
Modeling Error Explanation

Petr Křemen
petr.kremen@fel.cvut.cz

October 12, 2014

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 90 / 112



Our plan

1 Modeling Error Explanation

2 Black-box methods
Algorithms based on CS-trees
Algorithm based on Reiter’s Algorithm
Algorithm based on Reiter’s Algorithm

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 91 / 112



Modeling Error Explanation

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 92 / 112



Motivation

When an inference engine claims inconsistency of an (ALC)
theory/unsatisfiability of an (ALC) concept, what can we do with it
?

We can start iterating through all axioms in the theory and look,
“what went wrong”.

... but hardly in case we have hundred thousand axioms

A solution might be to ask the computer to localize the axioms
causing the problem for us.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 93 / 112



Motivation

When an inference engine claims inconsistency of an (ALC)
theory/unsatisfiability of an (ALC) concept, what can we do with it
?

We can start iterating through all axioms in the theory and look,
“what went wrong”.

... but hardly in case we have hundred thousand axioms

A solution might be to ask the computer to localize the axioms
causing the problem for us.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 93 / 112



Motivation

When an inference engine claims inconsistency of an (ALC)
theory/unsatisfiability of an (ALC) concept, what can we do with it
?

We can start iterating through all axioms in the theory and look,
“what went wrong”.

... but hardly in case we have hundred thousand axioms

A solution might be to ask the computer to localize the axioms
causing the problem for us.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 93 / 112



Motivation

When an inference engine claims inconsistency of an (ALC)
theory/unsatisfiability of an (ALC) concept, what can we do with it
?

We can start iterating through all axioms in the theory and look,
“what went wrong”.

... but hardly in case we have hundred thousand axioms

A solution might be to ask the computer to localize the axioms
causing the problem for us.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 93 / 112



DNA

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 94 / 112



MUPS – example

Minimal unsatisfiability preserving subterminology (MUPS) is a minimal
set of axioms responsible for concept unsatisfiability.

Example

Consider theory K5 = ({α1, α2, α3}, ∅)

α1 : Person v ∃hasParent · (Man uWoman) u ∀hasParent · ¬Person,

α2 : Man v ¬Woman,

α3 : Man tWoman v Person.

Unsatisfiability of Person comes independently from two axiom sets
(MUPSes), namely {α1, α2} and {α1, α3}. Check it yourself !

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 95 / 112



MUPS – example

Minimal unsatisfiability preserving subterminology (MUPS) is a minimal
set of axioms responsible for concept unsatisfiability.

Example

Consider theory K5 = ({α1, α2, α3}, ∅)

α1 : Person v ∃hasParent · (Man uWoman) u ∀hasParent · ¬Person,

α2 : Man v ¬Woman,

α3 : Man tWoman v Person.

Unsatisfiability of Person comes independently from two axiom sets
(MUPSes), namely {α1, α2} and {α1, α3}. Check it yourself !

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 95 / 112



MUPS – example

Minimal unsatisfiability preserving subterminology (MUPS) is a minimal
set of axioms responsible for concept unsatisfiability.

Example

Consider theory K5 = ({α1, α2, α3}, ∅)

α1 : Person v ∃hasParent · (Man uWoman) u ∀hasParent · ¬Person,

α2 : Man v ¬Woman,

α3 : Man tWoman v Person.

Unsatisfiability of Person comes independently from two axiom sets
(MUPSes), namely {α1, α2} and {α1, α3}. Check it yourself !

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 95 / 112



MUPS

Currently two approaches exist for searching all MUPSes for given concept:

black-box methods perform many satisfiability tests using existing
inference engine.

, flexible and easily reusable for another (description) logic
/ time consuming

glass-box methods all integrated into an existing reasoning (typically
tableau) algorithm.

, efficient
/ hardly reusable for another (description) logic.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 96 / 112



MUPS

Currently two approaches exist for searching all MUPSes for given concept:

black-box methods perform many satisfiability tests using existing
inference engine.

, flexible and easily reusable for another (description) logic
/ time consuming

glass-box methods all integrated into an existing reasoning (typically
tableau) algorithm.

