Inference in Description Logics

Petr Křemen petr.kremen@fel.cvut.cz

September 28, 2014

Petr Křemen petr.kremen@fel.cvut.cz

Inference in Description Logics

September 28, 2014 35 / 80

Our plan

Inference Problems

Petr Křemen petr.kremen@fel.cvut.cz

4 E September 28, 2014 37 / 80

3

3

- 一司

We have introduced syntax and semantics of the language \mathcal{ALC} . Now, let's look on automated reasoning. Having a \mathcal{ALC} theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For TBOX \mathcal{T} and concepts $C_{(i)}$, we want to decide whether

(unsatisfiability) concept C is unsatisfiable, i.e. $\mathcal{T} \models C \sqsubseteq \bot$?

We have introduced syntax and semantics of the language \mathcal{ALC} . Now, let's look on automated reasoning. Having a \mathcal{ALC} theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For TBOX \mathcal{T} and concepts $C_{(i)}$, we want to decide whether

(unsatisfiability) concept *C* is *unsatisfiable*, i.e. $\mathcal{T} \models C \sqsubseteq \bot$? (subsumption) concept C_1 subsumes concept C_2 , i.e. $\mathcal{T} \models C_2 \sqsubseteq C_1$?

We have introduced syntax and semantics of the language \mathcal{ALC} . Now, let's look on automated reasoning. Having a \mathcal{ALC} theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For TBOX \mathcal{T} and concepts $C_{(i)}$, we want to decide whether

(unsatisfiability) concept *C* is *unsatisfiable*, i.e. $\mathcal{T} \models C \sqsubseteq \bot$? (subsumption) concept C_1 subsumes concept C_2 , i.e. $\mathcal{T} \models C_2 \sqsubseteq C_1$? (equivalence) two concepts C_1 and C_2 are *equivalent*, i.e. $\mathcal{T} \models C_1 \equiv C_2$?

We have introduced syntax and semantics of the language \mathcal{ALC} . Now, let's look on automated reasoning. Having a \mathcal{ALC} theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For TBOX \mathcal{T} and concepts $C_{(i)}$, we want to decide whether

(unsatisfiability) concept *C* is *unsatisfiable*, i.e. $\mathcal{T} \models C \sqsubseteq \bot$? (subsumption) concept C_1 subsumes concept C_2 , i.e. $\mathcal{T} \models C_2 \sqsubseteq C_1$? (equivalence) two concepts C_1 and C_2 are *equivalent*, i.e. $\mathcal{T} \models C_1 \equiv C_2$? (disjoint) two concepts C_1 and C_2 are *disjoint*, i.e. $\mathcal{T} \models C_1 \sqcap C_2 \sqsubseteq \bot$?

We have introduced syntax and semantics of the language \mathcal{ALC} . Now, let's look on automated reasoning. Having a \mathcal{ALC} theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For TBOX \mathcal{T} and concepts $C_{(i)}$, we want to decide whether

(unsatisfiability) concept *C* is *unsatisfiable*, i.e. $\mathcal{T} \models C \sqsubseteq \bot$? (subsumption) concept C_1 subsumes concept C_2 , i.e. $\mathcal{T} \models C_2 \sqsubseteq C_1$? (equivalence) two concepts C_1 and C_2 are *equivalent*, i.e. $\mathcal{T} \models C_1 \equiv C_2$? (disjoint) two concepts C_1 and C_2 are *disjoint*, i.e. $\mathcal{T} \models C_1 \sqcap C_2 \sqsubseteq \bot$?

All these tasks can be reduced to unsatisfiability checking of a single concept ...

Reducting Subsumption to Unsatisfiability

Example

These reductions are straighforward – let's show, how to reduce subsumption checking to unsatisfiability checking. Reduction of other inference problems to unsatisfiability is analogous.

$$(\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \Longrightarrow \qquad \mathcal{I} \models \underset{\mathcal{T}}{\mathsf{C}_1} \sqsubseteq \underset{\mathcal{C}_2}{\mathsf{C}_2}) \qquad \text{iff}$$

$$(\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \Longrightarrow \qquad C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}}) \qquad \text{iff}$$

$$(\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \Longrightarrow \ C_{\mathbf{1}}^{\mathcal{I}} \cap (\Delta^{\mathcal{I}} \setminus C_{\mathbf{2}}^{\mathcal{I}}) \subseteq \emptyset \quad \text{ if } \quad$$

$$(\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \Longrightarrow \mathcal{I} \models \mathcal{C}_1 \sqcap \neg \mathcal{C}_2 \sqsubseteq \bot \quad \text{iff}$$
$$\mathcal{I} \models \mathcal{C}_1 \sqcap \neg \mathcal{C}_2 \sqsubset \bot$$

... and for ABOX A, axiom α , concept C, role R and individuals $a_{(i)}$ we want to decide whether

... and for ABOX \mathcal{A} , axiom α , concept C, role R and individuals $a_{(i)}$ we want to decide whether (consistency checking) ABOX \mathcal{A} is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent).

... and for ABOX \mathcal{A} , axiom α , concept C, role R and individuals $a_{(i)}$ we want to decide whether (consistency checking) ABOX \mathcal{A} is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent).

(instance checking) $\mathcal{T} \cup \mathcal{A} \models C(a)$?

... and for ABOX \mathcal{A} , axiom α , concept C, role R and individuals $a_{(i)}$ we want to decide whether (consistency checking) ABOX \mathcal{A} is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent).

(instance checking) $\mathcal{T} \cup \mathcal{A} \models C(a)$?

(role checking) $\mathcal{T} \cup \mathcal{A} \models R(a_1, a_2)$?

... and for ABOX A, axiom α, concept C, role R and individuals a_(i) we want to decide whether
 (consistency checking) ABOX A is consistent w.r.t. T (in short if K is consistent).

- (instance checking) $\mathcal{T} \cup \mathcal{A} \models C(a)$?
- (role checking) $\mathcal{T} \cup \mathcal{A} \models R(a_1, a_2)$?
- (instance retrieval) find all individuals *a*, for which $\mathcal{T} \cup \mathcal{A} \models C(a)$.

... and for ABOX A, axiom α, concept C, role R and individuals a_(i) we want to decide whether
(consistency checking) ABOX A is consistent w.r.t. T (in short if K is consistent).
(instance checking) T ∪ A ⊨ C(a)?
(role checking) T ∪ A ⊨ R(a₁, a₂)?
(instance retrieval) find all individuals a, for which T ∪ A ⊨ C(a).
realization find the most specific concept C from a set of concepts, such that T ∪ A ⊨ C(a).

... and for ABOX A, axiom α , concept C, role R and individuals $a_{(i)}$ we want to decide whether

(consistency checking) ABOX \mathcal{A} is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent).

(instance checking) $\mathcal{T} \cup \mathcal{A} \models C(a)$?

(role checking) $\mathcal{T} \cup \mathcal{A} \models R(a_1, a_2)$?

(instance retrieval) find all individuals *a*, for which $\mathcal{T} \cup \mathcal{A} \models C(a)$.

realization find the most specific concept C from a set of concepts, such that $\mathcal{T} \cup \mathcal{A} \models C(a)$.

All these tasks, as well as concept unsatisfiability checking, can be reduced to consistency checking. Under which condition and how ?

40 / 80

Reduction of concept unsatisfiability to theory consistency

Example

Consider an \mathcal{ALC} theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, a concept C and a fresh individual a_f not occuring in \mathcal{K} :

$$(\mathcal{T} \models \mathcal{C} \sqsubseteq \bot) \qquad \text{iff} \\ (\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \Longrightarrow \mathcal{I} \models \mathcal{C} \sqsubseteq \bot) \qquad \text{iff} \\ (\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \Longrightarrow \mathcal{C}^{\mathcal{I}} \subseteq \emptyset) \qquad \text{iff} \\ \neg [(\exists \mathcal{I})(\mathcal{I} \models \mathcal{T} \land \mathcal{C}^{\mathcal{I}} \nsubseteq \emptyset)] \qquad \text{iff} \\ \neg [(\exists \mathcal{I})(\mathcal{I} \models \mathcal{T} \land a_{f}^{\mathcal{I}} \in \mathcal{C}^{\mathcal{I}})] \qquad \text{iff} \\ (\mathcal{T}, \{\mathcal{C}(a_{f})\}) \quad \text{is inconsistent} \end{cases}$$

Note that for more expressive description logics than \mathcal{ALC} , the ABOX has to be taken into account as well due to its interaction with TBOX.

