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Modeling Error Explanation
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Motivation

When an inference engine claims inconsistency of an (ALC)
theory/unsatisfiability of an (ALC) concept, what can we do with it
?

We can start iterating through all axioms in the theory and look,
“what went wrong”.

... but hardly in case we have hundred thousand axioms

A solution might be to ask the computer to localize the axioms
causing the problem for us.
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Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 93 / 112



Motivation

When an inference engine claims inconsistency of an (ALC)
theory/unsatisfiability of an (ALC) concept, what can we do with it
?

We can start iterating through all axioms in the theory and look,
“what went wrong”.

... but hardly in case we have hundred thousand axioms

A solution might be to ask the computer to localize the axioms
causing the problem for us.
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DNA
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MUPS – example

Minimal unsatisfiability preserving subterminology (MUPS) is a minimal
set of axioms responsible for concept unsatisfiability.

Example

Consider theory K5 = ({α1, α2, α3}, ∅)

α1 : Person v ∃hasParent · (Man uWoman) u ∀hasParent · ¬Person,

α2 : Man v ¬Woman,

α3 : Man tWoman v Person.

Unsatisfiability of Person comes independently from two axiom sets
(MUPSes), namely {α1, α2} and {α1, α3}. Check it yourself !
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Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 95 / 112



MUPS – example

Minimal unsatisfiability preserving subterminology (MUPS) is a minimal
set of axioms responsible for concept unsatisfiability.

Example

Consider theory K5 = ({α1, α2, α3}, ∅)

α1 : Person v ∃hasParent · (Man uWoman) u ∀hasParent · ¬Person,

α2 : Man v ¬Woman,

α3 : Man tWoman v Person.

Unsatisfiability of Person comes independently from two axiom sets
(MUPSes), namely {α1, α2} and {α1, α3}. Check it yourself !
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MUPS

Currently two approaches exist for searching all MUPSes for given concept:

black-box methods perform many satisfiability tests using existing
inference engine.

, flexible and easily reusable for another (description) logic
/ time consuming

glass-box methods all integrated into an existing reasoning (typically
tableau) algorithm.

, efficient
/ hardly reusable for another (description) logic.
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Glass-box methods

For ALC there exists a complete algorithm with the following idea:

I tableau algorithm for ALC is extended in such way that it “remembers
which axioms were used during completion graph construction”.

I for each completion graph containing a clash, the axioms that were
used during its construction can be transformed into a MUPS.

Unfortunately, complete glass-box methods do not exist for OWL-DL
and OWL2-DL. The same idea (tracking axioms used during
completion graph construction) can be used also for these logics, but
only as a preprocessing reducing the set of axioms used by a
black-box algorithm.
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Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 97 / 112



Black-box methods
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Task formulation

Let’s have a set of axioms X of given DL and reasoner R for given
DL. We want to find MUPSes for :

1 concept unsatisfiability, ‘
2 theory (ontology) inconsistency,
3 arbitrary entailment.

It can be shown (see [Kal06]) that w.l.o.g. we can deal only with
concept unsatisfiability.

MUPS: Let’s denote MUPS(C ,Y ) a minimal subset
MUPS(C ,Y ) ⊆ Y ⊆ X causing unsatisfiability of C .

Diagnose: Let’s denote DIAG (C ,Y ) a minimal subset
DIAG (C ,Y ) ⊆ Y ⊆ X , such that if DIAG (C ,Y ) is removed from Y ,
the concept C becomes satisfiable.
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Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 99 / 112



Task formulation (2)

Let’s focus on concept C unsatisfiability. Denote

R(C ,Y ) =

{
true iffY 2 (C v ⊥)
false iffY |= (C v ⊥))

}
.

There are many methods (see [dSW03]). We introduce just two of
them:

I Algorithms based on CS-trees.
I Algorithm for computing a single MUPS[Kal06] + Reiter algorithm

[Rei87].
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CS-trees

A naive solution: test for each set of axioms from T ∪ A for
K = (T ,A), whether the set causes unsatisfiability – minimal sets of
this form are MUPSes.

Conflict-set trees (CS-trees) systematize exploration of all these
subsets of T ∪ A. The main gist :

If we found a set of axioms X that do not cause
unsatisfiability of C (i.e. X 2 C v ⊥), then we know (and
thus can avoid asking reasoner) that Y 2 C v ⊥ for each
Y ⊆ X .

CS-tree is a representation of the state space, where each state s has
the form (D,P), where

I D is a set of axioms that necessarily has to be part of all MUPSes
found while exploring the subtree of s.

I P is a set of axioms that might be part of some MUPSes found while
exploring the subtree of s.
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CS-tree Exploration – Example

Example

A CS-tree for unsatisfiability of Person (abbr. Pe, not to be mixed with
the set P) in K5 = {α1, α2, α3}:

Pe v ∃hP · (M uW ) u ∀hP · ¬Pe︸ ︷︷ ︸
α1

, M v ¬W︸ ︷︷ ︸
α2

, M tW v Pe︸ ︷︷ ︸
α3

.