, efficient
/ hardly reusable for another (description) logic.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 96 / 112



MUPS

Currently two approaches exist for searching all MUPSes for given concept:

black-box methods perform many satisfiability tests using existing
inference engine.

, flexible and easily reusable for another (description) logic
/ time consuming

glass-box methods all integrated into an existing reasoning (typically
tableau) algorithm.

, efficient
/ hardly reusable for another (description) logic.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 96 / 112



Glass-box methods

For ALC there exists a complete algorithm with the following idea:

I tableau algorithm for ALC is extended in such way that it “remembers
which axioms were used during completion graph construction”.

I for each completion graph containing a clash, the axioms that were
used during its construction can be transformed into a MUPS.

Unfortunately, complete glass-box methods do not exist for OWL-DL
and OWL2-DL. The same idea (tracking axioms used during
completion graph construction) can be used also for these logics, but
only as a preprocessing reducing the set of axioms used by a
black-box algorithm.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 97 / 112



Glass-box methods

For ALC there exists a complete algorithm with the following idea:
I tableau algorithm for ALC is extended in such way that it “remembers

which axioms were used during completion graph construction”.

I for each completion graph containing a clash, the axioms that were
used during its construction can be transformed into a MUPS.

Unfortunately, complete glass-box methods do not exist for OWL-DL
and OWL2-DL. The same idea (tracking axioms used during
completion graph construction) can be used also for these logics, but
only as a preprocessing reducing the set of axioms used by a
black-box algorithm.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 97 / 112



Glass-box methods

For ALC there exists a complete algorithm with the following idea:
I tableau algorithm for ALC is extended in such way that it “remembers

which axioms were used during completion graph construction”.
I for each completion graph containing a clash, the axioms that were

used during its construction can be transformed into a MUPS.

Unfortunately, complete glass-box methods do not exist for OWL-DL
and OWL2-DL. The same idea (tracking axioms used during
completion graph construction) can be used also for these logics, but
only as a preprocessing reducing the set of axioms used by a
black-box algorithm.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 97 / 112



Glass-box methods

For ALC there exists a complete algorithm with the following idea:
I tableau algorithm for ALC is extended in such way that it “remembers

which axioms were used during completion graph construction”.
I for each completion graph containing a clash, the axioms that were

used during its construction can be transformed into a MUPS.

Unfortunately, complete glass-box methods do not exist for OWL-DL
and OWL2-DL. The same idea (tracking axioms used during
completion graph construction) can be used also for these logics, but
only as a preprocessing reducing the set of axioms used by a
black-box algorithm.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 97 / 112



Black-box methods

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 98 / 112



Task formulation

Let’s have a set of axioms X of given DL and reasoner R for given
DL. We want to find MUPSes for :

1 concept unsatisfiability, ‘
2 theory (ontology) inconsistency,
3 arbitrary entailment.

It can be shown (see [Kal06]) that w.l.o.g. we can deal only with
concept unsatisfiability.

MUPS: Let’s denote MUPS(C ,Y ) a minimal subset
MUPS(C ,Y ) ⊆ Y ⊆ X causing unsatisfiability of C .

Diagnose: Let’s denote DIAG (C ,Y ) a minimal subset
DIAG (C ,Y ) ⊆ Y ⊆ X , such that if DIAG (C ,Y ) is removed from Y ,
the concept C becomes satisfiable.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 99 / 112



Task formulation

Let’s have a set of axioms X of given DL and reasoner R for given
DL. We want to find MUPSes for :

1 concept unsatisfiability, ‘

2 theory (ontology) inconsistency,
3 arbitrary entailment.

It can be shown (see [Kal06]) that w.l.o.g. we can deal only with
concept unsatisfiability.

MUPS: Let’s denote MUPS(C ,Y ) a minimal subset
MUPS(C ,Y ) ⊆ Y ⊆ X causing unsatisfiability of C .

Diagnose: Let’s denote DIAG (C ,Y ) a minimal subset
DIAG (C ,Y ) ⊆ Y ⊆ X , such that if DIAG (C ,Y ) is removed from Y ,
the concept C becomes satisfiable.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 99 / 112



Task formulation

Let’s have a set of axioms X of given DL and reasoner R for given
DL. We want to find MUPSes for :

1 concept unsatisfiability, ‘
2 theory (ontology) inconsistency,

3 arbitrary entailment.

