] \beta = \[\neg \] (\[\neg \] \alpha \[\wedge \] \[\neg \] \beta)$ is a fuzzy disjunction (dual to $\[\wedge \]$ w.r.t. $\[\neg \]$).
- B If $\overset{\circ}{\vee}$ is a fuzzy disjunction, then $\alpha \overset{\circ}{\wedge} \beta = \neg (\neg \alpha \overset{\circ}{\vee} \neg \beta)$ is a fuzzy conjunction (dual to $\overset{\circ}{\vee}$ w.r.t. \neg).

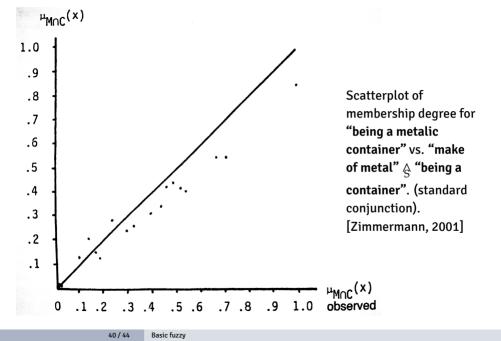
Theorems

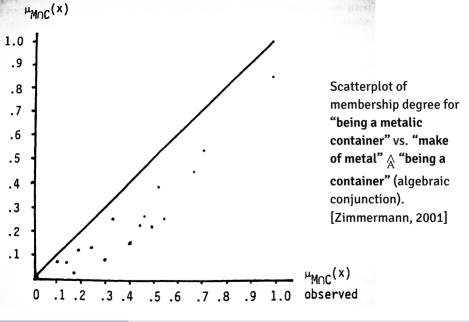
- Łukasiewicz operations \bigwedge , $\stackrel{\rm I}{\nabla}$ are dual w.r.t. standard negation.
- Algebraic operations \wedge , \Diamond are dual w.r.t. standard negation.
- Standard operations $_{\mbox{\scriptsize \^{S}}}$, $\mbox{\scriptsize \^{S}}$ are dual w.r.t. any negation.
- Weak operations 🏡, 🤍 are dual w.r.t. any negation.

Table 16–2. Empirically determined grades of membership.

Stimulus x		$\mu_{M}(x)$	$\mu_{\rm C}(x)$	$\mu_{M\capC}(x)$
1.	bag	0.000	0.985	0.007
2.	baking tin	0.908	0.419	0.517
3.	ballpoint pen	0.215	0.149	0.170
4.	bathtub	0.552	0.804	0.674
5.	book wrapper	0.023	0.454	0.007
6.	car	0.501	0.437	0.493
7.	cash register	0.692	0.400	0.537
8.	container	0.847	1.000	1.000
9.	fridge	0.424	0.623	0.460
10.	Hollywood swing	0.318	0.212	0.142
11.	kerosene lamp	0.481	0.310	0.401
12.	nail	1.000	0.000	0.000
13.	parkometer	0.663	0.335	0.437
14.	pram	0.283	0.448	0.239
15.	press	0.130	0.512	0.101
16.	shovel	0.325	0.239	0.301
17.	silver spoon	0.969	0.256	0.330
18.	sledgehammer	0.480	0.012	0.023
19.	water bottle	0.564	0.961	0.714
20.	wine barrel	0.127	0.980	0.185

Degree of membership for 20 items into the sets "make of metal", "being a container" and "being a metalic container". [Zimmermann, 2001]





Criteria for selecting operators (1)

- 1. **Axiomatic strength:** The set of valid theorems may differ based on the choice of t-norms and s-norms (see tutorials).
- 2. **Empirical fit:** Using fuzzy theory for a model of the real world, the chosen operator should match the real behavior of the system.
- 3. Adaptability: Operators in a generic system should be able to fit several use cases. One way of increasing adaptibility is to use operators with parameters (e.g. Yager and Sugeno negations).

Criteria for selecting operators (2)

- 4. **Computational efficiency:** Evaluating e.g. the standard negation is usually faster than the Yager negation, which contains the power.
- Aggregating behavior: When the operators combines a large number of operands, does the value tends to go to 0 (conjunction) or 1 (disjunction).
 The standard operators behave differently than the algebraic ones.

Bibliography

Domingos, P. and Lowd, D. (2009).

Markov Logic: An Interface Layer for Artificial Intelligence.

Morgan & Claypool.

Russell, B. (1923).
Vagueness.
In Australasian Journal of Psychology and Philosophy, page 84–92.

- Wikipedia (2012).
 Six degrees of separation Wikipedia, the free encyclopedia.
 [Online; accessed 15-October-2012].
- Zimmermann, H.-J. (2001).
 Fuzzy Set Theory and its Applications.
 Springer.