In gray states, the concept
Person is satisfiable
(R(Pe,D ∪ P) = true). States
with a dotted border are pruned
by the algorithm.
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CS-tree Exploration

The following algorithm is exponential in the number of tableau algorithm
runs.

1 (Init) The root of the tree is an initial state s0 = (∅,K) – apriori, we
don’t know any axiom being necessarily in a MUPS (Ds0 = ∅), but
potentially all axioms can be there (Ps0 = T ∪ A). Next, we define
Z = (s0) and R = ∅

2 (Depth First Search) If Z is empty, stop the exploration. Otherwise
pop the first element s from Z .

3 (Test) If R(C ,Ds ∪ Ps) = true then no subset of Ds ∪ Ps can cause
unsatisfiability – we continue with step 2.

4 (Finding an unsatisfiable set) We add Ds ∪ Ps into R and remove
from R all s ′ ∈ R such that Ds ∪ Ps ⊆ s ′. For Ps = α1, . . . , αN we
push to Z a new state (Ds ∪ {α1, . . . , αi−1},Ps \ {α1, . . . , αi}) – we
continue with step 2.
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CS-tree Exploration (2)

Soundness : Step 4 is important – here, we cover all possibilities. It
always holds that Ds ∪ Ps differs to D ′s ∪ P ′s by just one element,
where s ′ is a successor of s.

Finiteness : Set Ds ∪ Ps is finite at the beginning and gets smaller
with the tree depth. Furthermore, in step 4 we generate only finite
number of states.
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Another Approach – Reiter’s Algorithm

There is an alternative to CS-trees:

1 Find a single (arbitrary) MUPS (singleMUPS in the next slides).

2 “remove the source of unsatisfiability provided by MUPS” (Reiter’s
algorithm in the next slides) from the set of axioms go explore the
remaining axioms in the same manner.
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Finding a single MUPS(C ,Y ) – example

Example

The run of singleMUPS(Person,K5) introduced next.

Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 106 / 112



Finding a single MUPS(C ,Y ) – example

Example

The run of singleMUPS(Person,K5) introduced next.
1.PHASE :

K5 = {α1, α2, α3} R(Person, {α1}) = true
S = {α1}
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singleMUPS(C ,Y ) – finding a single MUPS

The following algorithm is polynomial in the number of tableau algorithm
applications – the computational complexity stems from the complexity of
tableau algorithm itself.

1 (Initialization) Denote S = ∅, K = ∅

2 (Finding superset of MUPS) While R(C , S) = false, then
S = S ∪ {α} for some α ∈ Y \ S .

3 (Pruning found set) For each α ∈ S \K evaluate R(C ,S \ {α}). If the
result is false, then K = K ∪ {α}. The resulting K is itself a MUPS.
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Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 107 / 112



Finding all MUPSes – Reiter Algorithm, example

Example (continued)

The algorithm ends up with two MUPSes {α1, α2} a {α1, α3}. “For
free” we got diagnoses {α1} a {α2, α3}.
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Petr Křemen petr.kremen@fel.cvut.cz Modeling Error Explanation October 12, 2014 108 / 112



Finding all MUPSes – Reiter Algorithm

Reiter algorithm runs singleMUPS(C ,Y ) multiple times to construct
so called “Hitting Set Tree”, nodes of which are pairs (Ki ,Mi ), where
Ki lacks some axioms comparing to K and Mi = singleMUPS(C ,Ki ),
or Mi = “SAT ′′, if C is satisfiable w.r.t. Ki .

Paths from the root to leaves build up diagnoses (i.e. minimal sets of
axioms, each of which removed from K causes satisfiability of C ).

Number of singleMUPS(C ,Y ) calls is at most exponential w.r.t. the
initial axioms count. Why ?
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Finding all MUPSes – Reiter Algorithm (2)

1 (Initialization) Find a single MUPS for C in K, and construct the root
s0 = (K, singleMUPS(C ,K)) of the hitting set tree. Next, set
Z = (s0).

2 (Depth First Search) If Z is empty, STOP.

3 (Test) Otherwise pop an element from Z and denote it as
si = (Ki ,Mi ). If Mi = “SAT ′′, then go to step 2.

4 (Decomposition) For each α ∈ Mi insert into Z a new node
(Ki \ {α}, singleMUPS(Ki \ {α},C )). Go to step 2.
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Modeling Error Explanation – Summary

finding MUPSes is the most common way for explaining modeling
errors.

black-box vs. glass box methods. Other methods involve e.g.
incremental methods [dSW03].

the goal is to find MUPSes (and diagnoses) – what to do in order to
solve a modeling problem (unsatisfiability,inconsistency).

above mentioned methods are quite universal – they can be used for
many other problems that are not related with description logics.
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