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Inference Problems in TBOX

We have introduced syntax and semantics of the language ALC. Now,
let’s look on automated reasoning. Having a ALC theory K = (T ,A). For
TBOX T and concepts C(i), we want to decide whether

(unsatisfiability) concept C is unsatisfiable, i.e. T |= C v ⊥ ?

(subsumption) concept C1 subsumes concept C2 , i.e. T |= C2 v C1 ?

(equivalence) two concepts C1 and C2 are equivalent, i.e. T |= C1 ≡ C2 ?

(disjoint) two concepts C1 and C2 are disjoint, i.e. T |= C1 u C2 v ⊥
?

All these tasks can be reduced to unsatisfiability
checking of a single concept ...
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Reducting Subsumption to Unsatisfiability

Example

These reductions are straighforward – let’s show, how to reduce
subsumption checking to unsatisfiability checking. Reduction of other
inference problems to unsatisfiability is analogous.

(T |= C1 v C2 ) iff

(∀I)(I |= T =⇒ I |= C1 v C2 ) iff

(∀I)(I |= T =⇒ C1
I ⊆ C2

I) iff

(∀I)(I |= T =⇒ C1
I ∩ (∆I \ C2

I) ⊆ ∅ iff

(∀I)(I |= T =⇒ I |= C1 u ¬C2 v ⊥ iff

(T |= C1 u ¬C2 v ⊥)
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Inference Problems for ABOX

... and for ABOX A, axiom α, concept C , role R and
individuals a(i) we want to decide whether

(consistency checking) ABOX A is consistent w.r.t. T (in short if K is
consistent).

(instance checking) T ∪ A |= C (a)?

(role checking) T ∪ A |= R(a1 , a2 )?

(instance retrieval) find all individuals a, for which T ∪ A |= C (a).

realization find the most specific concept C from a set of concepts,
such that T ∪ A |= C (a).

All these tasks, as well as concept unsatisfiability
checking, can be reduced to consistency checking.
Under which condition and how ?
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Petr Křemen petr.kremen@fel.cvut.cz Inference in Description Logics September 28, 2014 40 / 80



Reduction of concept unsatisfiability to theory consistency

Example

Consider an ALC theory K = (T ,A), a concept C and a fresh individual
af not occuring in K:

(T |= C v ⊥) iff

(∀I)(I |= T =⇒ I |= C v ⊥) iff

(∀I)(I |= T =⇒ CI ⊆ ∅) iff

¬
[
(∃I)(I |= T ∧ CI * ∅)

]
iff

¬
[
(∃I)(I |= T ∧ af

I ∈ CI)
]

iff

(T , {C (af )}) is inconsistent

Note that for more expressive description logics than ALC, the ABOX has
to be taken into account as well due to its interaction with TBOX.
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Inference Algorithms
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Inference Algorithms in Description Logics

Structural Comparison is polynomial, but complete just for some simple
DLs without full negation, e.g. ALN , see [BCM+03].

Tableaux Algorithms represent the State of Art for complex DLs – sound,
complete, finite

other ... – e.g. resolution-based transformation to finite automata ,
etc.

We will introduce tableau algorithms.
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Tableaux Algorithms

Tableaux Algorithms (TAs) serve for checking theory consistency in a
simple manner: “Consistency of the given ABOX A w.r.t. TBOX
T (resp. consistency of theory K) is proven if we succeed in
constructing a model of T ∪ A.” (resp. theory K)

Each TA can be seen as a production system :

I state of TA (∼ data base) is made up by a set of completion graphs
(see next slide),

I inference rules (∼ production rules) implement semantics of particular
constructs of the given language, e.g. ∃,u, etc. and serve to modify
the completion graphs according to

I choosen strategy for rule application

TAs are not new in DL – they were known for FOL as well.
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Completion Graphs

completion graph is a labeled oriented graph G = (VG ,EG , LG )), where
each node x ∈ VG is labeled with a set LG (x) of concepts
and each edge 〈x , y〉 ∈ EG is labeled with a set of edges
LG (〈x , y〉)2

direct clash occurs in a completion graph G = (VG ,EG , LG )), if
{A,¬A} ⊆ LG (x), or ⊥ ∈ LG (x), for some atomic concept A
and a node x ∈ VG

complete completion graph is a completion graph G = (VG ,EG , LG )), to
which no completion rule from the set of TA completion
rules can be applied.