Inference Algorithms

Petr Křemen petr.kremen@fel.cvut.cz

- ∢ ≣ → September 28, 2014

- 一司

42 / 80

3

Structural Comparison is polynomial, but complete just for some simple DLs without full negation, e.g. ALN, see [BCM⁺03].

Structural Comparison is polynomial, but complete just for some simple DLs without full negation, e.g. ALN, see [BCM⁺03].
Tableaux Algorithms represent the State of Art for complex DLs – sound, complete, finite

Structural Comparison is polynomial, but complete just for some simple DLs without full negation, e.g. ALN, see [BCM⁺03].
 Tableaux Algorithms represent the State of Art for complex DLs – sound, complete, finite

other \dots – e.g. resolution-based transformation to finite automata , etc.

Structural Comparison is polynomial, but complete just for some simple DLs without full negation, e.g. ALN, see [BCM⁺03].
 Tableaux Algorithms represent the State of Art for complex DLs – sound, complete, finite

other \ldots – e.g. resolution-based transformation to finite automata , etc.

We will introduce tableau algorithms.

Tableaux Algorithms (TAs) serve for checking theory consistency in a simple manner: "Consistency of the given ABOX A w.r.t. TBOX T (resp. consistency of theory K) is proven if we succeed in constructing a model of T ∪ A." (resp. theory K)

- Tableaux Algorithms (TAs) serve for checking theory consistency in a simple manner: "Consistency of the given ABOX A w.r.t. TBOX T (resp. consistency of theory K) is proven if we succeed in constructing a model of T ∪ A." (resp. theory K)
- Each TA can be seen as a production system :

- Tableaux Algorithms (TAs) serve for checking theory consistency in a simple manner: "Consistency of the given ABOX A w.r.t. TBOX T (resp. consistency of theory K) is proven if we succeed in constructing a model of T ∪ A." (resp. theory K)
- Each TA can be seen as a production system :
 - state of TA (~ data base) is made up by a set of completion graphs (see next slide),

- Tableaux Algorithms (TAs) serve for checking theory consistency in a simple manner: "Consistency of the given ABOX A w.r.t. TBOX T (resp. consistency of theory K) is proven if we succeed in constructing a model of T ∪ A." (resp. theory K)
- Each TA can be seen as a production system :
 - state of TA (~ data base) is made up by a set of completion graphs (see next slide),
 - inference rules (~ production rules) implement semantics of particular constructs of the given language, e.g. ∃, □, etc. and serve to modify the completion graphs according to

- Tableaux Algorithms (TAs) serve for checking theory consistency in a simple manner: "Consistency of the given ABOX A w.r.t. TBOX T (resp. consistency of theory K) is proven if we succeed in constructing a model of T ∪ A." (resp. theory K)
- Each TA can be seen as a production system :
 - state of TA (~ data base) is made up by a set of completion graphs (see next slide),
 - inference rules (~ production rules) implement semantics of particular constructs of the given language, e.g. ∃, □, etc. and serve to modify the completion graphs according to
 - choosen strategy for rule application

- Tableaux Algorithms (TAs) serve for checking theory consistency in a simple manner: "Consistency of the given ABOX A w.r.t. TBOX T (resp. consistency of theory K) is proven if we succeed in constructing a model of T ∪ A." (resp. theory K)
- Each TA can be seen as a production system :
 - state of TA (~ data base) is made up by a set of completion graphs (see next slide),
 - inference rules (~ production rules) implement semantics of particular constructs of the given language, e.g. ∃, □, etc. and serve to modify the completion graphs according to
 - choosen strategy for rule application
- TAs are not new in DL they were known for FOL as well.

- 4 週 ト - 4 三 ト - 4 三 ト

completion graph is a labeled oriented graph $G = (V_G, E_G, L_G))$, where each node $x \in V_G$ is labeled with a set $L_G(x)$ of concepts and each edge $\langle x, y \rangle \in E_G$ is labeled with a set of edges $L_G(\langle x, y \rangle)^2$

²Next in the text the notation is often shortened as $L_G(x,y)$ instead of $L_G(\langle x,y \rangle)$

Petr Křemen petr.kremen@fel.cvut.cz

Inference in Description Logics

completion graph is a labeled oriented graph $G = (V_G, E_G, L_G))$, where each node $x \in V_G$ is labeled with a set $L_G(x)$ of concepts and each edge $\langle x, y \rangle \in E_G$ is labeled with a set of edges $L_{C}(\langle x, v \rangle)^{2}$

direct clash occurs in a completion graph $G = (V_G, E_G, L_G))$, if $\{A, \neg A\} \subseteq L_G(x)$, or $\bot \in L_G(x)$, for some atomic concept A and a node $\mathbf{x} \in V_{C}$

²Next in the text the notation is often shortened as $L_G(x, y)$ instead of $L_G(\langle x, y \rangle)$ solve

completion graph is a labeled oriented graph $G = (V_G, E_G, L_G))$, where each node $x \in V_G$ is labeled with a set $L_G(x)$ of concepts and each edge $\langle x, y \rangle \in E_G$ is labeled with a set of edges $L_G(\langle x, y \rangle)^2$

direct clash occurs in a completion graph $G = (V_G, E_G, L_G))$, if $\{A, \neg A\} \subseteq L_G(x)$, or $\bot \in L_G(x)$, for some atomic concept Aand a node $x \in V_G$

complete completion graph is a completion graph $G = (V_G, E_G, L_G))$, to which no completion rule from the set of TA completion rules can be applied.

²Next in the text the notation is often shortened as $L_G(x,y)$ instead of $L_G(\langle x,y \rangle)$

Petr Křemen petr.kremen@fel.cvut.cz Inference

completion graph is a labeled oriented graph $G = (V_G, E_G, L_G))$, where each node $x \in V_G$ is labeled with a set $L_G(x)$ of concepts and each edge $\langle x, y \rangle \in E_G$ is labeled with a set of edges $L_G(\langle x, y \rangle)^2$

direct clash occurs in a completion graph $G = (V_G, E_G, L_G))$, if $\{A, \neg A\} \subseteq L_G(x)$, or $\bot \in L_G(x)$, for some atomic concept Aand a node $x \in V_G$

complete completion graph is a completion graph $G = (V_G, E_G, L_G))$, to which no completion rule from the set of TA completion rules can be applied.

Do not mix with notion of complete graphs known from graph theory.

²Next in the text the notation is often shortened as $L_G(x,y)$ instead of $L_G(\langle x,y \rangle)$

Petr Křemen petr.kremen@fel.cvut.cz

45 / 80

Completion Graphs (2)

We define also $\mathcal{I} \models G$ iff $\mathcal{I} \models \mathcal{A}_G$, where \mathcal{A}_G is an ABOX constructed from G, as follows

3

Completion Graphs (2)

We define also $\mathcal{I} \models G$ iff $\mathcal{I} \models \mathcal{A}_G$, where \mathcal{A}_G is an ABOX constructed from G, as follows

• C(a) for each node $a \in V_G$ and each concept $C \in L_G(a)$ and

Completion Graphs (2)

We define also $\mathcal{I} \models G$ iff $\mathcal{I} \models \mathcal{A}_G$, where \mathcal{A}_G is an ABOX constructed from G, as follows

- C(a) for each node $a \in V_G$ and each concept $C \in L_G(a)$ and
- $R(a_1, a_2)$ for each edge $\langle a_1, a_2 \rangle \in E_G$ and each role $R \in L_G(a_1, a_2)$

Tableau Algorithm for \mathcal{ALC} with empty TBOX

let's have $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For a moment, consider for simplicity that $\mathcal{T} = \emptyset$.

3

A B F A B F
let's have $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For a moment, consider for simplicity that $\mathcal{T} = \emptyset$.

0 (Preprocessing) Transform all concepts appearing in \mathcal{K} to the "negational normal form" (NNF) by equivalent operations known from propositional and predicate logics. As a result, all concepts contain negation \neg at most just before atomic concepts, e.g. $\neg(C_1 \sqcap C_2)$ is equivalent (de Morgan rules) to $\neg C_1 \sqcup \neg C_2$).

let's have $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For a moment, consider for simplicity that $\mathcal{T} = \emptyset$.

- 0 (Preprocessing) Transform all concepts appearing in K to the "negational normal form" (NNF) by equivalent operations known from propositional and predicate logics. As a result, all concepts contain negation ¬ at most just before atomic concepts, e.g. ¬(C₁ □ C₂) is equivalent (de Morgan rules) to ¬C₁ □ ¬C₂).
 1 (Initialization) Initial state of the algorithm is S = (C) where
- 1 (Initialization) Initial state of the algorithm is $S_0 = \{G_0\}$, where $G_0 = (V_{G_0}, E_{G_0}, L_{G_0})$ is made up from \mathcal{A} as follows:

let's have $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For a moment, consider for simplicity that $\mathcal{T} = \emptyset$.

