
Modeling Error Explanation

Petr Křemen
petr.kremen@fel.cvut.cz

FEL ČVUT

141 / 165



Our plan

Modeling Error Explanation

Black-box methods
Algorithms based on CS-trees
Algorithm based on Reiter’s Algorithm
Algorithm based on Reiter’s Algorithm

142 / 165



Modeling Error Explanation

143 / 165



Motivation

When an inference engine claims inconsistency of an (ALC)
theory/unsatisfiability of an (ALC) concept, what can we do
with it ?

We can start iterating through all axioms in the theory and
look, “what went wrong”.

... but hardly in case we have hundred thousand axioms

A solution might be to ask the computer to localize the
axioms causing the problem for us.

144 / 165



Motivation

When an inference engine claims inconsistency of an (ALC)
theory/unsatisfiability of an (ALC) concept, what can we do
with it ?

We can start iterating through all axioms in the theory and
look, “what went wrong”.

... but hardly in case we have hundred thousand axioms

A solution might be to ask the computer to localize the
axioms causing the problem for us.

144 / 165



Motivation

When an inference engine claims inconsistency of an (ALC)
theory/unsatisfiability of an (ALC) concept, what can we do
with it ?

We can start iterating through all axioms in the theory and
look, “what went wrong”.

... but hardly in case we have hundred thousand axioms

A solution might be to ask the computer to localize the
axioms causing the problem for us.

144 / 165



Motivation

When an inference engine claims inconsistency of an (ALC)
theory/unsatisfiability of an (ALC) concept, what can we do
with it ?

We can start iterating through all axioms in the theory and
look, “what went wrong”.

... but hardly in case we have hundred thousand axioms

A solution might be to ask the computer to localize the
axioms causing the problem for us.

144 / 165



DNA

145 / 165



MUPS – example

Minimal unsatisfiability preserving subterminology (MUPS) is a
minimal set of axioms responsible for concept
unsatisfiability.

Example

Consider theory K5 = ({α1, α2, α3}, ∅)

α1 : Person v ∃hasParent · (Man uWoman) u ∀hasParent · ¬Person,

α2 : Man v ¬Woman,

α3 : Man tWoman v Person.

Unsatisfiability of Person comes independently from two axiom sets
(MUPSes), namely {α1, α2} and {α1, α3}. Check it yourself !

146 / 165



MUPS – example

Minimal unsatisfiability preserving subterminology (MUPS) is a
minimal set of axioms responsible for concept
unsatisfiability.

Example

Consider theory K5 = ({α1, α2, α3}, ∅)

α1 : Person v ∃hasParent · (Man uWoman) u ∀hasParent · ¬Person,

α2 : Man v ¬Woman,

α3 : Man tWoman v Person.

Unsatisfiability of Person comes independently from two axiom sets
(MUPSes), namely {α1, α2} and {α1, α3}. Check it yourself !

146 / 165



MUPS – example

Minimal unsatisfiability preserving subterminology (MUPS) is a
minimal set of axioms responsible for concept
unsatisfiability.

Example

Consider theory K5 = ({α1, α2, α3}, ∅)

α1 : Person v ∃hasParent · (Man uWoman) u ∀hasParent · ¬Person,

α2 : Man v ¬Woman,

α3 : Man tWoman v Person.

Unsatisfiability of Person comes independently from two axiom sets
(MUPSes), namely {α1, α2} and {α1, α3}. Check it yourself !

146 / 165



MUPS

Currently two approaches exist for searching all MUPSes for given
concept:

black-box methods perform many satisfiability tests using existing
inference engine.

, flexible and easily reusable for another
(description) logic

/ time consuming

glass-box methods all integrated into an existing reasoning
(typically tableau) algorithm.

, efficient
/ hardly reusable for another (description) logic.

147 / 165



MUPS

Currently two approaches exist for searching all MUPSes for given
concept:

black-box methods perform many satisfiability tests using existing
inference engine.

, flexible and easily reusable for another
(description) logic

/ time consuming

glass-box methods all integrated into an existing reasoning
(typically tableau) algorithm.