Do not mix with notion of complete graphs known from
graph theory.

2Next in the text the notation is often shortened as LG (x , y) instead of LG (〈x , y〉).
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Completion Graphs (2)

We define also I |= G iff I |= AG , where AG is an ABOX
constructed from G , as follows

C (a) for each node a ∈ VG and each concept
C ∈ LG (a) and
R(a1 , a2 ) for each edge 〈a1 , a2 〉 ∈ EG and each role
R ∈ LG (a1 , a2 )
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Tableau Algorithm for ALC with empty TBOX

let’s have K = (T ,A). For a moment, consider for simplicity that
T = ∅.

0 (Preprocessing) Transform all concepts appearing in K to the
“negational normal form” (NNF) by equivalent operations known
from propositional and predicate logics. As a result, all concepts
contain negation ¬ at most just before atomic concepts, e.g.
¬(C1 u C2 ) is equivalent (de Morgan rules) to ¬C1 t ¬C2 ).

1 (Initialization) Initial state of the algorithm is S0 = {G0}, where
G0 = (VG0 ,EG0 , LG0) is made up from A as follows:

I for each C (a) ∈ A put a ∈ VG0 and C ∈ LG0 (a)
I for each R(a1 , a2 ) ∈ A put 〈a1 , a2 〉 ∈ EG0 and R ∈ LG0 (a1 , a2 )
I Sets VG0 ,EG0 , LG0 are smallest possible with these properties.
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Petr Křemen petr.kremen@fel.cvut.cz Inference in Description Logics September 28, 2014 47 / 80



Tableau Algorithm for ALC with empty TBOX
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Tableau algorithm for ALC without TBOX (2)

. . .

2 (Consistency Check) Current algorithm state is S . If each G ∈ S
contains a direct clash, terminate with result “INCONSISTENT”

3 (Model Check) Let’s choose one G ∈ S that doesn’t contain a direct
clash. If G is complete w.r.t. rules shown next, the algorithm
terminates with result “CONSISTENT”

4 (Rule Application) Find a rule that is applicable to G and apply it. As
a result, we obtain from the state S a new state S ′. Jump to step 2.
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TA for ALC without TBOX – Inference Rules

→u rule

if (C1 u C2 ) ∈ LG (a) and {C1 ,C2} * LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′ ), and LG ′ (a) = LG (a) ∪ {C1 ,C2}
and otherwise is the same as LG .

→t rule

if (C1 t C2 ) ∈ LG (a) and {C1 ,C2} ∩ LG (a) = ∅ for some a ∈ VG .

then S ′ = S ∪ {G1,G2} \ {G}, where G(1|2) = (VG ,EG , LG(1|2)
), and

LG(1|2)
(a) = LG (a) ∪ {C (1|2)} and otherwise is the same as LG .

→∃ rule

if (∃R · C) ∈ LG (a1 ) and there exists no a2 ∈ VG such that R ∈ LG (a1 , a2 ) and at

the same time C ∈ LG (a2 ).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ∪ {a2},EG ∪ {〈a1 , a2 〉}, LG ′ ), a

LG ′ (a2 ) = {C}, LG ′ (a1 , a2 ) = {R} and otherwise is the same as LG .