- 0 (Preprocessing) Transform all concepts appearing in K to the "negational normal form" (NNF) by equivalent operations known from propositional and predicate logics. As a result, all concepts contain negation ¬ at most just before atomic concepts, e.g. ¬(C₁ □ C₂) is equivalent (de Morgan rules) to ¬C₁ □ ¬C₂).
 1 (Initialization) Initial state of the algorithm is S₀ = {G₀}, where
 - $G_0 = (V_{G_0}, E_{G_0}, L_{G_0})$ is made up from \mathcal{A} as follows:

▶ for each $C(a) \in A$ put $a \in V_{G_0}$ and $C \in L_{G_0}(a)$

let's have $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For a moment, consider for simplicity that $\mathcal{T} = \emptyset$.

- 0 (Preprocessing) Transform all concepts appearing in \mathcal{K} to the "negational normal form" (NNF) by equivalent operations known from propositional and predicate logics. As a result, all concepts contain negation \neg at most just before atomic concepts, e.g. $\neg(C_1 \sqcap C_2)$ is equivalent (de Morgan rules) to $\neg C_1 \sqcup \neg C_2$).
- 1 (Initialization) Initial state of the algorithm is $S_0 = \{G_0\}$, where $G_0 = (V_{G_0}, E_{G_0}, L_{G_0})$ is made up from \mathcal{A} as follows:

▶ for each $C(a) \in A$ put $a \in V_{G_0}$ and $C \in L_{G_0}(a)$

▶ for each $R(a_1, a_2) \in A$ put $\langle a_1, a_2 \rangle \in E_{G_0}$ and $R \in L_{G_0}(a_1, a_2)$

イロト イポト イヨト イヨト 二日

let's have $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For a moment, consider for simplicity that $\mathcal{T} = \emptyset$.

- 0 (Preprocessing) Transform all concepts appearing in \mathcal{K} to the "negational normal form" (NNF) by equivalent operations known from propositional and predicate logics. As a result, all concepts contain negation \neg at most just before atomic concepts, e.g. $\neg(C_1 \sqcap C_2)$ is equivalent (de Morgan rules) to $\neg C_1 \sqcup \neg C_2$).
- 1 (Initialization) Initial state of the algorithm is $S_0 = \{G_0\}$, where $G_0 = (V_{G_0}, E_{G_0}, L_{G_0})$ is made up from \mathcal{A} as follows:
 - ▶ for each $C(a) \in A$ put $a \in V_{G_0}$ and $C \in L_{G_0}(a)$
 - ▶ for each $R(a_1, a_2) \in A$ put $\langle a_1, a_2 \rangle \in E_{G_0}$ and $R \in L_{G_0}(a_1, a_2)$
 - ▶ Sets $V_{G_0}, E_{G_0}, L_{G_0}$ are smallest possible with these properties.

イロト イポト イヨト イヨト 二日

Tableau algorithm for ALC without TBOX (2)

2 (Consistency Check) Current algorithm state is S. If each $G \in S$ contains a direct clash, terminate with result "INCONSISTENT"

. . .

Tableau algorithm for ALC without TBOX (2)

- 2 (Consistency Check) Current algorithm state is S. If each $G \in S$ contains a direct clash, terminate with result "INCONSISTENT"
- 3 (Model Check) Let's choose one $G \in S$ that doesn't contain a direct clash. If G is complete w.r.t. rules shown next, the algorithm terminates with result "CONSISTENT"

. . .

Tableau algorithm for ALC without TBOX (2)

- 2 (Consistency Check) Current algorithm state is S. If each $G \in S$ contains a direct clash, terminate with result "INCONSISTENT"
- 3 (Model Check) Let's choose one $G \in S$ that doesn't contain a direct clash. If G is complete w.r.t. rules shown next, the algorithm terminates with result "CONSISTENT"
- 4 (Rule Application) Find a rule that is applicable to G and apply it. As a result, we obtain from the state S a new state S'. Jump to step 2.

. . .

 $\rightarrow_{\sqcap} \ \mathsf{rule}$

3

A B F A B F

< □ > < ---->

 \rightarrow_{\sqcap} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \nsubseteq L_G(a)$ for some $a \in V_G$.

 \rightarrow_{\Box} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \not\subseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G .

4 1 1 4 1 1 1

 \rightarrow_{\Box} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \not\subseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G .

 \rightarrow_{\sqcup} rule

4 1 1 4 1 1 1

 \rightarrow_{\Box} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \not\subseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G .

 \rightarrow_{\sqcup} rule

if $(C_1 \sqcup C_2) \in L_G(a)$ and $\{C_1, C_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$.

 \rightarrow_{\Box} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \nsubseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G .

 \rightarrow_{\sqcup} rule

if $(C_1 \sqcup C_2) \in L_G(a)$ and $\{C_1, C_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$. then $S' = S \cup \{G_1, G_2\} \setminus \{G\}$, where $G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}})$, and $L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\}$ and otherwise is the same as L_G .

 \rightarrow_{\Box} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \nsubseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G .

 \rightarrow_{\sqcup} rule

 $\begin{array}{l} \text{if } (C_1 \sqcup C_2) \in L_G(a) \text{ and } \{C_1, C_2\} \cap L_G(a) = \emptyset \text{ for some } a \in V_G. \\ \text{then } S' = S \cup \{G_1, G_2\} \setminus \{G\}, \text{ where } G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}}), \text{ and} \\ L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\} \text{ and otherwise is the same as } L_G. \end{array}$

 \rightarrow_{\exists} rule

\rightarrow_{\Box} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \not\subseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G .

\rightarrow_{\sqcup} rule

if
$$(C_1 \sqcup C_2) \in L_G(a)$$
 and $\{C_1, C_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$.
then $S' = S \cup \{G_1, G_2\} \setminus \{G\}$, where $G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}})$, and $L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\}$ and otherwise is the same as L_G .

\rightarrow_{\exists} rule

if $(\exists R \cdot C) \in L_G(a_1)$ and there exists no $a_2 \in V_G$ such that $R \in L_G(a_1, a_2)$ and at the same time $C \in L_G(a_2)$.

A B M A B M

\rightarrow_{\Box} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \not\subseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G .

\rightarrow_{\sqcup} rule

if
$$(C_1 \sqcup C_2) \in L_G(a)$$
 and $\{C_1, C_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$.
then $S' = S \cup \{G_1, G_2\} \setminus \{G\}$, where $G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}})$, and $L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\}$ and otherwise is the same as L_G .

\rightarrow_{\exists} rule

if $(\exists R \cdot C) \in L_G(a_1)$ and there exists no $a_2 \in V_G$ such that $R \in L_G(a_1, a_2)$ and at the same time $C \in L_G(a_2)$.

then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G \cup \{a_2\}, E_G \cup \{\langle a_1, a_2 \rangle\}, L_{G'})$, a $L_{G'}(a_2) = \{C\}, L_{G'}(a_1, a_2) = \{R\}$ and otherwise is the same as L_G .

(人間) とうき くうとう う

\rightarrow_{\Box} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \not\subseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G .

\rightarrow_{\sqcup} rule

if
$$(C_1 \sqcup C_2) \in L_G(a)$$
 and $\{C_1, C_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$.
then $S' = S \cup \{G_1, G_2\} \setminus \{G\}$, where $G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}})$, and $L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\}$ and otherwise is the same as L_G .

\rightarrow_{\exists} rule

if $(\exists R \cdot C) \in L_G(a_1)$ and there exists no $a_2 \in V_G$ such that $R \in L_G(a_1, a_2)$ and at the same time $C \in L_G(a_2)$.

then
$$S' = S \cup \{G'\} \setminus \{G\}$$
, where $G' = (V_G \cup \{a_2\}, E_G \cup \{\langle a_1, a_2 \rangle\}, L_{G'})$, a
 $L_{G'}(a_2) = \{C\}, L_{G'}(a_1, a_2) = \{R\}$ and otherwise is the same as L_G .

 \rightarrow_{\forall} rule

A B M A B M

\rightarrow_{\Box} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \not\subseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G .

\rightarrow_{\sqcup} rule

if
$$(C_1 \sqcup C_2) \in L_G(a)$$
 and $\{C_1, C_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$.
then $S' = S \cup \{G_1, G_2\} \setminus \{G\}$, where $G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}})$, and $L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\}$ and otherwise is the same as L_G .

