
Querying Description Logics

Petr Křemen
petr.kremen@fel.cvut.cz

FEL ČVUT

115 / 164

Our plan

Conjunctive Queries

Evaluation of Conjunctive Queries in ALC

116 / 164

Conjunctive Queries

117 / 164

Query Types

Conjunctive (ABox) queries – queries asking for individual tuples
complying with a graph-like pattern.

Metaqueries – queries asking for individual/concept/role tuples.
There are several languages for metaqueries, e.g.
SPARQL-DL, OWL-SAIQL, etc.

Example

In SPARQL-DL, the query “Find all people together with their
type.” can be written as follows :

Type(?x , ?c),SubClassOf (?c ,Person)

118 / 164

Conjunctive (ABox) queries

Conjunctive (ABox) queries are analogous to database
SELECT-PROJECT-JOIN queries. A conjunctive query is in the
form

Q(?x1, . . . , ?xD)← t1, . . . tT ,

where each ti is either C (yk), or R(yk , yl). Each yi is either (i) an
individual from the ontology, or (ii) variable from a new set V
(variables will be differentiated from individuals by the prefix “?”)
and C denotes a concept and R denotes a role. Next, we need all
?xi to be present also in one of ti .

Example

“Find all mothers and their daughters having at least one brother.”
:

Q(?x , ?z) ← Woman(?x), hasChild(?x , ?y), hasChild(?x , ?z),

Man(?y),Woman(?z)

119 / 164

Conjunctive ABox Queries – Semantics

Conjunctive queries of the form Q() are called boolean – such
queries only test existence of a relational structure in each
model I of the ontology K.

Consider any interpretation I = (∆I , ·I). Evaluation η is a
function from the set of individuals and variables into ∆I that
coincides with I on individuals.

Then I |=η Q(), iff

η(yk) ∈ CI for each atom C (yk) from Q() and
〈η(yk), η(yl)〉 ∈ RI for each atom R(yk , yl) from Q()

Interpretatino I is a model of Q(), iff I |=η Q() for some η.

Next, K |= Q() (Q() is satisfiable in K) iff I |= Q() whenever
I |= K

120 / 164

Conjunctive ABox Queries – Variables

Queries without variables are not practically interesting. For
queries with variables we define semantics as follows. An
N-tuple 〈i1, . . . , in〉 is a solution to Q(?x1, . . . , ?xn) in theory
K, whenever K |= Q ′(), for a boolean query Q ′ obtained from
Q by replacing all occurences of ?x1 in all tk by an individual
i1, etc.

In conjunctive queries two types of variables can be defined:

distinguished occur in the query head as well as body, e.g.
?x , ?z in the previous example. These variables
are evaluated as domain elements that are
necessarily interpretations of some individual
from K. That individual is the binding to the
distinguished variable in the query result.

undistinguished occur only in the query body, e.g. ?y in the
previous example. Their can be interpretated as
any domain elements.

121 / 164

Conjunctive Queries – Examples

Example

Let’s have a theory K4 = (∅, {(∃R1 · C1)(i1),R2(i1, i2),C2(i2)}).

Does K |= Q1() hold for Q1()← R1(?x1, ?x2) ?

What are the solutions of the query Q2(?x1)← R1(?x1, ?x2)
for K ?

What are the solutions of the query
Q3(?x1, ?x2)← R1(?x1, ?x2) for K ?

122 / 164

Evaluation of Conjunctive
Queries in ALC

123 / 164

Satisfiability of ALC Boolean Queries

Satisfiability of the boolean query Q() having a tree shape can
be checked by means of the rolling-up technique.

Each two atoms C1(yk) and C2(yk) can be replaced by a single
query atom of the form (C1 u C2)(yk).
Each query atom of the form R(yk , yl) can be replaced by the
term (∃R · X)(yk), if yl occurs in at most one other query
atom of the form C (yl) (if there is no C (yl) atom in the query,
consider w.l.o.g. that C is >). X equals to

(i) C , whenever yl is a variable,
(ii)C u Yl , whenever yl is an individual. Yl is a representative
concept of individual yl occuring neither in K nor in Q. For
each yl it is necessary to extend ABox of K with concept
assertion Yl(yl).