→∀ rule

if (∀R · C) ∈ LG (a1 ) and there exists a2 ∈ VG such that R ∈ LG (a, a1 ) and at the

same time C /∈ LG (a2 ).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′ ), and LG ′ (a2 ) = LG (a2 ) ∪ {C} and

otherwise is the same as LG .
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Petr Křemen petr.kremen@fel.cvut.cz Inference in Description Logics September 28, 2014 49 / 80



TA for ALC without TBOX – Inference Rules

→u rule

if (C1 u C2 ) ∈ LG (a) and {C1 ,C2} * LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′ ), and LG ′ (a) = LG (a) ∪ {C1 ,C2}
and otherwise is the same as LG .

→t rule

if (C1 t C2 ) ∈ LG (a) and {C1 ,C2} ∩ LG (a) = ∅ for some a ∈ VG .

then S ′ = S ∪ {G1,G2} \ {G}, where G(1|2) = (VG ,EG , LG(1|2)
), and

LG(1|2)
(a) = LG (a) ∪ {C (1|2)} and otherwise is the same as LG .

→∃ rule

if (∃R · C) ∈ LG (a1 ) and there exists no a2 ∈ VG such that R ∈ LG (a1 , a2 ) and at

the same time C ∈ LG (a2 ).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ∪ {a2},EG ∪ {〈a1 , a2 〉}, LG ′ ), a

LG ′ (a2 ) = {C}, LG ′ (a1 , a2 ) = {R} and otherwise is the same as LG .

→∀ rule

if (∀R · C) ∈ LG (a1 ) and there exists a2 ∈ VG such that R ∈ LG (a, a1 ) and at the

same time C /∈ LG (a2 ).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′ ), and LG ′ (a2 ) = LG (a2 ) ∪ {C} and

otherwise is the same as LG .
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Petr Křemen petr.kremen@fel.cvut.cz Inference in Description Logics September 28, 2014 49 / 80



TA for ALC without TBOX – Inference Rules

→u rule

if (C1 u C2 ) ∈ LG (a) and {C1 ,C2} * LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′ ), and LG ′ (a) = LG (a) ∪ {C1 ,C2}
and otherwise is the same as LG .

→t rule

if (C1 t C2 ) ∈ LG (a) and {C1 ,C2} ∩ LG (a) = ∅ for some a ∈ VG .

then S ′ = S ∪ {G1,G2} \ {G}, where G(1|2) = (VG ,EG , LG(1|2)
), and

LG(1|2)
(a) = LG (a) ∪ {C (1|2)} and otherwise is the same as LG .

→∃ rule

if (∃R · C) ∈ LG (a1 ) and there exists no a2 ∈ VG such that R ∈ LG (a1 , a2 ) and at

the same time C ∈ LG (a2 ).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ∪ {a2},EG ∪ {〈a1 , a2 〉}, LG ′ ), a

LG ′ (a2 ) = {C}, LG ′ (a1 , a2 ) = {R} and otherwise is the same as LG .

→∀ rule

if (∀R · C) ∈ LG (a1 ) and there exists a2 ∈ VG such that R ∈ LG (a, a1 ) and at the

same time C /∈ LG (a2 ).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′ ), and LG ′ (a2 ) = LG (a2 ) ∪ {C} and

otherwise is the same as LG .
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TA Run Example

Example

Let’s check consistency of the ontology K2 = (∅,A2), where
A2 = {(∃maDite ·Muz u ∃maDite · Prarodic u ¬∃maDite ·
(Muz u Prarodic))(JAN)}).

Let’s transform the concept into NNF:
∃maDite ·Muz u∃maDite ·Prarodic u∀maDite · (¬Muz t ¬Prarodic)

Initial state G0 of the TA is
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TA Run Example (2)

Example
. . .

Now, four sequences of steps 2,3,4 of the TA are performed. TA state
in step 4, evolves as follows:

{G0}
u-rule−→ {G1}

∃ -rule−→ {G2}
∃ -rule−→ {G3}

∀ -rule−→ {G4}, where G4 is
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TA Run Example (3)

Example
. . .

By now, we applied just deterministic rules (we still have just a single
completion graph). At this point no other deterministic rule is
applicable.