\rightarrow_\exists rule

if $(\exists R \cdot C) \in L_G(a_1)$ and there exists no $a_2 \in V_G$ such that $R \in L_G(a_1, a_2)$ and at the same time $C \in L_G(a_2)$.

then
$$S' = S \cup \{G'\} \setminus \{G\}$$
, where $G' = (V_G \cup \{a_2\}, E_G \cup \{\langle a_1, a_2 \rangle\}, L_{G'})$, a $L_{G'}(a_2) = \{C\}, L_{G'}(a_1, a_2) = \{R\}$ and otherwise is the same as L_G .

 \rightarrow_{\forall} rule

if $(\forall R \cdot C) \in L_G(a_1)$ and there exists $a_2 \in V_G$ such that $R \in L_G(a, a_1)$ and at the same time $C \notin L_G(a_2)$.

< 回 ト < 三 ト < 三 ト

\rightarrow_{\Box} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \not\subseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G .

\rightarrow_{\sqcup} rule

if
$$(C_1 \sqcup C_2) \in L_G(a)$$
 and $\{C_1, C_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$.
then $S' = S \cup \{G_1, G_2\} \setminus \{G\}$, where $G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}})$, and $L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\}$ and otherwise is the same as L_G .

\rightarrow_\exists rule

if $(\exists R \cdot C) \in L_G(a_1)$ and there exists no $a_2 \in V_G$ such that $R \in L_G(a_1, a_2)$ and at the same time $C \in L_G(a_2)$.

then
$$S' = S \cup \{G'\} \setminus \{G\}$$
, where $G' = (V_G \cup \{a_2\}, E_G \cup \{\langle a_1, a_2 \rangle\}, L_{G'})$, a $L_{G'}(a_2) = \{C\}, L_{G'}(a_1, a_2) = \{R\}$ and otherwise is the same as L_G .

 \rightarrow_{\forall} rule

- if $(\forall R \cdot C) \in L_G(a_1)$ and there exists $a_2 \in V_G$ such that $R \in L_G(a, a_1)$ and at the same time $C \notin L_G(a_2)$.
- then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a_2) = L_G(a_2) \cup \{C\}$ and otherwise is the same as L_G .

TA Run Example

Example

Let's check consistency of the ontology $\mathcal{K}_2 = (\emptyset, \mathcal{A}_2)$, where $\mathcal{A}_2 = \{(\exists maDite \cdot Muz \sqcap \exists maDite \cdot Prarodic \sqcap \neg \exists maDite \cdot (Muz \sqcap Prarodic))(JAN)\}).$

 Let's transform the concept into NNF: ∃maDite · Muz □ ∃maDite · Prarodic □ ∀maDite · (¬Muz □ ¬Prarodic)

TA Run Example

Example

Let's check consistency of the ontology $\mathcal{K}_2 = (\emptyset, \mathcal{A}_2)$, where $\mathcal{A}_2 = \{(\exists maDite \cdot Muz \sqcap \exists maDite \cdot Prarodic \sqcap \neg \exists maDite \cdot (Muz \sqcap Prarodic))(JAN)\}).$

- Let's transform the concept into NNF: ∃maDite · Muz □ ∃maDite · Prarodic □ ∀maDite · (¬Muz □ ¬Prarodic)
- Initial state G_0 of the TA is

"JAN"

((∀maDite - (¬Muz ப ¬Prarodic)) п (ЭmaDite - Prarodic) п (ЭmaDite - Muz))

Example

. . .

• Now, four sequences of steps 2,3,4 of the TA are performed. TA state in step 4, evolves as follows:

э

Example

. . .

• Now, four sequences of steps 2,3,4 of the TA are performed. TA state in step 4, evolves as follows:

•
$$\{G_0\} \xrightarrow{\sqcap-\mathsf{rule}} \{G_1\} \xrightarrow{\exists-\mathsf{rule}} \{G_2\} \xrightarrow{\exists-\mathsf{rule}} \{G_3\} \xrightarrow{\forall-\mathsf{rule}} \{G_4\}, \text{ where } G_4 \text{ is}$$

Petr Křemen petr.kremen@fel.cvut.cz

September 28, 2014 51 / 80

Example

. . .

• By now, we applied just deterministic rules (we still have just a single completion graph). At this point no other deterministic rule is applicable.

Example

. . .

- By now, we applied just deterministic rules (we still have just a single completion graph). At this point no other deterministic rule is applicable.
- Now, we have to apply the ⊔-rule to the concept ¬Muz ⊔ ¬Rodic either in the label of node "0", or in the label of node "1". Its application e.g. to node "1" we obtain the state {G₅, G₆} (G₅ left, G₆ right)

Petr Křemen petr.kremen@fel.cvut.cz

Inference in Description Logics

Example

. . .

We see that G₅ contains a direct clash in node "1". The only other option is to go through the graph G₆. By application of ⊔-rule we obtain the state {G₅, G₇, G₈}, where G₇ (left), G₈ (right) are derived from G₆:

Petr Křemen petr.kremen@fel.cvut.cz

Inference in Description Logics

September 28, 2014 53 / 80

Example

. . .

We see that G₅ contains a direct clash in node "1". The only other option is to go through the graph G₆. By application of ⊔-rule we obtain the state {G₅, G₇, G₈}, where G₇ (left), G₈ (right) are derived from G₆:

• G₇ is complete and without direct clash.

Petr Křemen petr.kremen@fel.cvut.cz

September 28, 2014 53 / 80

3

(日) (周) (三) (三)

Example

... A canonical model \mathcal{I}_2 can be created from ${\it G}_7.$ Is it the only model of \mathcal{K}_2 ?

•
$$\Delta^{\mathcal{I}_2} = \{Jan, i_1, i_2\},\$$

< 一型

Example

... A canonical model \mathcal{I}_2 can be created from ${\it G}_7.$ Is it the only model of \mathcal{K}_2 ?

•
$$\Delta^{\mathcal{I}_2} = \{Jan, i_1, i_2\},$$

•
$$maDite^{\mathcal{I}_2} = \{ \langle Jan, i_1 \rangle, \langle Jan, i_2 \rangle \},\$$

< 一型

Example

... A canonical model \mathcal{I}_2 can be created from ${\it G}_7.$ Is it the only model of \mathcal{K}_2 ?

- $\Delta^{\mathcal{I}_2} = \{Jan, i_1, i_2\},$
- $maDite^{\mathcal{I}_2} = \{ \langle Jan, i_1 \rangle, \langle Jan, i_2 \rangle \},\$
- Prarodic^{\mathcal{I}_2} = { i_1 },

Example

... A canonical model \mathcal{I}_2 can be created from ${\it G}_7.$ Is it the only model of \mathcal{K}_2 ?

- $\Delta^{\mathcal{I}_2} = \{Jan, i_1, i_2\},$ • $maDite^{\mathcal{I}_2} = \{\langle Jan, i_1 \rangle, \langle Jan, i_2 \rangle\},$
- Prarodic^{\mathcal{I}_2} = { i_1 },
- $Muz^{I_2} = \{i_2\},\$

3

Example

... A canonical model \mathcal{I}_2 can be created from $\textit{G}_7.$ Is it the only model of \mathcal{K}_2 ?

• $\Delta^{\mathcal{I}_2} = \{Jan, i_1, i_2\},\$ • $maDite^{\mathcal{I}_2} = \{\langle Jan, i_1 \rangle, \langle Jan, i_2 \rangle\},\$ • $Prarodic^{\mathcal{I}_2} = \{i_1\},\$ • $Muz^{\mathcal{I}_2} = \{i_2\},\$ • " $JAN''^{\mathcal{I}_2} = Jan, "O''^{\mathcal{I}_2} = i_2, "1''^{\mathcal{I}_2} = i_1.$

Finiteness

Finiteness of the TA is an easy consequence of the following:

 $\bullet \ \mathcal{K}$ is finite

Finiteness

Finiteness of the TA is an easy consequence of the following:

- \mathcal{K} is finite
- in each step, TA state can be enriched at most by one completion graph (only by application of →_□ rule). Number of disjunctions (□) in K is finite, i.e. the □ can be applied just finite number of times.

Finiteness

Finiteness of the TA is an easy consequence of the following:

- \mathcal{K} is finite
- in each step, TA state can be enriched at most by one completion graph (only by application of →_□ rule). Number of disjunctions (□) in K is finite, i.e. the □ can be applied just finite number of times.
- for each completion graph $G = (V_G, E_G, L_G)$ it holds that number of nodes in V_G is less or equal to the number of individuals in \mathcal{A} plus number of existential quantifiers in \mathcal{A} .
Finiteness

Finiteness of the TA is an easy consequence of the following:

- ${\cal K}$ is finite
- in each step, TA state can be enriched at most by one completion graph (only by application of →_□ rule). Number of disjunctions (□) in K is finite, i.e. the □ can be applied just finite number of times.
- for each completion graph $G = (V_G, E_G, L_G)$ it holds that number of nodes in V_G is less or equal to the number of individuals in \mathcal{A} plus number of existential quantifiers in \mathcal{A} .
- after application of any of the following rules →_□, →_∃, →_∀ graph G is either enriched with a new node, new edge, or labeling of an existing node/edge is enriched. All these operations are finite.