, efficient
/ hardly reusable for another (description) logic.

147 / 165



MUPS

Currently two approaches exist for searching all MUPSes for given
concept:

black-box methods perform many satisfiability tests using existing
inference engine.

, flexible and easily reusable for another
(description) logic

/ time consuming

glass-box methods all integrated into an existing reasoning
(typically tableau) algorithm.

, efficient
/ hardly reusable for another (description) logic.

147 / 165



Glass-box methods

For ALC there exists a complete algorithm with the following
idea:

tableau algorithm for ALC is extended in such way that it
“remembers which axioms were used during completion graph
construction”.
for each completion graph containing a clash, the axioms that
were used during its construction can be transformed into a
MUPS.

Unfortunately, complete glass-box methods do not exist for
OWL-DL and OWL2-DL. The same idea (tracking axioms
used during completion graph construction) can be used also
for these logics, but only as a preprocessing reducing the set
of axioms used by a black-box algorithm.

148 / 165



Glass-box methods

For ALC there exists a complete algorithm with the following
idea:

tableau algorithm for ALC is extended in such way that it
“remembers which axioms were used during completion graph
construction”.
for each completion graph containing a clash, the axioms that
were used during its construction can be transformed into a
MUPS.

Unfortunately, complete glass-box methods do not exist for
OWL-DL and OWL2-DL. The same idea (tracking axioms
used during completion graph construction) can be used also
for these logics, but only as a preprocessing reducing the set
of axioms used by a black-box algorithm.

148 / 165



Glass-box methods

For ALC there exists a complete algorithm with the following
idea:

tableau algorithm for ALC is extended in such way that it
“remembers which axioms were used during completion graph
construction”.
for each completion graph containing a clash, the axioms that
were used during its construction can be transformed into a
MUPS.

Unfortunately, complete glass-box methods do not exist for
OWL-DL and OWL2-DL. The same idea (tracking axioms
used during completion graph construction) can be used also
for these logics, but only as a preprocessing reducing the set
of axioms used by a black-box algorithm.

148 / 165



Glass-box methods

For ALC there exists a complete algorithm with the following
idea:

tableau algorithm for ALC is extended in such way that it
“remembers which axioms were used during completion graph
construction”.
for each completion graph containing a clash, the axioms that
were used during its construction can be transformed into a
MUPS.

Unfortunately, complete glass-box methods do not exist for
OWL-DL and OWL2-DL. The same idea (tracking axioms
used during completion graph construction) can be used also
for these logics, but only as a preprocessing reducing the set
of axioms used by a black-box algorithm.

148 / 165



Black-box methods

149 / 165



Task formulation

Let’s have a set of axioms X of given DL and reasoner R for
given DL. We want to find MUPSes for :

1 concept unsatisfiability,
2 theory (ontology) inconsistency,
3 arbitrary entailment.

It can be shown (see [Kal06]) that w.l.o.g. we can deal only
with concept unsatisfiability.

MUPS: Let’s denote MUPS(C ,Y ) a minimal subset
MUPS(C ,Y ) ⊆ Y ⊆ X causing unsatisfiability of C .

Diagnose: Let’s denote DIAG (C ,Y ) a minimal subset
DIAG (C ,Y ) ⊆ Y ⊆ X , such that if DIAG (C ,Y ) is removed
from Y , the concept C becomes satisfiable.

150 / 165



Task formulation

Let’s have a set of axioms X of given DL and reasoner R for
given DL. We want to find MUPSes for :

1 concept unsatisfiability,
2 theory (ontology) inconsistency,
3 arbitrary entailment.

It can be shown (see [Kal06]) that w.l.o.g. we can deal only
with concept unsatisfiability.

MUPS: Let’s denote MUPS(C ,Y ) a minimal subset
MUPS(C ,Y ) ⊆ Y ⊆ X causing unsatisfiability of C .

Diagnose: Let’s denote DIAG (C ,Y ) a minimal subset
DIAG (C ,Y ) ⊆ Y ⊆ X , such that if DIAG (C ,Y ) is removed
from Y , the concept C becomes satisfiable.