It can be shown (see [Kal06]) that w.l.o.g. we can deal only with
concept unsatisfiability.

MUPS: Let’s denote MUPS(C ,Y ) a minimal subset
MUPS(C ,Y ) ⊆ Y ⊆ X causing unsatisfiability of C .

Diagnose: Let’s denote DIAG (C ,Y ) a minimal subset
DIAG (C ,Y ) ⊆ Y ⊆ X , such that if DIAG (C ,Y ) is removed from Y ,
the concept C becomes satisfiable.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 99 / 112



Task formulation

Let’s have a set of axioms X of given DL and reasoner R for given
DL. We want to find MUPSes for :

1 concept unsatisfiability, ‘
2 theory (ontology) inconsistency,
3 arbitrary entailment.

It can be shown (see [Kal06]) that w.l.o.g. we can deal only with
concept unsatisfiability.

MUPS: Let’s denote MUPS(C ,Y ) a minimal subset
MUPS(C ,Y ) ⊆ Y ⊆ X causing unsatisfiability of C .

Diagnose: Let’s denote DIAG (C ,Y ) a minimal subset
DIAG (C ,Y ) ⊆ Y ⊆ X , such that if DIAG (C ,Y ) is removed from Y ,
the concept C becomes satisfiable.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 99 / 112



Task formulation

Let’s have a set of axioms X of given DL and reasoner R for given
DL. We want to find MUPSes for :

1 concept unsatisfiability, ‘
2 theory (ontology) inconsistency,
3 arbitrary entailment.

It can be shown (see [Kal06]) that w.l.o.g. we can deal only with
concept unsatisfiability.

MUPS: Let’s denote MUPS(C ,Y ) a minimal subset
MUPS(C ,Y ) ⊆ Y ⊆ X causing unsatisfiability of C .

Diagnose: Let’s denote DIAG (C ,Y ) a minimal subset
DIAG (C ,Y ) ⊆ Y ⊆ X , such that if DIAG (C ,Y ) is removed from Y ,
the concept C becomes satisfiable.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 99 / 112



Task formulation

Let’s have a set of axioms X of given DL and reasoner R for given
DL. We want to find MUPSes for :

1 concept unsatisfiability, ‘
2 theory (ontology) inconsistency,
3 arbitrary entailment.

It can be shown (see [Kal06]) that w.l.o.g. we can deal only with
concept unsatisfiability.

MUPS: Let’s denote MUPS(C ,Y ) a minimal subset
MUPS(C ,Y ) ⊆ Y ⊆ X causing unsatisfiability of C .

Diagnose: Let’s denote DIAG (C ,Y ) a minimal subset
DIAG (C ,Y ) ⊆ Y ⊆ X , such that if DIAG (C ,Y ) is removed from Y ,
the concept C becomes satisfiable.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 99 / 112



Task formulation

Let’s have a set of axioms X of given DL and reasoner R for given
DL. We want to find MUPSes for :

1 concept unsatisfiability, ‘
2 theory (ontology) inconsistency,
3 arbitrary entailment.

It can be shown (see [Kal06]) that w.l.o.g. we can deal only with
concept unsatisfiability.

MUPS: Let’s denote MUPS(C ,Y ) a minimal subset
MUPS(C ,Y ) ⊆ Y ⊆ X causing unsatisfiability of C .

Diagnose: Let’s denote DIAG (C ,Y ) a minimal subset
DIAG (C ,Y ) ⊆ Y ⊆ X , such that if DIAG (C ,Y ) is removed from Y ,
the concept C becomes satisfiable.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 99 / 112



Task formulation (2)

Let’s focus on concept C unsatisfiability. Denote

R(C ,Y ) =

{
true iffY 2 (C v ⊥)
false iffY |= (C v ⊥))

}
.

There are many methods (see [dSW03]). We introduce just two of
them:

I Algorithms based on CS-trees.
I Algorithm for computing a single MUPS[Kal06] + Reiter algorithm

[Rei87].

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 100 / 112



Task formulation (2)

Let’s focus on concept C unsatisfiability. Denote

R(C ,Y ) =

{
true iffY 2 (C v ⊥)
false iffY |= (C v ⊥))

}
.