124 / 164

Satisfiability of ALC Boolean Queries (2)

. . . after rolling-up the query we obtain the query Q()′ ← C (y),
that is satisfied in K, iff Q() is satisfied in K:

If y is an individual, then Q ′() is satisfied, whenever
K |= C (y) (i.e. K ∪ {(¬C)(y)} is inconsistent)

If y is a variable, then Q ′() is satisfied, whenever
K ∪ {C v ⊥} is inconsistent. Why ?

Example

Consider a query Q4()← R1(?x1, ?x2),R2(?x1, ?x3),C2(?x3). This
query can be rolled-up into the query
Q ′

4 ← (∃R1 · > u ∃R2 · C2)(?x1). This query is satisfiable in K4, as
K4 ∪ {(∃R1 · > u ∃R2 · C2) v ⊥} is inconsistent.

125 / 164

Satisfiability of Boolean Queries in ALC (3)

... and what to do with queries with distinguished variables ?

Let’s consider just queries that form “connected component”
and contain for some variable yk at least two query atoms of
the form R1(y1, yk) and R2(y2, yk).

Question: Why is it enough to take just one connected
component?

Let’s make use of the tree model property of ALC. Each
pair of atoms R1(y1, yk) and R2(y2, yk) can be satisfied
only if yk is interpreted as a domain element, that is an
interpretation of an individual – yk can be treated as
distinguished. Why (see next slide) ?

For SHOIN and SROIQ there is no sound and complete
decision procedure for general boolean queries.

126 / 164

ALC Model Example

127 / 164

Queries with Distinguished Variables – naive pruning

Consider arbitrary query Q(?x1, . . . , ?xD). How to evaluate it ?

naive way: Replace each distinguished variable xi with each
individual occuring in K. Solutions are those D-tuples
〈i1, . . . , iD〉, for which a boolean query created from Q by
replacing each xk with ik is satisfiable.

Example

Remind that K4 = (∅, {(∃R1 · C1)(i1),R2(i1, i2),C2(i2)}). The
query

Q5(?x1)← R1(?x1, ?x2),R2(?x1, ?x3),C2(?x3)

has solution 〈i1〉 as

Q ′
5()← R1(i1, ?x2),R2(i1, ?x3),C2(?x3)

can be rolled into Q ′′
5 () for which K4 |= Q ′′

5 :

Q ′′
5 ()← (∃R1 · > u ∃R2 · C2)(i1)

128 / 164

Queries with Distinguished Variables – naive pruning

... another example

Example

The query

Q6(?x1, ?x3)← R1(?x1, ?x2),R2(?x1, ?x3),C2(?x3)

has solution 〈i1, i2〉 as

Q ′
6()← R1(i1, ?x2),R2(i1, i2),C2(i2)

can be rolled into Q ′′
6 for which K4∪{I2(i2)} |= Q ′′

6 .

Q ′′
6 ()← (∃R1 · > u ∃R2 · (C2 u I2))(i1).

Similarly Q7(?x1, ?x2)← R1(?x1, ?x2),R2(?x1, ?x3),C2(?x3) has no
solution.

129 / 164

Queries with Distinguished Variables – iterative pruning

... a bit more clever strategy than replacing all variables:
First, let’s replace just the first variable ?x1 with each
individual from K, resulting in Q2. If the subquery of Q2

containing all query atoms from Q2 without distinguished
variables is not a logical consequence of K, then we do not
need to test potential bindings for other variables.

Many other optimizations are available.

130 / 164

Queries with Distinguished Variables – iterative pruning

Example

For the query Q6(?x1, ?x3), the naive strategy needs to check four
different bindings (resulting in four tableau algorithm runs)

〈i1, i1〉,
〈i1, i2〉,
〈i2, i1〉,
〈i2, i2〉.

Out of them only 〈i1, i2〉 is a solution for Q6. Consider only partial
binding 〈i2〉 for ?x1. Applying this binding to Q6 we get
Q7(?x3) = R1(i2, ?x2),R2(i2, ?x3),C2(?x3). Its
distinguished-variable-free subquery is Q ′

7() = R1(i2, ?x2) and
K4 2 Q ′

7. Because of monotonicity of ALC, we do not need to
check the two bindings for ?x3 in this case which saves us one
tableau algorithm run.

Many optimizations are available.
131 / 164

	Conjunctive Queries
	Evaluation of Conjunctive Queries in ALC

