Inference in Description Logics

Petr Křemen petr.kremen@fel.cvut.cz

FEL ČVUT

Our plan

Inference Problems

Inference Problems

Inference Problems in TBOX

We have introduced syntax and semantics of the language \mathcal{ALC} . Now, let's look on automated reasoning. Having a \mathcal{ALC} theory $\mathcal{K}=(\mathcal{T},\mathcal{A})$. For TBOX \mathcal{T} and concepts \mathcal{C} , \mathcal{D} , we want to decide whether

(unsatisfiability) concept
$$C$$
 is unsatisfiable, i.e. $\mathcal{T} \models C \sqsubseteq \bot$? (subsumption) concept C subsumes concept D , i.e. $\mathcal{T} \models D \sqsubseteq C$? (equivalence) two concepts C and D are equivalent, i.e. $\mathcal{T} \models C \equiv D$? (disjoint) two concepts C and D are disjoint, i.e. $\mathcal{T} \models C \sqcap D \sqsubseteq \bot$?

All these tasks can be reduced to unsatisfiability checking of a single concept ...

Reduction to Concept Unsatisfiability – Example

Example

These reductions are straighforward – let's show, how to reduce subsumption checking to unsatisfiability checking. Reduction of other inference problems to unsatisfiability is analogous.

$$(\mathcal{T} \models C \sqsubseteq D) \qquad \qquad \text{iff} \\ (\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \quad \text{implies} \qquad \mathcal{I} \models C \sqsubseteq D) \qquad \qquad \text{iff} \\ (\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \quad \text{implies} \qquad C^{\mathcal{I}} \subseteq D^{\mathcal{I}}) \qquad \qquad \text{iff} \\ (\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \quad \text{implies} \qquad C^{\mathcal{I}} \cap (\Delta^{\mathcal{I}} \setminus D^{\mathcal{I}}) \subseteq \emptyset \qquad \qquad \text{iff} \\ (\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \quad \text{implies} \qquad \mathcal{I} \models C \sqcap \neg D \sqsubseteq \bot \qquad \qquad \text{iff} \\ (\mathcal{T} \models C \sqcap \neg D \sqsubseteq \bot)$$

Inference Problems for ABOX

... for ABOX A, axiom α , concept C, role R and individuals a, a_0 we want to decide whether

(consistency checking) ABOX \mathcal{A} is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent).

(instance checking) $T \cup A \models C(a)$?

(role checking) $T \cup A \models R(a, a_0)$?

(instance retrieval) find all individuals a_1 , for which $\mathcal{T} \cup \mathcal{A} \models \mathcal{C}(a_1)$.

realization find the most specific concept C from a set of concepts, such that $T \cup A \models C(a)$.

All these tasks, as well as concept unsatisfiability checking, can be reduced to consistency checking. Under which condition and how ?

Inference Algorithms

Inference Algorithms in Description Logics

- Structural Comparison is polynomial, but complete just for some simple DLs without full negation, e.g. \mathcal{ALN} , see [BCM⁺03].
- Tableaux Algorithms represent the State of Art for complex DLs sound, complete, finite, see [HS03], [HS01], [BCM+03].
 - other ... e.g. resolution-based [Hab06], transformation to finite automata $[BCM^+03]$, etc.

We will introduce tableau algorithms.

Tableaux Algorithms

- Tableaux Algorithms (TAs) serve for checking ABOXu consistency checking w.r.t. an TBOXu. TAs are not new in DL – they were known for FOL as well.
- Main idea is simple: "Consistency of the given ABOX $\mathcal A$ w.r.t. TBOX $\mathcal T$ is proven if we succeed in constructing a model of $\mathcal T \cup \mathcal A$."
- Each TA can be seen as a production system :
 - ullet state of TA (\sim data base) is made up by a set of completion graphs (see next slide),
 - inference rules (~ production rules) implement semantics of particular constructs of the given language, e.g. ∃, □, etc. and serve to modify the completion graphs according to
 - choosen strategy for rule application

Completion Graphs

```
completion graph is a labeled oriented graph G = (V_G, E_G, L_G)), where each node x \in V_G is labeled with a set L_G(x) of concepts and each edge \langle x, y \rangle \in E_G is labeled with a set of edges L_G(\langle x, y \rangle)^5
```

direct clash occurs in a completion graph $G=(V_G,E_G,L_G)$), if $\{A,\neg A\}\subseteq L_G(x)$, or $\bot\in L_G(x)$, for some atomic concept A and a node $x\in V_G$

complete completion graph is a completion graph $G = (V_G, E_G, L_G)$, to which no completion rule from the set of TA completion rules can be applied.