- 本間 ト イヨ ト イヨ ト 三 ヨ

• Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:
 - ▶ Before application of \rightarrow_\exists rule, $(\exists R \cdot C) \in L_{G_i}(a_1)$ held for $a \in V_{G_i}$.

- Soundness of the TA can be verified as follows. For any *I* ⊨ *A*_{G_i}, it must hold that *I* ⊨ *A*_{G_{i+1}}. We have to show that application of each rule preserves consistency. As an example, let's take the →_∃ rule:
 - ▶ Before application of \rightarrow_\exists rule, $(\exists R \cdot C) \in L_{G_i}(a_1)$ held for $a \in V_{G_i}$.
 - As a result $a_1^{\mathcal{I}} \in (\exists R \cdot C)^{\mathcal{I}}$.

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:
 - ▶ Before application of \rightarrow_\exists rule, $(\exists R \cdot C) \in L_{G_i}(a_1)$ held for $a \in V_{G_i}$.
 - As a result $a_1^{\mathcal{I}} \in (\exists R \cdot C)^{\mathcal{I}}$.
 - ▶ Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\langle a_{\mathcal{I}}^{\mathcal{I}}, i \rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$.

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:
 - ▶ Before application of \rightarrow_\exists rule, $(\exists R \cdot C) \in L_{G_i}(a_1)$ held for $a \in V_{G_i}$.
 - As a result $a_1^{\mathcal{I}} \in (\exists R \cdot C)^{\mathcal{I}}$.
 - Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\langle a_{\mathcal{I}}^{\mathcal{I}}, i \rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$.
 - By application of →∃ a new node a₂ was created in G_{i+1} and the label of edge (a₁, a₂) and node a₂ has been adjusted.

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:
 - ▶ Before application of \rightarrow_\exists rule, $(\exists R \cdot C) \in L_{G_i}(a_1)$ held for $a \in V_{G_i}$.
 - As a result $a_1^{\mathcal{I}} \in (\exists R \cdot C)^{\mathcal{I}}$.
 - Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\langle a_{\mathcal{I}}^{\mathcal{I}}, i \rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$.
 - By application of →∃ a new node a₂ was created in G_{i+1} and the label of edge (a₁, a₂) and node a₂ has been adjusted.
 - It is enough to place i = a₂^T to see that after rule application the domain element (necessary present in any interpretation because of ∃ construct semantics) has been "materialized". As a result, the rule is correct.

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:
 - ▶ Before application of \rightarrow_\exists rule, $(\exists R \cdot C) \in L_{G_i}(a_1)$ held for $a \in V_{G_i}$.
 - As a result $a_1^{\mathcal{I}} \in (\exists R \cdot C)^{\mathcal{I}}$.
 - Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\langle a_{\mathcal{I}}^{\mathcal{I}}, i \rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$.
 - By application of →∃ a new node a₂ was created in G_{i+1} and the label of edge (a₁, a₂) and node a₂ has been adjusted.
 - It is enough to place i = a₂^T to see that after rule application the domain element (necessary present in any interpretation because of ∃ construct semantics) has been "materialized". As a result, the rule is correct.
- For other rules, the soundness is shown in a similar way.

- 4 週 ト - 4 三 ト - 4 三 ト

Completeness

- To prove completeness of the TA, it is necessary to construct a model for each complete completion graph G that doesn't contain a direct clash. Canonical model \mathcal{I} can be constructed as follows:
 - the domain $\Delta^{\mathcal{I}}$ will consist of all nodes of *G*.

• Observe that \mathcal{I} is a model of \mathcal{A}_G . A backward induction can be used to show that \mathcal{I} must be also a model of each previous step and thus also \mathcal{A} .

Completeness

- To prove completeness of the TA, it is necessary to construct a model for each complete completion graph G that doesn't contain a direct clash. Canonical model \mathcal{I} can be constructed as follows:
 - the domain $\Delta^{\mathcal{I}}$ will consist of all nodes of *G*.
 - ▶ for each atomic concept A let's define $A^{\mathcal{I}} = \{a \mid A \in L_G(a)\}$
- Observe that \mathcal{I} is a model of \mathcal{A}_G . A backward induction can be used to show that \mathcal{I} must be also a model of each previous step and thus also \mathcal{A} .

Completeness

- To prove completeness of the TA, it is necessary to construct a model for each complete completion graph G that doesn't contain a direct clash. Canonical model \mathcal{I} can be constructed as follows:
 - the domain $\Delta^{\mathcal{I}}$ will consist of all nodes of *G*.
 - ▶ for each atomic concept A let's define $A^{\mathcal{I}} = \{a \mid A \in L_G(a)\}$
 - ▶ for each atomic role *R* let's define $R^{\mathcal{I}} = \{ \langle a_1, a_2 \rangle \mid R \in L_G(a_1, a_2) \}$
- Observe that \mathcal{I} is a model of \mathcal{A}_G . A backward induction can be used to show that \mathcal{I} must be also a model of each previous step and thus also \mathcal{A} .

• Why we need completion graphs ? Aren't ABOXes enough to maintain the state for TA ?

- Why we need completion graphs ? Aren't ABOXes enough to maintain the state for TA ?
 - ► indeed, for ALC they would be enough. However, for complex DLs a TA state cannot be stored in an ABOX.

- Why we need completion graphs ? Aren't ABOXes enough to maintain the state for TA ?
 - ► indeed, for ALC they would be enough. However, for complex DLs a TA state cannot be stored in an ABOX.
- What about complexity of the algorithm ?

- Why we need completion graphs ? Aren't ABOXes enough to maintain the state for TA ?
 - ► indeed, for ALC they would be enough. However, for complex DLs a TA state cannot be stored in an ABOX.
- What about complexity of the algorithm ?
 - ► P-SPACE (between NP and EXP-TIME).

General Inclusions

We have presented the tableau algorithm for consistency checking of $\mathcal{K} = (\emptyset, \mathcal{A})$. How the situation changes when $\mathcal{T} \neq \emptyset$?

• consider \mathcal{T} containing axioms of the form $C_i \sqsubseteq D_i$ for $1 \le i \le n$. Such \mathcal{T} can be transformed into a single axiom

$\top \sqsubseteq \top_{C}$

General Inclusions

We have presented the tableau algorithm for consistency checking of $\mathcal{K} = (\emptyset, \mathcal{A})$. How the situation changes when $\mathcal{T} \neq \emptyset$?

• consider \mathcal{T} containing axioms of the form $C_i \sqsubseteq D_i$ for $1 \le i \le n$. Such \mathcal{T} can be transformed into a single axiom

$$\Box \sqsubseteq \top c$$

where \top_C denotes a concept $(\neg C_1 \sqcup D_1) \sqcap \ldots \sqcap (\neg C_n \sqcup D_n)$

General Inclusions

We have presented the tableau algorithm for consistency checking of $\mathcal{K} = (\emptyset, \mathcal{A})$. How the situation changes when $\mathcal{T} \neq \emptyset$?

• consider \mathcal{T} containing axioms of the form $C_i \sqsubseteq D_i$ for $1 \le i \le n$. Such \mathcal{T} can be transformed into a single axiom

$$\top \sqsubseteq \top c$$

where \top_C denotes a concept $(\neg C_1 \sqcup D_1) \sqcap \ldots \sqcap (\neg C_n \sqcup D_n)$

 for each model *I* of the theory *K*, each element of Δ^{*I*} must belong to *T*^{*I*}_{*C*}. How to achieve this ?

What about this ? \rightarrow_{\square} rule

3

< 回 > < 三 > < 三 >

```
What about this ?
\rightarrow_{\sqsubset} \mathsf{rule}
             if \top_C \notin L_G(a) for some a \in V_G.
```

3

```
What about this ?

\rightarrow_{\Box} \text{ rule}
if \top_C \notin L_G(a) \text{ for some } a \in V_G.
then S' = S \cup \{G'\} \setminus \{G\}, where G' = (V_G, E_G, L_{G'}), a L_{G'}(a) = L_G(a) \cup \{\top_C\} and otherwise is the same as L_G.
```

```
What about this ?

\rightarrow_{\Box} \text{ rule}
if \top_C \notin L_G(a) \text{ for some } a \in V_G.
then S' = S \cup \{G'\} \setminus \{G\}, where G' = (V_G, E_G, L_{G'}), a L_{G'}(a) = L_G(a) \cup \{\top_C\} and otherwise is the same as L_G.
```

Example

. . .