There are many methods (see [dSW03]). We introduce just two of
them:

I Algorithms based on CS-trees.
I Algorithm for computing a single MUPS[Kal06] + Reiter algorithm

[Rei87].

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 100 / 112



Task formulation (2)

Let’s focus on concept C unsatisfiability. Denote

R(C ,Y ) =

{
true iffY 2 (C v ⊥)
false iffY |= (C v ⊥))

}
.

There are many methods (see [dSW03]). We introduce just two of
them:

I Algorithms based on CS-trees.

I Algorithm for computing a single MUPS[Kal06] + Reiter algorithm
[Rei87].

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 100 / 112



Task formulation (2)

Let’s focus on concept C unsatisfiability. Denote

R(C ,Y ) =

{
true iffY 2 (C v ⊥)
false iffY |= (C v ⊥))

}
.

There are many methods (see [dSW03]). We introduce just two of
them:

I Algorithms based on CS-trees.
I Algorithm for computing a single MUPS[Kal06] + Reiter algorithm

[Rei87].

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 100 / 112



CS-trees

A naive solution: test for each set of axioms from T ∪ A for
K = (T ,A), whether the set causes unsatisfiability – minimal sets of
this form are MUPSes.

Conflict-set trees (CS-trees) systematize exploration of all these
subsets of T ∪ A. The main gist :

If we found a set of axioms X that do not cause
unsatisfiability of C (i.e. X 2 C v ⊥), then we know (and
thus can avoid asking reasoner) that Y 2 C v ⊥ for each
Y ⊆ X .

CS-tree is a representation of the state space, where each state s has
the form (D,P), where

I D is a set of axioms that necessarily has to be part of all MUPSes
found while exploring the subtree of s.

I P is a set of axioms that might be part of some MUPSes found while
exploring the subtree of s.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 101 / 112



CS-tree Exploration – Example

Example

A CS-tree for unsatisfiability of Person (abbr. Pe, not to be mixed with
the set P) in K5 = {α1, α2, α3}:

Pe v ∃hP · (M uW ) u ∀hP · ¬Pe︸ ︷︷ ︸
α1

, M v ¬W︸ ︷︷ ︸
α2

, M tW v Pe︸ ︷︷ ︸
α3

.

In gray states, the concept
Person is satisfiable
(R(Pe,D ∪ P) = true). States
with a dotted border are pruned
by the algorithm.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 102 / 112



CS-tree Exploration

The following algorithm is exponential in the number of tableau algorithm
runs.

1 (Init) The root of the tree is an initial state s0 = (∅,K) – apriori, we
don’t know any axiom being necessarily in a MUPS (Ds0 = ∅), but
potentially all axioms can be there (Ps0 = T ∪ A). Next, we define
Z = (s0) and R = ∅

2 (Depth First Search) If Z is empty, stop the exploration. Otherwise
pop the first element s from Z .

3 (Test) If R(C ,Ds ∪ Ps) = true then no subset of Ds ∪ Ps can cause
unsatisfiability – we continue with step 2.

4 (Finding an unsatisfiable set) We add Ds ∪ Ps into R and remove
from R all s ′ ∈ R such that Ds ∪ Ps ⊆ s ′. For Ps = α1, . . . , αN we
push to Z a new state (Ds ∪ {α1, . . . , αi−1},Ps \ {α1, . . . , αi}) – we
continue with step 2.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 103 / 112



CS-tree Exploration

The following algorithm is exponential in the number of tableau algorithm
runs.

1 (Init) The root of the tree is an initial state s0 = (∅,K) – apriori, we
don’t know any axiom being necessarily in a MUPS (Ds0 = ∅), but
potentially all axioms can be there (Ps0 = T ∪ A). Next, we define
Z = (s0) and R = ∅

2 (Depth First Search) If Z is empty, stop the exploration. Otherwise
pop the first element s from Z .

3 (Test) If R(C ,Ds ∪ Ps) = true then no subset of Ds ∪ Ps can cause
unsatisfiability – we continue with step 2.