Do not mix with notion of complete graphs known from graph theory.

⁵Next in the text the notation is often shortened as $L_G(x, y)$ instead of $L_G(\langle x, y \rangle)$.

Completion Graphs (2)

We define also $\mathcal{I} \models G$ iff $\mathcal{I} \models \mathcal{A}_G$, where \mathcal{A}_G is an ABOX constructed from G, as follows

- C(a) for each node $a \in V_G$ and each concept $C \in L_G(a)$ and
- R(a,b) for each edge $\langle a,b\rangle \in E_G$ and each role $R \in L_G(a,b)$ and

Tableau Algorithm for \mathcal{ALC} with empty TBOX

- let's have $\mathcal{K}=(\mathcal{T},\mathcal{A}).$ For a moment, consider for simplicity that $\mathcal{T}=\emptyset.$
- 0 (Preprocessing) Transform all concepts appearing in \mathcal{K} to the "negational normal form" (NNF) by equivalent operations known from propositional and predicate logics. As a result, all concepts contain negation \neg at most just before atomic concepts, e.g. $\neg(A \sqcap B)$ is equivalent (de Morgan rules) as $\neg A \sqcup \neg B$).
- 1 (Initialization) Initial state of the algorithm is $S_0 = \{G_0\}$, where $G_0 = (V_{G_0}, E_{G_0}, L_{G_0})$ is made up from A as follows:
 - for each C(a) put $a \in V_{G_0}$ and $C \in L_{G_0}(a)$
 - for each R(a,b) put $\langle a,b\rangle\in E_{G_0}$ and $R\in L_{G_0}(a,b)$
 - Sets V_{G_0} , E_{G_0} , L_{G_0} are smallest possible with these properties.

Tableau algorithm for ALC without TBOX (2)

. . .

- 2 (Consistency Check) Current algorithm state is S. If each $G \in S$ contains a direct clash, terminate with result "INCONSISTENT"
- 3 (Model Check) Let's choose one $G \in S$ that doesn't contain a direct clash. If G is complete w.r.t. rules shown next, the algorithm terminates with result "CONSISTENT"
- 4 (Rule Application) Find a rule that is applicable to G and apply it. As a result, we obtain from the state S a new state S'. Jump to step 2.

TA for ALC without TBOX – Inference Rules

```
\rightarrow_{\square} rule
           if (C_1 \sqcap C_2) \in L_G(a) and \{C_1, C_2\} \not\subset L_G(a) for some a \in V_G.
      then S' = S \cup \{G'\} \setminus \{G\}, where G' = (V_G, E_G, L_{G'}), and
               L_{G'}(a) = L_G(a) \cup \{C_1, C_2\} and otherwise is the same as L_G.
\rightarrow rule
           if (C_1 \sqcup C_2) \in L_G(a) and \{C_1, C_2\} \cap L_G(a) = \emptyset for some a \in V_G.
      then S' = S \cup \{G_1, G_2\} \setminus \{G\}, where G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}}), and
               L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\} and otherwise is the same as L_G.
\rightarrow \exists rule
           if (\exists R \cdot C) \in L_G(a) and there exists no b \in V_G such that R \in L_G(a,b) and
               at the same time C \in L_G(b).
      then S' = S \cup \{G'\} \setminus \{G\}, where G' = (V_G \cup \{b\}, E_G \cup \{\langle a, b \rangle\}, L_{G'}), a
               L_{G'}(b) = \{C\}, L_{G'}(a,b) = \{R\} and otherwise is the same as L_{G}.
\rightarrow \forall rule
           if (\forall R \cdot C) \in L_G(a) and there exists b \in V_G such that R \in L_G(a,b) and at
               the same time C \notin L_G(b).
      then S' = S \cup \{G'\} \setminus \{G\}, where G' = (V_G, E_G, L_{G'}), and
               L_{G'}(b) = L_G(b) \cup \{D\} and otherwise is the same as L_G.
```

Finiteness

Finiteness of the TA is an easy consequence of the following:

- K is finite
- in each step, TA state can be enriched at most by one completion graph (only by application of \rightarrow_{\sqcup} rule). Number of disjunctions (\sqcup) in $\mathcal K$ is finite, i.e. the \sqcup can be applied just finite number of times.
- for each completion graph $G = (V_G, E_G, L_G)$ it holds that number of nodes in V_G is less or equal to the number of individuals in \mathcal{A} plus number of existential quantifiers in \mathcal{A} .
- after application of any of the following rules $\rightarrow_{\sqcap}, \rightarrow_{\exists}, \rightarrow_{\forall}$ graph G is either enriched with a new node, new edge, or labeling of an existing node/edge is enriched. All these operations are finite.