Now, we have to apply the t-rule to the concept ¬Muz t ¬Rodic
either in the label of node “0”, or in the label of node “1”. Its
application e.g. to node “1” we obtain the state {G5,G6} (G5 left, G6

right)
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TA Run Example (4)

Example
. . .

We see that G5 contains a direct clash in node “1”. The only other
option is to go through the graph G6. By application of t-rule we
obtain the state {G5,G7,G8}, where G7 (left), G8 (right) are derived
from G6 :

G7 is complete and without direct clash.
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TA Run Example (5)

Example

. . . A canonical model I2 can be created from G7. Is it the only model of
K2 ?

∆I2 = {Jan, i1, i2},

maDiteI2 = {〈Jan, i1〉, 〈Jan, i2〉},
PrarodicI2 = {i1},
MuzI2 = {i2},
“JAN ′′I2 = Jan, “0 ′′I2 = i2, “1 ′′I2 = i1,
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Finiteness

Finiteness of the TA is an easy consequence of the following:

K is finite

in each step, TA state can be enriched at most by one completion
graph (only by application of →t rule). Number of disjunctions (t)
in K is finite, i.e. the t can be applied just finite number of times.

for each completion graph G = (VG ,EG , LG ) it holds that number of
nodes in VG is less or equal to the number of individuals in A plus
number of existential quantifiers in A.

after application of any of the following rules →u,→∃ ,→∀ graph G
is either enriched with a new node, new edge, or labeling of an
existing node/edge is enriched. All these operations are finite.
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Soundness

Soundness of the TA can be verified as follows. For any I |= AGi
, it

must hold that I |= AGi+1
. We have to show that application of each

rule preserves consistency. As an example, let’s take the →∃ rule:

I Before application of →∃ rule, (∃R · C ) ∈ LGi (a1 ) held for a ∈ VGi .
I As a result a1

I ∈ (∃R · C )I .
I Next, i ∈ ∆I must exist such that 〈a1I , i〉 ∈ RI and at the same time

i ∈ CI .
I By application of →∃ a new node a2 was created in Gi+1 and the label

of edge 〈a1 , a2 〉 and node a2 has been adjusted.
I It is enough to place i = a2

I to see that after rule application the
domain element (necessary present in any interpretation because of ∃
construct semantics) has been “materialized”. As a result, the rule is
correct.

For other rules, the soundness is shown in a similar way.

Petr Křemen petr.kremen@fel.cvut.cz Inference in Description Logics September 28, 2014 56 / 80



Soundness

Soundness of the TA can be verified as follows. For any I |= AGi
, it

must hold that I |= AGi+1
. We have to show that application of each

rule preserves consistency. As an example, let’s take the →∃ rule:
I Before application of →∃ rule, (∃R · C ) ∈ LGi (a1 ) held for a ∈ VGi .

I As a result a1
I ∈ (∃R · C )I .

I Next, i ∈ ∆I must exist such that 〈a1I , i〉 ∈ RI and at the same time
i ∈ CI .

I By application of →∃ a new node a2 was created in Gi+1 and the label
of edge 〈a1 , a2 〉 and node a2 has been adjusted.

I It is enough to place i = a2
I to see that after rule application the

domain element (necessary present in any interpretation because of ∃
construct semantics) has been “materialized”. As a result, the rule is
correct.

For other rules, the soundness is shown in a similar way.
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Completeness

To prove completeness of the TA, it is necessary to construct a model
for each complete completion graph G that doesn’t contain a direct
clash. Canonical model I can be constructed as follows:

I the domain ∆I will consist of all nodes of G .

I for each atomic concept A let’s define AI = {a | A ∈ LG (a)}
I for each atomic role R let’s define RI = {〈a1 , a2 〉 | R ∈ LG (a1 , a2 )}

Observe that I is a model of AG . A backward induction can be used
to show that I must be also a model of each previous step and thus
also A.
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A few remarks on TAs

Why we need completion graphs ? Aren’t ABOXes enough to
maintain the state for TA ?