150 / 165



Task formulation

Let’s have a set of axioms X of given DL and reasoner R for
given DL. We want to find MUPSes for :

1 concept unsatisfiability,
2 theory (ontology) inconsistency,
3 arbitrary entailment.

It can be shown (see [Kal06]) that w.l.o.g. we can deal only
with concept unsatisfiability.

MUPS: Let’s denote MUPS(C ,Y ) a minimal subset
MUPS(C ,Y ) ⊆ Y ⊆ X causing unsatisfiability of C .

Diagnose: Let’s denote DIAG (C ,Y ) a minimal subset
DIAG (C ,Y ) ⊆ Y ⊆ X , such that if DIAG (C ,Y ) is removed
from Y , the concept C becomes satisfiable.

150 / 165



Task formulation

Let’s have a set of axioms X of given DL and reasoner R for
given DL. We want to find MUPSes for :

1 concept unsatisfiability,
2 theory (ontology) inconsistency,
3 arbitrary entailment.

It can be shown (see [Kal06]) that w.l.o.g. we can deal only
with concept unsatisfiability.

MUPS: Let’s denote MUPS(C ,Y ) a minimal subset
MUPS(C ,Y ) ⊆ Y ⊆ X causing unsatisfiability of C .

Diagnose: Let’s denote DIAG (C ,Y ) a minimal subset
DIAG (C ,Y ) ⊆ Y ⊆ X , such that if DIAG (C ,Y ) is removed
from Y , the concept C becomes satisfiable.

150 / 165



Task formulation

Let’s have a set of axioms X of given DL and reasoner R for
given DL. We want to find MUPSes for :

1 concept unsatisfiability,
2 theory (ontology) inconsistency,
3 arbitrary entailment.

It can be shown (see [Kal06]) that w.l.o.g. we can deal only
with concept unsatisfiability.

MUPS: Let’s denote MUPS(C ,Y ) a minimal subset
MUPS(C ,Y ) ⊆ Y ⊆ X causing unsatisfiability of C .

Diagnose: Let’s denote DIAG (C ,Y ) a minimal subset
DIAG (C ,Y ) ⊆ Y ⊆ X , such that if DIAG (C ,Y ) is removed
from Y , the concept C becomes satisfiable.

150 / 165



Task formulation

Let’s have a set of axioms X of given DL and reasoner R for
given DL. We want to find MUPSes for :

1 concept unsatisfiability,
2 theory (ontology) inconsistency,
3 arbitrary entailment.

It can be shown (see [Kal06]) that w.l.o.g. we can deal only
with concept unsatisfiability.

MUPS: Let’s denote MUPS(C ,Y ) a minimal subset
MUPS(C ,Y ) ⊆ Y ⊆ X causing unsatisfiability of C .

Diagnose: Let’s denote DIAG (C ,Y ) a minimal subset
DIAG (C ,Y ) ⊆ Y ⊆ X , such that if DIAG (C ,Y ) is removed
from Y , the concept C becomes satisfiable.

150 / 165



Task formulation

Let’s have a set of axioms X of given DL and reasoner R for
given DL. We want to find MUPSes for :

1 concept unsatisfiability,
2 theory (ontology) inconsistency,
3 arbitrary entailment.

It can be shown (see [Kal06]) that w.l.o.g. we can deal only
with concept unsatisfiability.

MUPS: Let’s denote MUPS(C ,Y ) a minimal subset
MUPS(C ,Y ) ⊆ Y ⊆ X causing unsatisfiability of C .

Diagnose: Let’s denote DIAG (C ,Y ) a minimal subset
DIAG (C ,Y ) ⊆ Y ⊆ X , such that if DIAG (C ,Y ) is removed
from Y , the concept C becomes satisfiable.

150 / 165



Task formulation (2)

Let’s focus on concept C unsatisfiability. Denote

R(C ,Y ) =

{
true iffY 2 (C v ⊥)
false iffY |= (C v ⊥))

}
.

There are many methods (see [dSW03]). We introduce just
two of them:

Algorithms based on CS-trees.
Algorithm for computing a single MUPS[Kal06] + Reiter
algorithm [Rei87].