Consider $\mathcal{K}_3 = (\{Muz \sqsubseteq \exists maRodice \cdot Muz\}, \mathcal{A}_2)$. Then \top_C is $\neg Muz \sqcup \exists maRodice \cdot Muz$. Let's use the introduced TA enriched by $\rightarrow_{\sqsubseteq}$ rule. Repeating several times the application of rules $\rightarrow_{\sqsubseteq}, \rightarrow_{\sqcup}, \rightarrow_{\exists}$ to G_7 (that is not complete w.r.t. to $\rightarrow_{\sqsubseteq}$ rule) from the previous example we get

Example

 \ldots this algorithm doesn't necessarily terminate \odot .

Petr Křemen petr.kremen@fel.cvut.cz

Inference in Description Logics

3

• TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite completion graph.

18 A.

< 一型

- TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite completion graph.
- The mechanism that enforces finite representation is called *blocking*.

- TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite completion graph.
- The mechanism that enforces finite representation is called *blocking*.
- Blocking ensures that inference rules will be applicable until their changes will not repeat "sufficiently frequently".

- TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite completion graph.
- The mechanism that enforces finite representation is called *blocking*.
- Blocking ensures that inference rules will be applicable until their changes will not repeat "sufficiently frequently".
- For \mathcal{ALC} it can be shown that so called *subset blocking* is enough:

- TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite completion graph.
- The mechanism that enforces finite representation is called *blocking*.
- Blocking ensures that inference rules will be applicable until their changes will not repeat "sufficiently frequently".
- For \mathcal{ALC} it can be shown that so called *subset blocking* is enough:
 - ▶ In completion graph *G* a node *x* (not present in ABOX *A*) is blocked by node *y*, if there is an oriented path from *y* to *x* and $L_G(x) \subseteq L_G(y)$.

- TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite completion graph.
- The mechanism that enforces finite representation is called *blocking*.
- Blocking ensures that inference rules will be applicable until their changes will not repeat "sufficiently frequently".
- For \mathcal{ALC} it can be shown that so called *subset blocking* is enough:
 - In completion graph G a node x (not present in ABOX A) is blocked by node y, if there is an oriented path from y to x and L_G(x) ⊆ L_G(y).
- exists rule is only applicable if the node a₁ in its definition is not blocked by another node.

Blocking in TA (2)

• In the previous example, the blocking ensures that node "2" is blocked by node "0" and no other expansion occurs. Which model corresponds to such graph ?

Blocking in TA (2)

- In the previous example, the blocking ensures that node "2" is blocked by node "0" and no other expansion occurs. Which model corresponds to such graph ?
- Introduced TA with subset blocking is sound, complete and finite decision procedure for \mathcal{ALC} .

Let's play ...

http://krizik.felk.cvut.cz/km/dl/index.html

- ∢ 🗇 እ

3

From ALC to OWL(2)-DL

Petr Křemen petr.kremen@fel.cvut.cz

Inference in Description Logics

September 28, 2014 65 / 80

3

(日) (周) (三) (三)

Extending $\dots \mathcal{ALC} \dots$

• We have introduced *ALC*, together with a decision procedure. Its expressiveness is higher than propositional calculus, still it is insufficient for many practical applications.

Extending $\dots \mathcal{ALC} \dots$

- We have introduced *ALC*, together with a decision procedure. Its expressiveness is higher than propositional calculus, still it is insufficient for many practical applications.
- Let's take a look, how to extend ALC while preserving decidability.

Extending $\dots ALC \dots (2)$

 ${\cal N}$ (Number restructions) are used for restricting the number of successors in the given role for the given concept.

syntax (concept)	semantics
$(\geq n R)$	$\left \left\{ a \middle \left \{b \mid (a,b) \in \mathbf{R}^{\mathcal{I}} \} \right \geq n \right. \right $
$(\leq n R)$	$\left\{ a \middle \left \{ b \mid (a, b) \in \mathbf{R}^{\mathcal{I}} \} \right \leq n \right\}$
(= n R)	$\left\{ a \middle \left \{ b \mid (a, b) \in \mathbf{R}^{\mathcal{I}} \} \right = n \right\}$

Example

Concept *Woman* \sqcap (\leq 3 *hasChild*) denotes women who have at most 3 children.

3

(日) (同) (三) (三)
Extending $\dots ALC \dots (2)$

 ${\cal N}$ (Number restructions) are used for restricting the number of successors in the given role for the given concept.

syntax (concept)	semantics	
$(\geq n R)$	$\left \left\{ a \middle \left \{b \mid (a, b) \in \mathbf{R}^{\mathcal{I}} \} \right \ge n \right. \right \right $,
$(\leq n R)$	$\left\{ a \middle \left \{b \mid (a,b) \in \mathbf{R}^{\mathcal{I}} \} \right \leq n \right\}$	•
(= n R)	$\left\{ a \middle \left \{ b \mid (a, b) \in \mathbb{R}^{\mathcal{I}} \} \right = n \right\}$	•

Example

- Concept Woman □ (≤ 3 hasChild) denotes women who have at most 3 children.
- What denotes the axiom $Car \sqsubseteq (\geq 4 hasWheel)$?

A B A A B A

< 🗇 🕨

Extending $\dots ALC \dots (2)$

 ${\cal N}$ (Number restructions) are used for restricting the number of successors in the given role for the given concept.

syntax (concept)	semantics	
$(\geq n R)$	$\left \left\{ a \middle \left \{b \mid (a, b) \in \mathbb{R}^{\mathcal{I}} \} \right \ge n \right. \right\}$	>
$(\leq n R)$	$\left\{ a \middle \left \{ b \mid (a, b) \in \mathbf{R}^{\mathcal{I}} \} \right \le n \right\}$	þ
(= n R)	$\left\{ a \middle \left \{ b \mid (a, b) \in \mathbb{R}^{\mathcal{I}} \} \right = n \right\}$	þ

Example

- Concept *Woman* \sqcap (\leq 3 *hasChild*) denotes women who have at most 3 children.
- What denotes the axiom $Car \sqsubseteq (\geq 4 hasWheel)$?
- ... and $Bicycle \equiv (= 2 hasWheel)$?

(日) (同) (三) (三)

Extending $\dots ALC \dots$ (3)

Q (Qualified number restrictions) are used for restricting the number of successors of the given type in the given role for the given concept.

Syntax (concept)	Semantics
$(\geq n R C)$	$\left\{ \mathbf{a} \middle \left \{ b \mid (\mathbf{a}, b) \in \mathbf{R}^{\mathcal{I}} \land b^{\mathcal{I}} \in \mathbf{C}^{\mathcal{I}} \} \right \ge n \right\}$
$(\leq n R C)$	$\left\{ \mathbf{a} \middle \left \{ b \mid (\mathbf{a}, b) \in \mathbf{R}^{\mathcal{I}} \land b^{\mathcal{I}} \in \mathbf{C}^{\mathcal{I}} \} \right \leq n \right\}$
(= n R C)	$\left\{ \mathbf{a} \middle \left \{ b \mid (\mathbf{a}, b) \in \mathbf{R}^{\mathcal{I}} \land b^{\mathcal{I}} \in \mathbf{C}^{\mathcal{I}} \} \right = n \right\}$

Example

Concept Woman □ (≥ 3 hasChild Man) denotes women who have at least 3 sons.

3

Extending $\dots ALC \dots (3)$

Q (Qualified number restrictions) are used for restricting the number of successors of the given type in the given role for the given concept.

	5611411165
$(\geq n R C)$	$\left\{ \boldsymbol{a} \middle \left \{ \boldsymbol{b} \mid (\boldsymbol{a}, \boldsymbol{b}) \in \boldsymbol{R}^{\mathcal{I}} \land \boldsymbol{b}^{\mathcal{I}} \in \boldsymbol{C}^{\mathcal{I}} \} \right \geq \boldsymbol{n} \right\}$
$(\leq n R C)$	$\left\{ \mathbf{a} \middle \left \{ b \mid (\mathbf{a}, b) \in \mathbf{R}^{\mathcal{I}} \land b^{\mathcal{I}} \in \mathbf{C}^{\mathcal{I}} \} \right \leq n \right\}$
(= n R C)	$\left\{ \mathbf{a} \middle \left \{ b \mid (\mathbf{a}, b) \in \mathbf{R}^{\mathcal{I}} \land b^{\mathcal{I}} \in \mathbf{C}^{\mathcal{I}} \} \right = n \right\}$

Example

- Concept Woman □ (≥ 3 hasChild Man) denotes women who have at least 3 sons.
- What denotes the axiom $Car \sqsubseteq (\geq 4 hasPart Wheel)$?