4 (Finding an unsatisfiable set) We add Ds ∪ Ps into R and remove
from R all s ′ ∈ R such that Ds ∪ Ps ⊆ s ′. For Ps = α1, . . . , αN we
push to Z a new state (Ds ∪ {α1, . . . , αi−1},Ps \ {α1, . . . , αi}) – we
continue with step 2.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 103 / 112



CS-tree Exploration

The following algorithm is exponential in the number of tableau algorithm
runs.

1 (Init) The root of the tree is an initial state s0 = (∅,K) – apriori, we
don’t know any axiom being necessarily in a MUPS (Ds0 = ∅), but
potentially all axioms can be there (Ps0 = T ∪ A). Next, we define
Z = (s0) and R = ∅

2 (Depth First Search) If Z is empty, stop the exploration. Otherwise
pop the first element s from Z .

3 (Test) If R(C ,Ds ∪ Ps) = true then no subset of Ds ∪ Ps can cause
unsatisfiability – we continue with step 2.

4 (Finding an unsatisfiable set) We add Ds ∪ Ps into R and remove
from R all s ′ ∈ R such that Ds ∪ Ps ⊆ s ′. For Ps = α1, . . . , αN we
push to Z a new state (Ds ∪ {α1, . . . , αi−1},Ps \ {α1, . . . , αi}) – we
continue with step 2.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 103 / 112



CS-tree Exploration

The following algorithm is exponential in the number of tableau algorithm
runs.

1 (Init) The root of the tree is an initial state s0 = (∅,K) – apriori, we
don’t know any axiom being necessarily in a MUPS (Ds0 = ∅), but
potentially all axioms can be there (Ps0 = T ∪ A). Next, we define
Z = (s0) and R = ∅

2 (Depth First Search) If Z is empty, stop the exploration. Otherwise
pop the first element s from Z .

3 (Test) If R(C ,Ds ∪ Ps) = true then no subset of Ds ∪ Ps can cause
unsatisfiability – we continue with step 2.

4 (Finding an unsatisfiable set) We add Ds ∪ Ps into R and remove
from R all s ′ ∈ R such that Ds ∪ Ps ⊆ s ′. For Ps = α1, . . . , αN we
push to Z a new state (Ds ∪ {α1, . . . , αi−1},Ps \ {α1, . . . , αi}) – we
continue with step 2.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 103 / 112



CS-tree Exploration (2)

Soundness : Step 4 is important – here, we cover all possibilities. It
always holds that Ds ∪ Ps differs to D ′s ∪ P ′s by just one element,
where s ′ is a successor of s.

Finiteness : Set Ds ∪ Ps is finite at the beginning and gets smaller
with the tree depth. Furthermore, in step 4 we generate only finite
number of states.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 104 / 112



CS-tree Exploration (2)

Soundness : Step 4 is important – here, we cover all possibilities. It
always holds that Ds ∪ Ps differs to D ′s ∪ P ′s by just one element,
where s ′ is a successor of s.

Finiteness : Set Ds ∪ Ps is finite at the beginning and gets smaller
with the tree depth. Furthermore, in step 4 we generate only finite
number of states.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 104 / 112



Another Approach – Reiter’s Algorithm

There is an alternative to CS-trees:

1 Find a single (arbitrary) MUPS (singleMUPS in the next slides).

2 “remove the source of unsatisfiability provided by MUPS” (Reiter’s
algorithm in the next slides) from the set of axioms go explore the
remaining axioms in the same manner.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 105 / 112



Finding a single MUPS(C ,Y ) – example

Example

The run of singleMUPS(Person,K5) introduced next.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 106 / 112



Finding a single MUPS(C ,Y ) – example

Example

The run of singleMUPS(Person,K5) introduced next.
1.PHASE :

K5 = {α1, α2, α3} R(Person, {α1}) = true
S = {α1}

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 106 / 112



Finding a single MUPS(C ,Y ) – example

Example

The run of singleMUPS(Person,K5) introduced next.
1.PHASE :

K5 = {α1, α2, α3} R(Person, {α1, α2}) = false
S = {α1, α2}

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 106 / 112



Finding a single MUPS(C ,Y ) – example

Example

The run of singleMUPS(Person,K5) introduced next.
1.PHASE :