151 / 165



Task formulation (2)

Let’s focus on concept C unsatisfiability. Denote

R(C ,Y ) =

{
true iffY 2 (C v ⊥)
false iffY |= (C v ⊥))

}
.

There are many methods (see [dSW03]). We introduce just
two of them:

Algorithms based on CS-trees.
Algorithm for computing a single MUPS[Kal06] + Reiter
algorithm [Rei87].

151 / 165



Task formulation (2)

Let’s focus on concept C unsatisfiability. Denote

R(C ,Y ) =

{
true iffY 2 (C v ⊥)
false iffY |= (C v ⊥))

}
.

There are many methods (see [dSW03]). We introduce just
two of them:

Algorithms based on CS-trees.
Algorithm for computing a single MUPS[Kal06] + Reiter
algorithm [Rei87].

151 / 165



Task formulation (2)

Let’s focus on concept C unsatisfiability. Denote

R(C ,Y ) =

{
true iffY 2 (C v ⊥)
false iffY |= (C v ⊥))

}
.

There are many methods (see [dSW03]). We introduce just
two of them:

Algorithms based on CS-trees.
Algorithm for computing a single MUPS[Kal06] + Reiter
algorithm [Rei87].

151 / 165



CS-trees

A naive solution: test for each set of axioms from T ∪ A for
K = (T ,A), whether the set causes unsatisfiability – minimal
sets of this form are MUPSes.

Conflict-set trees (CS-trees) syste-
matize exploration of all these subsets of T ∪A. The main gist :

If we found a set of axioms X that do not cause
unsatisfiability of C (i.e. X 2 C v ⊥), then we know
(and thus can avoid asking reasoner) that
Y 2 C v ⊥ for each Y ⊆ X .

CS-tree is a representation of the state space, where each
state s has the form (D,P), where

D is a set of axioms that necessarily has to be part of all
MUPSes found while exploring the subtree of s.
P is a set of axioms that might be part of some MUPSes
found while exploring the subtree of s.

152 / 165



CS-tree Exploration – Example

Example

A CS-tree for unsatisfiability of Person (abbr. Pe, not to be mixed
with the set P) in K5 = {α1, α2, α3}:

Pe v ∃hP · (M uW ) u ∀hP · ¬Pe︸ ︷︷ ︸
α1

, M v ¬W︸ ︷︷ ︸
α2

, M tW v Pe︸ ︷︷ ︸
α3

.

In gray states, the concept
Person is satsifiable
(R(Pe,D ∪ P) = true).
States with a dotted border
are pruned by the algorithm.

153 / 165



CS-tree Exploration

The following algorithm is exponential in the number of tableau
algorithm runs.

1 (Inicializace) The root of the tree is an initial state s0 = (∅,K)
– apriori, we don’t know any axiom being necessarily in a
MUPS (Ds0 = ∅), but potentially all axioms can be there
(Ps0 = T ∪ A). Next, we define Z = (s0) and R = ∅

2 (Depth First Search) If Z is empty, stop the exploration.
Otherwise pop the first element s from Z .

3 (Test) If R(C ,Ds ∪ Ps) = true then no subset of Ds ∪ Ps can
cause unsatisfiability – we continue with step 2.

4 (Finding an unsatisfiable set) We add Ds ∪ Ps into R and
remove from R all s ′ ∈ R such that Ds ∪ Ps ⊆ s ′. For
Ps = α1, . . . , αN we push to Z a new state
(Ds ∪ {α1, . . . , αi−1},Ps \ {α1, . . . , αi}) – we continue with
step 2.

154 / 165



CS-tree Exploration

The following algorithm is exponential in the number of tableau
algorithm runs.

1 (Inicializace) The root of the tree is an initial state s0 = (∅,K)
– apriori, we don’t know any axiom being necessarily in a
MUPS (Ds0 = ∅), but potentially all axioms can be there
(Ps0 = T ∪ A). Next, we define Z = (s0) and R = ∅

2 (Depth First Search) If Z is empty, stop the exploration.
Otherwise pop the first element s from Z .