Soundness

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{\mathcal{G}_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{\mathcal{G}_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_\exists rule:
 - Before application of \rightarrow_\exists rule, $(\exists R \cdot C) \in L_{G_i}(a)$ held for $a \in V_{G_i}$.
 - As a result $a^{\mathcal{I}} \in (\exists R \cdot C)^{\mathcal{I}}$.
 - Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\langle a^{\mathcal{I}}, i \rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$.
 - By application of \rightarrow_\exists a new node b was created in G_{i+1} and the label of edge $\langle a,b\rangle$ and node b has been adjusted.
 - It is enough to place $i = b^{\mathcal{I}}$ to see that after rule application the domain element (necessary present in any interpretation because of \exists construct semantics) has been "materialized". As a result, the rule is correct.
- For other rules, the soundness is shown in a similar way.

Completeness

- To prove completeness of the TA, it is necessary to construct a model for each complete completion graph G that doesn't contain a direct clash. Canonical model \mathcal{I} can be constructed as follows:
 - the domain $\Delta^{\mathcal{I}}$ will consist of all nodes of G.
 - for each atomic concept A let's define $A^{\mathcal{I}} = \{a \mid A \in L_G(a)\}$
 - for each atomic role R let's define $R^{\mathcal{I}} = \{ \langle a, b \rangle \mid R \in L_G(a, b) \}$
- Observe that \mathcal{I} is a model of $\mathcal{A}_{\mathcal{G}}$. A backward induction can be used to show that \mathcal{I} must be also a model of each previous step and thus also \mathcal{A} .

A few remarks on TAs

- Why we need completion graphs? Aren't ABOXes enough to maintain the state for TA?
 - ullet indeed, for \mathcal{ALC} they would be enough. However, for complex DLs a TA state cannot be stored in an ABOX.
- What about complexity of the algorithm ?
 - Without proof, let's state that the algorithm is in P-SPACE (between NP and EXP-TIME).

TA Run Example

Example

Let's check consistency of the ontology $\mathcal{K}_2 = (\emptyset, \mathcal{A}_2)$, where $\mathcal{A}_2 = \{(\exists maDite \cdot Muz \sqcap \exists maDite \cdot Prarodic \sqcap \neg \exists maDite \cdot (Muz \sqcap Prarodic))(JAN)\}).$

- Let's transform the concept into NNF: $\exists maDite \cdot Muz \sqcap \exists maDite \cdot Prarodic \sqcap \forall maDite \cdot (\neg Muz \sqcup \neg Prarodic)$
- Initial state G_0 of the TA is

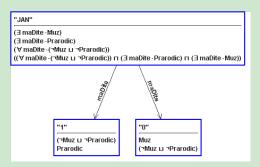
```
"JAN"
((У maDite-(¬Muz ப ¬Prarodic)) п (З maDite-Prarodic) п (З maDite-Muz))
```


TA Run Example (2)

Example

. . .

- Now, four sequences of steps 2,3,4 of the TA are performed.
 TA state in step 4, evolves as follows:
- $\bullet \ \{G_0\} \stackrel{\sqcap\text{-rule}}{\longrightarrow} \{G_1\} \stackrel{\exists\text{-rule}}{\longrightarrow} \{G_2\} \stackrel{\exists\text{-rule}}{\longrightarrow} \{G_3\} \stackrel{\forall\text{-rule}}{\longrightarrow} \{G_4\}, \text{ where } G_4 \text{ is } G_4 \text{ is } G_4 \text{ where } G_4 \text{ is } G_4 \text{ is } G_4 \text{ where } G_4 \text{ is } G_4 \text{ i$



TA Run Example (3)

Example

. . .

