Expressive Description Logics

Petr Křemen petr.kremen@fel.cvut.cz

FEL ČVUT

From \mathcal{ALC} to OWL(2)-DL

Final Remarks

From ALC to OWL(2)-DL

- We have introduced *ALC*, together with a decision procedure. Its expressiveness is higher than propositional calculus, still it is insufficient for many practical applications.
- Let's take a look, how to extend *ALC* while preserving decidability.

Extending $\dots \mathcal{ALC} \dots (2)$

 ${\cal N}$ (Number restructions) are used for restricting the number of successors in the given role for the given concept.

syntax (concept)	semantics		
$(\geq n R)$	{a	$\left \{ b \mid (a, b) \in R^{\mathcal{I}} \} \right \geq n$	}
$(\leq n R)$	{a	$\Big \{b \mid (a,b) \in R^{\mathcal{I}}\}\Big \leq n$	}
(= n R)	{a	$\left \{ b \mid (a, b) \in R^{\mathcal{I}} \} \right = n$	}

Example

- Concept $Woman \sqcap (\leq 3 hasChild)$ denotes women who have at most 3 children.
- What denotes the axiom $Car \sqsubseteq (\geq 4 hasWheel)$?
- ... and $Bicycle \equiv (= 2 hasWheel)$?

aborator

Extending $\dots \mathcal{ALC} \dots (3)$

 \mathcal{Q} (Qualified number restrictions) are used for restricting the number of successors of the given type in the given role for the given concept.

syntax (concept)	semantics
$(\geq n R C)$	$\left\{ \mathbf{a} \middle \left \{ b \mid (\mathbf{a}, b) \in R^{\mathcal{I}} \land b^{\mathcal{I}} \in C^{\mathcal{I}} \} \right \geq n \right\}$
$(\leq n R C)$	$\left\{ a \middle \left \{ b \mid (a,b) \in R^{\mathcal{I}} \land b^{\mathcal{I}} \in C^{\mathcal{I}} \} \right \leq n \right\}$
(= n R C)	$\left\{ \mathbf{a} \middle \left \{ b \mid (\mathbf{a}, b) \in R^{\mathcal{I}} \land b^{\mathcal{I}} \in C^{\mathcal{I}} \} \right = n \right\}$

- Concept Woman ⊓ (≥ 3 hasChild Man) denotes women who have at least 3 sons.
- What denotes the axiom $Car \sqsubseteq (\geq 4 hasPart Wheel)$?
- Which qualified number restrictions can be expressed in \mathcal{ALC} ? $\frac{1}{\text{structure}}$

O (Nominals) can be used for naming a concept elements explicitely.

 $\begin{array}{ll} \text{syntax (concept)} & \text{semantics} \\ \{a_1, \dots, a_n\} & \{a_1^{\mathcal{I}}, \dots, a_n^{\mathcal{I}}\} \end{array}$

- Concept {*MALE*, *FEMALE*} denotes a gender concept that must be interpreted with at most two elements. Why at most ?
- Continent ≡
 {EUROPE, ASIA, AMERICA, AUSTRALIA, AFRICA, ANTARCTICA}
 ?

 $\dots \mathcal{ALC} \dots (5)$

$\mathcal{I} \underbrace{ \frac{(\text{Inverse roles}) \text{ are used for defining role inversion.}}{\frac{\text{syntax (role) semantics}}{R^{-} (R^{\mathcal{I}})^{-1}} }$

- Role *maDite⁻* denotes the relationship *maRodice*.
- What denotes axiom Person \sqsubseteq (= 2 hasChild⁻)?
- What denotes axiom *Person* $\sqsubseteq \exists hasChild^- \cdot \exists hasChild \cdot \top$?

.trans (Role transitivity axiom) denotes that a role is transitive.
Attention – it is not a transitive closure operator.

 $\frac{\text{syntax (axiom) semantics}}{trans(R)} \quad R^{\mathcal{I}} \text{ is transitive}$

- Role *isPartOf* can be defined as transitive, while role *hasParent* is not. What about roles *hasPart*, *hasPart*⁻, *hasGrandFather*⁻ ?
- What is a transitive closure of a relationship ? What is the difference between a transitive closure of *hasDirectBoss*^I and *hasBoss*^I.