3 (Test) If R(C ,Ds ∪ Ps) = true then no subset of Ds ∪ Ps can
cause unsatisfiability – we continue with step 2.

4 (Finding an unsatisfiable set) We add Ds ∪ Ps into R and
remove from R all s ′ ∈ R such that Ds ∪ Ps ⊆ s ′. For
Ps = α1, . . . , αN we push to Z a new state
(Ds ∪ {α1, . . . , αi−1},Ps \ {α1, . . . , αi}) – we continue with
step 2.

154 / 165



CS-tree Exploration

The following algorithm is exponential in the number of tableau
algorithm runs.

1 (Inicializace) The root of the tree is an initial state s0 = (∅,K)
– apriori, we don’t know any axiom being necessarily in a
MUPS (Ds0 = ∅), but potentially all axioms can be there
(Ps0 = T ∪ A). Next, we define Z = (s0) and R = ∅

2 (Depth First Search) If Z is empty, stop the exploration.
Otherwise pop the first element s from Z .

3 (Test) If R(C ,Ds ∪ Ps) = true then no subset of Ds ∪ Ps can
cause unsatisfiability – we continue with step 2.

4 (Finding an unsatisfiable set) We add Ds ∪ Ps into R and
remove from R all s ′ ∈ R such that Ds ∪ Ps ⊆ s ′. For
Ps = α1, . . . , αN we push to Z a new state
(Ds ∪ {α1, . . . , αi−1},Ps \ {α1, . . . , αi}) – we continue with
step 2.

154 / 165



CS-tree Exploration

The following algorithm is exponential in the number of tableau
algorithm runs.

1 (Inicializace) The root of the tree is an initial state s0 = (∅,K)
– apriori, we don’t know any axiom being necessarily in a
MUPS (Ds0 = ∅), but potentially all axioms can be there
(Ps0 = T ∪ A). Next, we define Z = (s0) and R = ∅

2 (Depth First Search) If Z is empty, stop the exploration.
Otherwise pop the first element s from Z .

3 (Test) If R(C ,Ds ∪ Ps) = true then no subset of Ds ∪ Ps can
cause unsatisfiability – we continue with step 2.

4 (Finding an unsatisfiable set) We add Ds ∪ Ps into R and
remove from R all s ′ ∈ R such that Ds ∪ Ps ⊆ s ′. For
Ps = α1, . . . , αN we push to Z a new state
(Ds ∪ {α1, . . . , αi−1},Ps \ {α1, . . . , αi}) – we continue with
step 2.

154 / 165



CS-tree Exploration (2)

Soundness : Step 4 is important – here, we cover all
possibilities. It always holds that Ds ∪ Ps differs to D ′s ∪ P ′s by
just one element, where s ′ is a successor of s.

Finiteness : Set Ds ∪ Ps is finite at the beginning and gets
smaller with the tree depth. Furthermore, in step 4 we
generate only finite number of states.

155 / 165



CS-tree Exploration (2)

Soundness : Step 4 is important – here, we cover all
possibilities. It always holds that Ds ∪ Ps differs to D ′s ∪ P ′s by
just one element, where s ′ is a successor of s.

Finiteness : Set Ds ∪ Ps is finite at the beginning and gets
smaller with the tree depth. Furthermore, in step 4 we
generate only finite number of states.

155 / 165



Another Approach – Reiter’s Algorithm

There is an alternative to CS-trees:

1 Find a single (arbitrary) MUPS (singleMUPS in the next
slides).

2 “remove the source of unsatisfiability provided by MUPS”
(Reiter’s algorithm in the next slides) from the set of axioms
and go explore the remaining axioms in the same manner.

156 / 165



Finding a single MUPS(C ,Y ) – example

Example

The run of singleMUPS(Osoba,K5) introduced next.