K5 = {α1, α2, α3} R(Person, {α1, α2}) = false
S = {α1, α2}

2.PHASE :
S = {α1, α2} R(Person, {α1, α2} − {α1}) = true
K = {α1}

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 106 / 112



Finding a single MUPS(C ,Y ) – example

Example

The run of singleMUPS(Person,K5) introduced next.
1.PHASE :

K5 = {α1, α2, α3} R(Person, {α1, α2}) = false
S = {α1, α2}

2.PHASE :
S = {α1, α2} R(Person, {α1, α2} − {α2}) = true
K = {α1, α2}

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 106 / 112



singleMUPS(C ,Y ) – finding a single MUPS

The following algorithm is polynomial in the number of tableau algorithm
applications – the computational complexity stems from the complexity of
tableau algorithm itself.

1 (Initialization) Denote S = ∅, K = ∅

2 (Finding superset of MUPS) While R(C , S) = false, then
S = S ∪ {α} for some α ∈ Y \ S .

3 (Pruning found set) For each α ∈ S \K evaluate R(C ,S \ {α}). If the
result is false, then K = K ∪ {α}. The resulting K is itself a MUPS.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 107 / 112



singleMUPS(C ,Y ) – finding a single MUPS

The following algorithm is polynomial in the number of tableau algorithm
applications – the computational complexity stems from the complexity of
tableau algorithm itself.

1 (Initialization) Denote S = ∅, K = ∅
2 (Finding superset of MUPS) While R(C , S) = false, then

S = S ∪ {α} for some α ∈ Y \ S .

3 (Pruning found set) For each α ∈ S \K evaluate R(C ,S \ {α}). If the
result is false, then K = K ∪ {α}. The resulting K is itself a MUPS.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 107 / 112



singleMUPS(C ,Y ) – finding a single MUPS

The following algorithm is polynomial in the number of tableau algorithm
applications – the computational complexity stems from the complexity of
tableau algorithm itself.

1 (Initialization) Denote S = ∅, K = ∅
2 (Finding superset of MUPS) While R(C , S) = false, then

S = S ∪ {α} for some α ∈ Y \ S .

3 (Pruning found set) For each α ∈ S \K evaluate R(C ,S \ {α}). If the
result is false, then K = K ∪ {α}. The resulting K is itself a MUPS.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 107 / 112



Finding all MUPSes – Reiter Algorithm, example

Example (continued)

The algorithm ends up with two MUPSes {α1, α2} a {α1, α3}. “For
free” we got diagnoses {α1} a {α2, α3}.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 108 / 112



Finding all MUPSes – Reiter Algorithm, example

Example (continued)

The algorithm ends up with two MUPSes {α1, α2} a {α1, α3}. “For
free” we got diagnoses {α1} a {α2, α3}.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 108 / 112



Finding all MUPSes – Reiter Algorithm

Reiter algorithm runs singleMUPS(C ,Y ) multiple times to construct
so called “Hitting Set Tree”, nodes of which are pairs (Ki ,Mi ), where
Ki lacks some axioms comparing to K and Mi = singleMUPS(C ,Ki ),
or Mi = “SAT ′′, if C is satisfiable w.r.t. Ki .

Paths from the root to leaves build up diagnoses (i.e. minimal sets of
axioms, each of which removed from K causes satisfiability of C ).

Number of singleMUPS(C ,Y ) calls is at most exponential w.r.t. the
initial axioms count. Why ?

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 109 / 112



Finding all MUPSes – Reiter Algorithm

Reiter algorithm runs singleMUPS(C ,Y ) multiple times to construct
so called “Hitting Set Tree”, nodes of which are pairs (Ki ,Mi ), where
Ki lacks some axioms comparing to K and Mi = singleMUPS(C ,Ki ),
or Mi = “SAT ′′, if C is satisfiable w.r.t. Ki .

Paths from the root to leaves build up diagnoses (i.e. minimal sets of
axioms, each of which removed from K causes satisfiability of C ).

Number of singleMUPS(C ,Y ) calls is at most exponential w.r.t. the
initial axioms count. Why ?