I indeed, for ALC they would be enough. However, for complex DLs a
TA state cannot be stored in an ABOX.

What about complexity of the algorithm ?

I P-SPACE (between NP and EXP-TIME).
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General Inclusions

We have presented the tableau algorithm for consistency checking of
K = (∅,A). How the situation changes when T 6= ∅ ?

consider T containing axioms of the form C i v D i for 1 ≤ i ≤ n.
Such T can be transformed into a single axiom

> v >C

where >C denotes a concept (¬C 1 t D1) u . . . u (¬Cn t Dn)

for each model I of the theory K, each element of ∆I must belong
to >IC . How to achieve this ?
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General Inclusions (2)

What about this ?

→v rule

if >C /∈ LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′ ), a LG ′ (a) = LG (a) ∪ {>C} and

otherwise is the same as LG .

Example

Consider K3 = ({Muz v ∃maRodice ·Muz},A2). Then >C is
¬Muz t ∃maRodice ·Muz . Let’s use the introduced TA enriched by →v
rule. Repeating several times the application of rules →v, →t, →∃ to G7

(that is not complete w.r.t. to →v rule) from the previous example we get
. . .

Petr Křemen petr.kremen@fel.cvut.cz Inference in Description Logics September 28, 2014 60 / 80



General Inclusions (2)

What about this ?

→v rule

if >C /∈ LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′ ), a LG ′ (a) = LG (a) ∪ {>C} and

otherwise is the same as LG .

Example

Consider K3 = ({Muz v ∃maRodice ·Muz},A2). Then >C is
¬Muz t ∃maRodice ·Muz . Let’s use the introduced TA enriched by →v
rule. Repeating several times the application of rules →v, →t, →∃ to G7

(that is not complete w.r.t. to →v rule) from the previous example we get
. . .
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General Inclusions (3)

Example

. . . this algorithm doesn’t necessarily terminate /.
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Blocking in TA

TA tries to find an infinite model. It is necessary to force it
representing an infinite model by a finite completion graph.

The mechanism that enforces finite representation is called blocking.

Blocking ensures that inference rules will be applicable until their
changes will not repeat “sufficiently frequently”.

For ALC it can be shown that so called subset blocking is enough:

I In completion graph G a node x (not present in ABOX A) is
blocked by node y , if there is an oriented path from y to x and
LG (x) ⊆ LG (y).

exists− rule is only applicable if the node a1 in its definition is not
blocked by another node.
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Blocking in TA (2)

In the previous example, the blocking ensures that node “2 ′′ is
blocked by node “0 ′′ and no other expansion occurs. Which model
corresponds to such graph ?

Introduced TA with subset blocking is sound, complete and
finite decision procedure for ALC.
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Let’s play . . .

http://krizik.felk.cvut.cz/km/dl/index.html
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From ALC to OWL(2)-DL
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Extending . . .ALC ...

We have introduced ALC, together with a decision procedure. Its
expressiveness is higher than propositional calculus, still it is
insufficient for many practical applications.

Let’s take a look, how to extend ALC while preserving decidability.
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Extending . . .ALC ... (2)

N (Number restructions) are used for restricting the number of
successors in the given role for the given concept.
syntax (concept) semantics

(≥ n R)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}
∣∣∣ ≥ n

}

(≤ n R)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}
∣∣∣ ≤ n

}

(= n R)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}
∣∣∣ = n

}

Example

I Concept Woman u (≤ 3 hasChild) denotes women who have at most 3
children.

I What denotes the axiom Car v (≥ 4 hasWheel) ?