157 / 165



Finding a single MUPS(C ,Y ) – example

Example

The run of singleMUPS(Osoba,K5) introduced next.
1.PHASE :

K5 = {α1, α2, α3} R(C , {α1}) = true
S = {α1}

157 / 165



Finding a single MUPS(C ,Y ) – example

Example

The run of singleMUPS(Osoba,K5) introduced next.
1.PHASE :

K5 = {α1, α2, α3} R(C , {α1, α2}) = false
S = {α1, α2}

157 / 165



Finding a single MUPS(C ,Y ) – example

Example

The run of singleMUPS(Osoba,K5) introduced next.
1.PHASE :

K5 = {α1, α2, α3} R(C , {α1, α2}) = false
S = {α1, α2}

2.PHASE :
S = {α1, α2} R(C , {α1, α2} − {α1}) = true
K = {α1}

157 / 165



Finding a single MUPS(C ,Y ) – example

Example

The run of singleMUPS(Osoba,K5) introduced next.
1.PHASE :

K5 = {α1, α2, α3} R(C , {α1, α2}) = false
S = {α1, α2}

2.PHASE :
S = {α1, α2} R(C , {α1, α2} − {α2}) = true
K = {α1, α2}

157 / 165



singleMUPS(C ,Y ) – finding a single MUPS

The following algorithm is polynomial in the number of tableau
algorithm applications – the computational complexity stems from
the complexity of tableau algorithm itself.

1 (Initialization) Denote S = ∅, K = ∅
2 (Finding superset of MUPS) While R(C ,S) = false, then

S = S ∪ {α} for some α ∈ Y \ S .

3 (Pruning found set) For each α ∈ S \ K evaluate
R(C , S \ {α}). If the result is false, then K = K ∪ {α}. The
resulting K is itself a MUPS.

158 / 165



singleMUPS(C ,Y ) – finding a single MUPS

The following algorithm is polynomial in the number of tableau
algorithm applications – the computational complexity stems from
the complexity of tableau algorithm itself.

1 (Initialization) Denote S = ∅, K = ∅
2 (Finding superset of MUPS) While R(C ,S) = false, then

S = S ∪ {α} for some α ∈ Y \ S .

3 (Pruning found set) For each α ∈ S \ K evaluate
R(C , S \ {α}). If the result is false, then K = K ∪ {α}. The
resulting K is itself a MUPS.

158 / 165



singleMUPS(C ,Y ) – finding a single MUPS

The following algorithm is polynomial in the number of tableau
algorithm applications – the computational complexity stems from
the complexity of tableau algorithm itself.

1 (Initialization) Denote S = ∅, K = ∅
2 (Finding superset of MUPS) While R(C ,S) = false, then

S = S ∪ {α} for some α ∈ Y \ S .

3 (Pruning found set) For each α ∈ S \ K evaluate
R(C , S \ {α}). If the result is false, then K = K ∪ {α}. The
resulting K is itself a MUPS.

158 / 165



Finding all MUPSes – Reiter Algorithm, example

Example (continued)

The algorithm ends up with two MUPSes {α1, α2} a
{α1, α3}. “For free” we got diagnoses {α1} a {α2, α3}.

159 / 165



Finding all MUPSes – Reiter Algorithm, example

Example (continued)

The algorithm ends up with two MUPSes {α1, α2} a
{α1, α3}. “For free” we got diagnoses {α1} a {α2, α3}.

159 / 165



Finding all MUPSes – Reiter Algorithm

Reiter algorithm runs singleMUPS(C ,Y ) multiple times to
construct so called “Hitting Set Tree”, nodes of which are
pairs (Ki ,Mi ), where Ki lacks some axioms comparing to K
and Mi = singleMUPS(C ,Ki ), or Mi = “SAT ′′, if C is
satisfiable w.r.t. Ki .

Paths from the root to leaves build up diagnoses (i.e. minimal
sets of axioms, each of which removed from K causes
satisfiability of C ).

Number of singleMUPS(C ,Y ) calls is at most exponential
w.r.t. the initial axioms count. Why ?

160 / 165



Finding all MUPSes – Reiter Algorithm

Reiter algorithm runs singleMUPS(C ,Y ) multiple times to
construct so called “Hitting Set Tree”, nodes of which are
pairs (Ki ,Mi ), where Ki lacks some axioms comparing to K
and Mi = singleMUPS(C ,Ki ), or Mi = “SAT ′′, if C is
satisfiable w.r.t. Ki .