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 109 / 112



Finding all MUPSes – Reiter Algorithm

Reiter algorithm runs singleMUPS(C ,Y ) multiple times to construct
so called “Hitting Set Tree”, nodes of which are pairs (Ki ,Mi ), where
Ki lacks some axioms comparing to K and Mi = singleMUPS(C ,Ki ),
or Mi = “SAT ′′, if C is satisfiable w.r.t. Ki .

Paths from the root to leaves build up diagnoses (i.e. minimal sets of
axioms, each of which removed from K causes satisfiability of C ).

Number of singleMUPS(C ,Y ) calls is at most exponential w.r.t. the
initial axioms count. Why ?

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 109 / 112



Finding all MUPSes – Reiter Algorithm (2)

1 (Initialization) Find a single MUPS for C in K, and construct the root
s0 = (K, singleMUPS(C ,K)) of the hitting set tree. Next, set
Z = (s0).

2 (Depth First Search) If Z is empty, STOP.

3 (Test) Otherwise pop an element from Z and denote it as
si = (Ki ,Mi ). If Mi = “SAT ′′, then go to step 2.

4 (Decomposition) For each α ∈ Mi insert into Z a new node
(Ki \ {α}, singleMUPS(Ki \ {α},C )). Go to step 2.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 110 / 112



Finding all MUPSes – Reiter Algorithm (2)

1 (Initialization) Find a single MUPS for C in K, and construct the root
s0 = (K, singleMUPS(C ,K)) of the hitting set tree. Next, set
Z = (s0).

2 (Depth First Search) If Z is empty, STOP.

3 (Test) Otherwise pop an element from Z and denote it as
si = (Ki ,Mi ). If Mi = “SAT ′′, then go to step 2.

4 (Decomposition) For each α ∈ Mi insert into Z a new node
(Ki \ {α}, singleMUPS(Ki \ {α},C )). Go to step 2.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 110 / 112



Finding all MUPSes – Reiter Algorithm (2)

1 (Initialization) Find a single MUPS for C in K, and construct the root
s0 = (K, singleMUPS(C ,K)) of the hitting set tree. Next, set
Z = (s0).

2 (Depth First Search) If Z is empty, STOP.

3 (Test) Otherwise pop an element from Z and denote it as
si = (Ki ,Mi ). If Mi = “SAT ′′, then go to step 2.

4 (Decomposition) For each α ∈ Mi insert into Z a new node
(Ki \ {α}, singleMUPS(Ki \ {α},C )). Go to step 2.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 110 / 112



Finding all MUPSes – Reiter Algorithm (2)

1 (Initialization) Find a single MUPS for C in K, and construct the root
s0 = (K, singleMUPS(C ,K)) of the hitting set tree. Next, set
Z = (s0).

2 (Depth First Search) If Z is empty, STOP.

3 (Test) Otherwise pop an element from Z and denote it as
si = (Ki ,Mi ). If Mi = “SAT ′′, then go to step 2.

4 (Decomposition) For each α ∈ Mi insert into Z a new node
(Ki \ {α}, singleMUPS(Ki \ {α},C )). Go to step 2.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 110 / 112



Modeling Error Explanation – Summary

finding MUPSes is the most common way for explaining modeling
errors.

black-box vs. glass box methods. Other methods involve e.g.
incremental methods [dSW03].

the goal is to find MUPSes (and diagnoses) – what to do in order to
solve a modeling problem (unsatisfiability,inconsistency).

above mentioned methods are quite universal – they can be used for
many other problems that are not related with description logics.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 111 / 112



References I

* Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter Patel-Schneider, editors.
The Description Logic Handbook, Theory, Implementation and
Applications, Chapters 2-4.
Cambridge, 2003.

Raymond Reiter.
A Theory of Diagnosis from First Principles.
Artificial Intelligence, 32(1):57–96, April 1987.

Maria Garcia de la Banda, Peter J. Stuckey, and Jeremy Wazny.
Finding All Minimal Unsatisfiable Subsets.
In Proceedings of PPDP’03, 2003.

Aditya Kalyanpur.
Debugging and Repair of OWL Ontologies.
PhD thesis, University of Maryland, 2006.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 112 / 112


	Modeling Error Explanation
	Black-box methods
	Algorithms based on CS-trees
	Algorithm based on Reiter's Algorithm
	Algorithm based on Reiter's Algorithm