I ... and Bicycle ≡ (= 2 hasWheel) ?
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Petr Křemen petr.kremen@fel.cvut.cz Inference in Description Logics September 28, 2014 67 / 80



Extending . . .ALC ... (2)

N (Number restructions) are used for restricting the number of
successors in the given role for the given concept.
syntax (concept) semantics

(≥ n R)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}
∣∣∣ ≥ n

}

(≤ n R)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}
∣∣∣ ≤ n

}

(= n R)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}
∣∣∣ = n

}

Example

I Concept Woman u (≤ 3 hasChild) denotes women who have at most 3
children.

I What denotes the axiom Car v (≥ 4 hasWheel) ?

I ... and Bicycle ≡ (= 2 hasWheel) ?
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Extending . . .ALC ... (3)

Q (Qualified number restrictions) are used for restricting the number of
successors of the given type in the given role for the given concept.
syntax (concept) semantics

(≥ n R C)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}
∣∣∣ ≥ n

}

(≤ n R C)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}
∣∣∣ ≤ n

}

(= n R C)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}
∣∣∣ = n

}

Example

I Concept Woman u (≥ 3 hasChild Man) denotes women who have at least 3
sons.

I What denotes the axiom Car v (≥ 4 hasPart Wheel) ?

I Which qualified number restrictions can be expressed in ALC ?
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Extending . . .ALC ... (4)

O (Nominals) can be used for naming a concept elements explicitely.
syntax (concept) semantics

{a1, . . . , an} {aI1 , . . . , aIn }

Example

I Concept {MALE ,FEMALE} denotes a gender concept that must be
interpreted with at most two elements. Why at most ?

I Continent ≡
{EUROPE ,ASIA,AMERICA,AUSTRALIA,AFRICA,ANTARCTICA} ?
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. . .ALC ... (5)

I (Inverse roles) are used for defining role inversion.
syntax (role) semantics

R− (RI)−1

Example

I Role hasChild− denotes the relationship hasParent.

I What denotes axiom Person v
(
= 2 hasChild−

)
?

I What denotes axiom Person v ∃hasChild− · ∃hasChild · > ?
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Extending . . .ALC ... (6)

·trans (Role transitivity axiom) denotes that a role is transitive. Attention –
it is not a transitive closure operator.
syntax (axiom) semantics

trans(R) RI is transitive

Example

I Role isPartOf can be defined as transitive, while role hasParent is not.
What about roles hasPart, hasPart−, hasGrandFather− ?

I What is a transitive closure of a relationship ? What is the difference
between a transitive closure of hasDirectBossI and hasBossI .
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Extending . . .ALC ...(7)

H (Role hierarchy) serves for expressing role hierarchies (taxonomies) –
similarly to concept hierarchies.
syntax (axiom) semantics

R v S RI ⊆ SI

Example

I Role hasMother can be defined as a special case of the role hasParent.

I What is the difference between a concept hierarchy Mother v Parent and
role hierarchy hasMother v hasParent.
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Extending . . .ALC ... (8)

R (role extensions) serve for defining expressive role constructs, like role
chains, role disjunctions, etc.
syntax semantics

R ◦ S v P RI ◦ SI v PI

Dis(R,R) RI ∩ SI = ∅
∃R · Self {a|(a, a) ∈ RI}

Example

I How would you define the role hasUncle by means of hasSibling and
hasParent ?

I how to express that R is transitive, using a role chain ?

I Whom does the following concept denote Person u ∃likes · Self ?
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Petr Křemen petr.kremen@fel.cvut.cz Inference in Description Logics September 28, 2014 73 / 80



Extending . . .ALC ... (8)

R (role extensions) serve for defining expressive role constructs, like role
chains, role disjunctions, etc.
syntax semantics

R ◦ S v P RI ◦ SI v PI

Dis(R,R) RI ∩ SI = ∅
∃R · Self {a|(a, a) ∈ RI}

Example

I How would you define the role hasUncle by means of hasSibling and
hasParent ?

I how to express that R is transitive, using a role chain ?