- By now, we applied just deterministic rules (we still have just a single completion graph). At this point no other deterministic rule is applicable.
- Now, we have to apply the \sqcup -rule to the concept $\neg Muz \sqcup \neg Rodic$ either in the label of node "0", or in the label of node "1". Its application e.g. to node "1" we obtain the state $\{G_5, G_6\}$ $\{G_5 \text{ left}, G_6 \text{ right}\}$



TA Run Example (4)

Example

. . .

• We see that G_5 contains a direct clash in node "1". The only other option is to go through the graph G_6 . By application of \sqcup -rule we obtain the state $\{G_5, G_7, G_8\}$, where G_7 (left), G_8 (right) are derived from G_6 :

• G₇ is complete and without direct clash.

TA Run Example (5)

Example

... A canonical model \mathcal{I}_2 can be created from G_7 . Is it the only model of \mathcal{K}_2 ?

- $\Delta^{\mathcal{I}_2} = \{Jan, i_1, i_2\},\$
- $maDite^{\mathcal{I}_2} = \{\langle Jan, i_1 \rangle, \langle Jan, i_2 \rangle\},$
- $Prarodic^{\mathcal{I}_2} = \{i_1\},$
- $Muz^{\mathcal{I}_2} = \{i_2\},$
- "JAN" $^{\mathcal{I}_2} = Jan$, " $0''^{\mathcal{I}_2} = i_2$, " $1''^{\mathcal{I}_2} = i_1$,

General Inclusions

We have presented the tableau algorithm for consistency checking of $\mathcal{K}=(\emptyset,\mathcal{A})$. How the situation changes when $\mathcal{T}\neq\emptyset$?

• consider \mathcal{T} containing axioms of the form $C_i \sqsubseteq D_i$ for $1 \le i \le n$. Such \mathcal{T} can be transformed into a single axiom

$$\top \sqsubseteq \top_{C}$$

where \top_C denotes a concept $(\neg C_1 \sqcup D_1) \sqcap \ldots \sqcap (\neg C_n \sqcup D_n)$

• for each model \mathcal{I} of the theory \mathcal{K} , each element of $\Delta^{\mathcal{I}}$ must belong to the interpretation of the concept at the right-hand side. How to achieve this ?

General Inclusions (2)

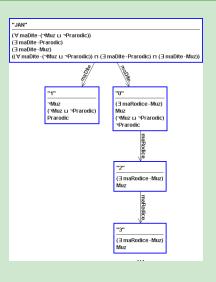
```
What about this ?  \rightarrow_{\sqsubseteq} \text{ rule}  if \top_C \notin L_G(a) \text{ for some } a \in V_G.  then S' = S \cup \{G'\} \setminus \{G\}, \text{ where } G' = (V_G, E_G, L_{G'}), \text{ a}   L_{G'}(a) = L_G(a) \cup \{\top_C\} \text{ and otherwise is the same as } L_G.
```

Example

Consider $\mathcal{K}_3 = (\{\mathit{Muz} \sqsubseteq \exists \mathit{maRodice} \cdot \mathit{Muz}\}, \mathcal{A}_2)$. Then \top_{C} is $\neg \mathit{Muz} \sqcup \exists \mathit{maRodice} \cdot \mathit{Muz}$. Let's use the introduced TA enriched by $\rightarrow_{\sqsubseteq}$ rule. Repeating several times the application of rules $\rightarrow_{\sqsubseteq}$, \rightarrow_{\sqcup} , \rightarrow_{\exists} to G_7 (that is not complete w.r.t. to $\rightarrow_{\sqsubseteq}$ rule) from the previous example we get . . .

General Inclusions (3)

Example



82 / 161

Blocking in TA

- TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite completion graph.
- The mechanism that enforces finite representation is called blocking.
- Blocking ensures that inference rules will be applicable until their changes will not repeat "sufficiently frequently".
- For \mathcal{ALC} it can be shown that so called *subset blocking* is enough:
 - In completion graph G a node x (not present in ABOX A) is blocked by node y, if there is an oriented path from y to x and $L_G(x) \subseteq L_G(y)$.
- All inference rules are applicable until the node *a* in their definition is not blocked by another node.

Blocking in TA (2)

- In the previous example, the blocking ensures that node "2" is blocked by node "0" and no other expansion occurs. Which model corresponds to such graph?
- Introduced TA with subset blocking is sound, complete and finite decision procedure for \mathcal{ALC} .

Let's play ...

• http://krizik.felk.cvut.cz/km/dl/index.html