Paths from the root to leaves build up diagnoses (i.e. minimal
sets of axioms, each of which removed from K causes
satisfiability of C ).

Number of singleMUPS(C ,Y ) calls is at most exponential
w.r.t. the initial axioms count. Why ?

160 / 165



Finding all MUPSes – Reiter Algorithm

Reiter algorithm runs singleMUPS(C ,Y ) multiple times to
construct so called “Hitting Set Tree”, nodes of which are
pairs (Ki ,Mi ), where Ki lacks some axioms comparing to K
and Mi = singleMUPS(C ,Ki ), or Mi = “SAT ′′, if C is
satisfiable w.r.t. Ki .

Paths from the root to leaves build up diagnoses (i.e. minimal
sets of axioms, each of which removed from K causes
satisfiability of C ).

Number of singleMUPS(C ,Y ) calls is at most exponential
w.r.t. the initial axioms count. Why ?

160 / 165



Finding all MUPSes – Reiter Algorithm (2)

1 (Initialization) Find single MUPS for C in K, and construct
the root s0 = (K, singleMUPS(C ,K)) of the hitting set tree.
Next, set Z = (s0).

2 (Depth First Search) If Z is empty, STOP.

3 (Test) Otherwise pop an element from Z and denote it as
si = (Ki ,Mi ). If Mi = “SAT ′′, then go to step 2.

4 (Decomposition) For each α ∈ Mi insert into Z a new node
(Ki \ {α}, singleMUPS(Ki \ {α},C )). Go to step 2.

161 / 165



Finding all MUPSes – Reiter Algorithm (2)

1 (Initialization) Find single MUPS for C in K, and construct
the root s0 = (K, singleMUPS(C ,K)) of the hitting set tree.
Next, set Z = (s0).

2 (Depth First Search) If Z is empty, STOP.

3 (Test) Otherwise pop an element from Z and denote it as
si = (Ki ,Mi ). If Mi = “SAT ′′, then go to step 2.

4 (Decomposition) For each α ∈ Mi insert into Z a new node
(Ki \ {α}, singleMUPS(Ki \ {α},C )). Go to step 2.

161 / 165



Finding all MUPSes – Reiter Algorithm (2)

1 (Initialization) Find single MUPS for C in K, and construct
the root s0 = (K, singleMUPS(C ,K)) of the hitting set tree.
Next, set Z = (s0).

2 (Depth First Search) If Z is empty, STOP.

3 (Test) Otherwise pop an element from Z and denote it as
si = (Ki ,Mi ). If Mi = “SAT ′′, then go to step 2.

4 (Decomposition) For each α ∈ Mi insert into Z a new node
(Ki \ {α}, singleMUPS(Ki \ {α},C )). Go to step 2.

161 / 165



Finding all MUPSes – Reiter Algorithm (2)

1 (Initialization) Find single MUPS for C in K, and construct
the root s0 = (K, singleMUPS(C ,K)) of the hitting set tree.
Next, set Z = (s0).

2 (Depth First Search) If Z is empty, STOP.

3 (Test) Otherwise pop an element from Z and denote it as
si = (Ki ,Mi ). If Mi = “SAT ′′, then go to step 2.

4 (Decomposition) For each α ∈ Mi insert into Z a new node
(Ki \ {α}, singleMUPS(Ki \ {α},C )). Go to step 2.

161 / 165



Modeling Error Explanation – Summary

finding MUPSes is the most common way for explaining
modeling errors.

black-box vs. glass box methods. Other methods involve e.g.
incremental methods [dSW03].

the goal is to find MUPSes (and diagnoses) – what to do in
order to solve a modeling problem
(unsatisfiability,inconsistency).

above mentioned methods are quite universal – they can be
used for many other problems that are not related with
description logics.

162 / 165


	Modeling Error Explanation
	Black-box methods
	Algorithms based on CS-trees
	Algorithm based on Reiter's Algorithm
	Algorithm based on Reiter's Algorithm