I Whom does the following concept denote Person u ∃likes · Self ?
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Extending . . .ALC ... – OWL-DL a OWL2-DL

From the previously introduced extensions, two prominent decidable
supersets of ALC can be constructed:

I SHOIN is a description logics that backs OWL-DL.
I SROIQ is a description logics that backs OWL2-DL.
I Both OWL-DL and OWL2-DL are semantic web languages – they

extend the corresponding description logics by:

syntactic sugar – axioms NegativeObjectPropertyAssertion,
AllDisjoint, etc.

extralogical constructs – imports, annotations
data types – XSD datatypes are used
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Extending ALC – Reasoning

What is the impact of the extensions to the automated reasoning
procedure ? The introduced tableau algorithm for ALC has to be
adjusted as follows:

I additional inference rules reflecting the semantics of newly added
constructs (O,N ,Q)

I definition of R-neighbourhood of a node in a completion graph.
R-neighbourhood notion generalizes simple tests of two nodes being
connected with an edge, e.g. in ∃-rule. (H,R, I)

I new conditions for direct clash detection
I more strict blocking conditions (blocking over graph structures).

This results in significant computation blowup – from EXPTIME
(ALC) to

I NEXPTIME for SHOIN
I N2EXPTIME for SROIQ
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Petr Křemen petr.kremen@fel.cvut.cz Inference in Description Logics September 28, 2014 75 / 80



Extending ALC – Reasoning

What is the impact of the extensions to the automated reasoning
procedure ? The introduced tableau algorithm for ALC has to be
adjusted as follows:

I additional inference rules reflecting the semantics of newly added
constructs (O,N ,Q)

I definition of R-neighbourhood of a node in a completion graph.
R-neighbourhood notion generalizes simple tests of two nodes being
connected with an edge, e.g. in ∃-rule. (H,R, I)

I new conditions for direct clash detection
I more strict blocking conditions (blocking over graph structures).

This results in significant computation blowup – from EXPTIME
(ALC) to

I NEXPTIME for SHOIN
I N2EXPTIME for SROIQ
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Rules and Description Logics

How to express e.g. that “A cousin is someone whose parent is a
sibling of your parent.” ?

... we need rules, like

hasCousin(?c1, ?c2)← hasParent(?c1, ?p1), hasParent(?c2, ?p2),

Man(?c2), hasSibling(?p1, ?p2)

in general, each variable can bind domain elements (similarly to
undistinguished variables in the next lecture); however, such version is
undecidable.

DL-safe rules

DL-safe rules are decidable conjunctive rules where each variable only
binds individuals (i.e. representation of domain elements, not domain
elements themselves).

Petr Křemen petr.kremen@fel.cvut.cz Inference in Description Logics September 28, 2014 76 / 80



Rules and Description Logics

How to express e.g. that “A cousin is someone whose parent is a
sibling of your parent.” ?

... we need rules, like

hasCousin(?c1, ?c2)← hasParent(?c1, ?p1), hasParent(?c2, ?p2),

Man(?c2), hasSibling(?p1, ?p2)

in general, each variable can bind domain elements (similarly to
undistinguished variables in the next lecture); however, such version is
undecidable.

DL-safe rules

DL-safe rules are decidable conjunctive rules where each variable only
binds individuals (i.e. representation of domain elements, not domain
elements themselves).
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Other extensions

Modal Logic introduces modal operators – possibility/necessity, used in multiagent systems.

Example

(� represents e.g. the ”believe” operator of an agent)

�(Man v Person u ∀hasFather ·Man) (1)

As ALC is a syntactic variant to a multi-modal propositional logic, where each role
represents the accessibility relationa between worlds in Kripke structure, the previous
example can be transformed to the modal logic as:

�(Man⇒ Person ∧ �hasFatherMan) (2)

Vague Knowledge - fuzzy, probabilistic and possibilistic extensions

Data Types (D) allow integrating a data domain (numbers, strings), e.g. Personu∃hasAge · 23
represents the concept describing “23-years old persons”.
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