 \mathcal{H} (Role hierarchy) serves for expressing role hierarchies (taxonomies) – similarly to concept hierarchies.

 $\begin{array}{ll} \text{syntax (axiom)} & \text{semantics} \\ R \sqsubseteq S & R^{\mathcal{I}} \subseteq S^{\mathcal{I}} \end{array}$

- Role *hasMother* can be defined as a special case of the role *hasParent*.

Extending $\dots \mathcal{ALC} \dots (8)$

 ${\cal R}$ (role extensions) serve for defining expressive role constructs, like role chains, role disjunctions, etc.

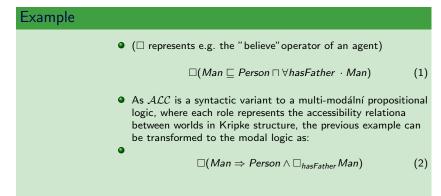
syntax	semantics
$R \circ S \sqsubseteq P$	$R^{\mathcal{I}} \circ S^{\mathcal{I}} \sqsubseteq P^{\mathcal{I}}$
Dis(R, R)	$R^{\mathcal{I}} \cap S^{\mathcal{I}} = \emptyset$
$\exists R \cdot Self$	$\{a (a,a)\in R^{\mathcal{I}}\}$

- How would you define the role *hasUncle* by means of *hasSibling* and *hasParent* ?
- how to express that R is transitive, using a role chain ?
- Whom does the following concept denote *Person* □ ∃*likes* · *Self* ?

- From the previously introduced extensions, two prominent decidable supersets of *ALC* can be constructed:
 - $\bullet~\mathcal{SHOIN}$ is a description logics that backs OWL-DL.
 - \mathcal{SROIQ} is a description logics that backs OWL2-DL.
 - Both OWL-DL and OWL2-DL are semantic web languages they extend the corresponding description logics by: syntactic sugar – axioms NegativeObjectPropertyAssertion, AllDisjoint, etc.
 extralogical constructs – imports, annotations

data types - XSD datatypes are used

- What is the impact of the extensions to the automated reasoning procedure ? The introduced tableau algorithm for \mathcal{ALC} has to be adjusted as follows:
 - additional inference rules reflecting the semantics of newly added constructs $(\mathcal{O},\mathcal{N},\mathcal{Q})$
 - definition of *R*-neighbourhood of a node in a completion graph. R-neighbourhood notion generalizes simple tests of two nodes being connected with an edge, e.g. in ∃-rule. (*H*, *R*, *I*)
 - new conditions for direct clash detection
 - more strict blocking conditions (blocking over graph structures).
- This results in significant computation blowup from EXPTIME (\mathcal{ALC}) to
 - $\bullet~$ NEXPTIME for \mathcal{SHOIN}
 - N2EXPTIME for \mathcal{SROIQ}



Final Remarks

Other extensions

Modal Logic introduces *modal operators* – possibility/necessity, used in multiagent systems.

Vague Knowledge - fuzzy, probabilistic and possibilistic extensions (see [HPS05]).

Data Types (\mathcal{D}) allow integrating a data domain (numbers, strings), e.g. *Person* $\sqcap \exists hasAge \cdot 23$ represents the concept describing "23-years old persons". RacerPro (http://www.racer-systems.com) is a commercial LISP-based system for OWL-DL and SWRL (also available in client/server version).

- Pellet (http://www.mindswap.org) is an open-source Java OWL2-DL engine.
 - Jena http://jena.sourceforge.net/ is an open-source Java framework and API for OWL and RDF(S).
- $\label{eq:FaCT++} \begin{array}{l} \texttt{http://owl.man.ac.uk/factplusplus/ is a DL} \\ \texttt{reasoner for } \mathcal{SHOIQ} \texttt{ written in C++}. \end{array}$

and other ... KAON2, FOWL, Kris