3

(日) (同) (三) (三)

Extending $\dots ALC \dots (3)$

Q (Qualified number restrictions) are used for restricting the number of successors of the given type in the given role for the given concept.

syntax (concept)	Semantics
$(\geq n R C)$	$\left\{ \mathbf{a} \middle \left \{ b \mid (\mathbf{a}, b) \in \mathbf{R}^{\mathcal{I}} \land b^{\mathcal{I}} \in \mathbf{C}^{\mathcal{I}} \} \right \ge n \right\}$
$(\leq n R C)$	$\left\{ \mathbf{a} \middle \left \{ b \mid (\mathbf{a}, b) \in \mathbf{R}^{\mathcal{I}} \land b^{\mathcal{I}} \in \mathbf{C}^{\mathcal{I}} \} \right \leq n \right\}$
(= n R C)	$\left\{ \mathbf{a} \middle \left \{ b \mid (\mathbf{a}, b) \in \mathbf{R}^{\mathcal{I}} \land b^{\mathcal{I}} \in \mathbf{C}^{\mathcal{I}} \} \right = n \right\}$

Example

- Concept Woman □ (≥ 3 hasChild Man) denotes women who have at least 3 sons.
- What denotes the axiom $Car \sqsubseteq (\geq 4 hasPart Wheel)$?
- Which qualified number restrictions can be expressed in \mathcal{ALC} ?

・ロン ・四 ・ ・ ヨン ・ ヨン

Extending $\dots \mathcal{ALC} \dots (4)$

 ${\cal O}$ (Nominals) can be used for naming a concept elements explicitely.

 $\frac{\text{syntax (concept) semantics}}{\{a_1, \dots, a_n\}} \qquad \{a_1^{\mathcal{I}}, \dots, a_n^{\mathcal{I}}\}$

Example

Concept {MALE, FEMALE} denotes a gender concept that must be interpreted with at most two elements. Why at most ?

A B M A B M

Extending $\dots \mathcal{ALC} \dots (4)$

 ${\cal O}$ (Nominals) can be used for naming a concept elements explicitely.

 $\frac{\text{syntax (concept) semantics}}{\{a_1, \dots, a_n\}} \quad \{a_1^{\mathcal{I}}, \dots, a_n^{\mathcal{I}}\}}$

Example

Concept {MALE, FEMALE} denotes a gender concept that must be interpreted with at most two elements. Why at most ?

 $\begin{array}{l} \hline Continent \equiv \\ \{EUROPE, ASIA, AMERICA, AUSTRALIA, AFRICA, ANTARCTICA\} ? \end{array}$

A B M A B M

 $\dots \mathcal{ALC} \dots (5)$

 $\mathcal I$ (Inverse roles) are used for defining role inversion.

 $\frac{\text{syntax (role)}}{R^{-}} \qquad \frac{\text{semantics}}{(R^{\mathcal{I}})^{-1}}$

Example

Role *hasChild*⁻ denotes the relationship *hasParent*.

3

∃ → (∃ →

 $\dots \mathcal{ALC} \dots (5)$

 $\mathcal I$ (Inverse roles) are used for defining role inversion.

 $\frac{\text{syntax (role)}}{R^{-}} \qquad \frac{\text{semantics}}{(R^{\mathcal{I}})^{-1}}$

Example

- Role hasChild⁻ denotes the relationship hasParent.
- What denotes axiom *Person* \sqsubseteq (= 2 *hasChild*⁻) ?

3

A B < A B <</p>

 $\dots \mathcal{ALC} \dots (5)$

 $\mathcal I$ (Inverse roles) are used for defining role inversion.

 $\frac{\text{syntax (role)}}{R^{-}} \qquad \frac{\text{semantics}}{(R^{\mathcal{I}})^{-1}}$

Example

- Role hasChild⁻ denotes the relationship hasParent.
- What denotes axiom *Person* \sqsubseteq (= 2 *hasChild*⁻)?
- What denotes axiom *Person* $\sqsubseteq \exists hasChild^- \cdot \exists hasChild \cdot \top$?

Extending $\dots \mathcal{ALC} \dots$ (6)

 trans (Role transitivity axiom) denotes that a role is transitive. Attention – it is not a transitive closure operator.

 $\begin{array}{ll} \text{syntax (axiom)} & \text{semantics} \\ \hline trans(R) & R^{\mathcal{I}} \text{ is transitive} \end{array}$

Example

Role *isPartOf* can be defined as transitive, while role *hasParent* is not. What about roles *hasPart*, *hasPart⁻*, *hasGrandFather⁻*? Extending $\dots \mathcal{ALC} \dots$ (6)

 trans (Role transitivity axiom) denotes that a role is transitive. Attention – it is not a transitive closure operator.

syntax (axiom)semanticstrans(R) $R^{\mathcal{I}}$ is transitive

Example

- Role *isPartOf* can be defined as transitive, while role *hasParent* is not. What about roles *hasPart*, *hasPart⁻*, *hasGrandFather⁻*?
- What is a transitive closure of a relationship ? What is the difference between a transitive closure of *hasDirectBoss^T* and *hasBoss^T*.

Extending $\dots ALC \dots (7)$

 \mathcal{H} (Role hierarchy) serves for expressing role hierarchies (taxonomies) – similarly to concept hierarchies.

syntax (axiom)semantics $R \sqsubseteq S$ $R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$

Example

Role *hasMother* can be defined as a special case of the role *hasParent*.

Extending $\dots ALC \dots (7)$

 \mathcal{H} (Role hierarchy) serves for expressing role hierarchies (taxonomies) – similarly to concept hierarchies.

syntax (axiom)semantics $R \sqsubseteq S$ $R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$

Example

- Role *hasMother* can be defined as a special case of the role *hasParent*.
- What is the difference between a concept hierarchy *Mother* \sqsubseteq *Parent* and role hierarchy *hasMother* \sqsubseteq *hasParent*.

A B M A B M

Extending $\dots \mathcal{ALC} \dots (8)$

 ${\cal R}$ (role extensions) serve for defining expressive role constructs, like role chains, role disjunctions, etc.

syntax	semantics
$R \circ S \sqsubseteq P$	$R^{\mathcal{I}} \circ S^{\mathcal{I}} \sqsubseteq P^{\mathcal{I}}$
<i>Dis</i> (<i>R</i> , <i>R</i>)	$R^{\mathcal{I}} \cap S^{\mathcal{I}} = \emptyset$
∃ R · Self	$\{a (a,a)\in {\sf R}^{\mathcal I}\}$

Example

How would you define the role *hasUncle* by means of *hasSibling* and *hasParent* ?

A 12 N A 12 N

Extending $\dots \mathcal{ALC} \dots (8)$

 ${\cal R}$ (role extensions) serve for defining expressive role constructs, like role chains, role disjunctions, etc.

syntax	semantics
$R \circ S \sqsubseteq P$	$R^{\mathcal{I}} \circ S^{\mathcal{I}} \sqsubseteq P^{\mathcal{I}}$
<i>Dis</i> (<i>R</i> , <i>R</i>)	$R^{\mathcal{I}} \cap S^{\mathcal{I}} = \emptyset$
∃ R · Self	$\{ {\it a} ({\it a}, {\it a}) \in {\it R}^{\mathcal{I}} \}$

Example

- How would you define the role hasUncle by means of hasSibling and hasParent ?
- how to express that *R* is transitive, using a role chain ?

.

Extending $\dots \mathcal{ALC} \dots (8)$

 ${\cal R}$ (role extensions) serve for defining expressive role constructs, like role chains, role disjunctions, etc.

syntax	semantics
$R \circ S \sqsubseteq P$	$R^{\mathcal{I}} \circ S^{\mathcal{I}} \sqsubseteq P^{\mathcal{I}}$
<i>Dis</i> (<i>R</i> , <i>R</i>)	$R^{\mathcal{I}} \cap S^{\mathcal{I}} = \emptyset$
∃ R · Self	$\{a (a,a)\in {\sf R}^{\mathcal I}\}$

Example

- How would you define the role hasUncle by means of hasSibling and hasParent ?
- how to express that R is transitive, using a role chain ?
- Whom does the following concept denote $Person \sqcap \exists likes \cdot Self$?

4 1 1 4 1 1 1

• From the previously introduced extensions, two prominent decidable supersets of *ALC* can be constructed:

4 1 1 4 1 1 1

- From the previously introduced extensions, two prominent decidable supersets of *ALC* can be constructed:
 - ► SHOIN is a description logics that backs OWL-DL.

- From the previously introduced extensions, two prominent decidable supersets of *ALC* can be constructed:
 - ► SHOIN is a description logics that backs OWL-DL.
 - ► SROIQ is a description logics that backs OWL2-DL.

- From the previously introduced extensions, two prominent decidable supersets of *ALC* can be constructed:
 - ► SHOIN is a description logics that backs OWL-DL.
 - ► SROIQ is a description logics that backs OWL2-DL.
 - Both OWL-DL and OWL2-DL are semantic web languages they extend the corresponding description logics by:

- From the previously introduced extensions, two prominent decidable supersets of *ALC* can be constructed:
 - ► SHOIN is a description logics that backs OWL-DL.
 - ► *SROIQ* is a description logics that backs OWL2-DL.
 - Both OWL-DL and OWL2-DL are semantic web languages they extend the corresponding description logics by:

syntactic sugar – axioms NegativeObjectPropertyAssertion, AllDisjoint, etc.

- From the previously introduced extensions, two prominent decidable supersets of *ALC* can be constructed:
 - ► SHOIN is a description logics that backs OWL-DL.
 - ► SROIQ is a description logics that backs OWL2-DL.
 - Both OWL-DL and OWL2-DL are semantic web languages they extend the corresponding description logics by:

syntactic sugar – axioms NegativeObjectPropertyAssertion, AllDisjoint, etc.

extralogical constructs - imports, annotations

- 제품에 제품에 드통

- From the previously introduced extensions, two prominent decidable supersets of *ALC* can be constructed:
 - SHOIN is a description logics that backs OWL-DL.
 - ► SROIQ is a description logics that backs OWL2-DL.
 - Both OWL-DL and OWL2-DL are semantic web languages they extend the corresponding description logics by:

syntactic sugar – axioms NegativeObjectPropertyAssertion, AllDisjoint, etc.

extralogical constructs – imports, annotations

data types - XSD datatypes are used

• What is the impact of the extensions to the automated reasoning procedure ? The introduced tableau algorithm for \mathcal{ALC} has to be adjusted as follows:

- What is the impact of the extensions to the automated reasoning procedure ? The introduced tableau algorithm for ALC has to be adjusted as follows:
 - ► additional inference rules reflecting the semantics of newly added constructs (O, N, Q)

- What is the impact of the extensions to the automated reasoning procedure ? The introduced tableau algorithm for ALC has to be adjusted as follows:
 - ► additional inference rules reflecting the semantics of newly added constructs (O, N, Q)
 - ▶ definition of *R*-neighbourhood of a node in a completion graph.
 R-neighbourhood notion generalizes simple tests of two nodes being connected with an edge, e.g. in ∃-rule. (*H*, *R*, *I*)

- What is the impact of the extensions to the automated reasoning procedure ? The introduced tableau algorithm for ALC has to be adjusted as follows:
 - ► additional inference rules reflecting the semantics of newly added constructs (O, N, Q)
 - ▶ definition of *R*-neighbourhood of a node in a completion graph.
 R-neighbourhood notion generalizes simple tests of two nodes being connected with an edge, e.g. in ∃-rule. (*H*, *R*, *I*)
 - new conditions for direct clash detection

- What is the impact of the extensions to the automated reasoning procedure ? The introduced tableau algorithm for ALC has to be adjusted as follows:
 - ► additional inference rules reflecting the semantics of newly added constructs (O, N, Q)
 - ▶ definition of *R*-neighbourhood of a node in a completion graph.
 R-neighbourhood notion generalizes simple tests of two nodes being connected with an edge, e.g. in ∃-rule. (*H*, *R*, *I*)
 - new conditions for direct clash detection
 - more strict blocking conditions (blocking over graph structures).

- What is the impact of the extensions to the automated reasoning procedure ? The introduced tableau algorithm for ALC has to be adjusted as follows:
 - ► additional inference rules reflecting the semantics of newly added constructs (O, N, Q)
 - ▶ definition of *R*-neighbourhood of a node in a completion graph.
 R-neighbourhood notion generalizes simple tests of two nodes being connected with an edge, e.g. in ∃-rule. (*H*, *R*, *I*)
 - new conditions for direct clash detection
 - more strict blocking conditions (blocking over graph structures).
- This results in significant computation blowup from EXPTIME (*ALC*) to

- 4 周 ト - 4 日 ト - 1 日

- What is the impact of the extensions to the automated reasoning procedure ? The introduced tableau algorithm for ALC has to be adjusted as follows:
 - ► additional inference rules reflecting the semantics of newly added constructs (O, N, Q)
 - ▶ definition of *R*-neighbourhood of a node in a completion graph.
 R-neighbourhood notion generalizes simple tests of two nodes being connected with an edge, e.g. in ∃-rule. (*H*, *R*, *I*)
 - new conditions for direct clash detection
 - more strict blocking conditions (blocking over graph structures).
- This results in significant computation blowup from EXPTIME (ALC) to
 - ► NEXPTIME for *SHOIN*

A B M A B M

- What is the impact of the extensions to the automated reasoning procedure ? The introduced tableau algorithm for ALC has to be adjusted as follows:
 - ► additional inference rules reflecting the semantics of newly added constructs (O, N, Q)
 - ▶ definition of *R*-neighbourhood of a node in a completion graph.
 R-neighbourhood notion generalizes simple tests of two nodes being connected with an edge, e.g. in ∃-rule. (*H*, *R*, *I*)
 - new conditions for direct clash detection
 - more strict blocking conditions (blocking over graph structures).
- This results in significant computation blowup from EXPTIME (ALC) to
 - NEXPTIME for \mathcal{SHOIN}
 - ► N2EXPTIME for *SROIQ*

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• How to express e.g. that "A cousin is someone whose parent is a sibling of your parent." ?

- How to express e.g. that "A cousin is someone whose parent is a sibling of your parent." ?
- ... we need rules, like

 $\begin{array}{ll} \textit{hasCousin}(?c_1,?c_2) \leftarrow &\textit{hasParent}(?c_1,?p_1),\textit{hasParent}(?c_2,?p_2),\\ &\textit{Man}(?c_2),\textit{hasSibling}(?p_1,?p_2) \end{array}$

- How to express e.g. that "A cousin is someone whose parent is a sibling of your parent." ?
- ... we need rules, like

 $\begin{array}{ll} \textit{hasCousin}(?c_1,?c_2) \leftarrow &\textit{hasParent}(?c_1,?p_1),\textit{hasParent}(?c_2,?p_2),\\ &\textit{Man}(?c_2),\textit{hasSibling}(?p_1,?p_2) \end{array}$

• in general, each variable can bind domain elements (similarly to undistinguished variables in the next lecture); however, such version is *undecidable*.

- How to express e.g. that "A cousin is someone whose parent is a sibling of your parent." ?
- ... we need rules, like

 $\begin{array}{ll} \textit{hasCousin}(?c_1,?c_2) \leftarrow &\textit{hasParent}(?c_1,?p_1),\textit{hasParent}(?c_2,?p_2),\\ &\textit{Man}(?c_2),\textit{hasSibling}(?p_1,?p_2) \end{array}$

• in general, each variable can bind domain elements (similarly to undistinguished variables in the next lecture); however, such version is *undecidable*.

DL-safe rules

DL-safe rules are decidable conjunctive rules where each variable **only binds individuals** (i.e. representation of domain elements, not domain elements themselves).

A B F A B F
Modal Logic introduces modal operators - possibility/necessity, used in multiagent systems.

3

→ Ξ →

< 一型

Modal Logic introduces modal operators - possibility/necessity, used in multiagent systems.

Example

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

< 一型

Modal Logic introduces modal operators - possibility/necessity, used in multiagent systems.

Modal Logic introduces modal operators - possibility/necessity, used in multiagent systems.

Example (□ represents e.g. the "believe" operator of an agent) □(Man □ Person □ ∀hasFather · Man) (1)

• As ALC is a syntactic variant to a multi-modal propositional logic, where each role represents the accessibility relationa between worlds in Kripke structure, the previous example can be transformed to the modal logic as:

Vague Knowledge - fuzzy, probabilistic and possibilistic extensions

イロト 不得下 イヨト イヨト

Modal Logic introduces modal operators - possibility/necessity, used in multiagent systems.

Vague Knowledge - fuzzy, probabilistic and possibilistic extensions

Data Types (D) allow integrating a data domain (numbers, strings), e.g. *Person* $\sqcap \exists hasAge \cdot 23$ represents the concept describing "23-years old persons".

< 回 ト < 三 ト < 三 ト