Introduction, Description Logics

Petr Křemen petr.kremen@fel.cvut.cz

September 29, 2014

Petr Křemen petr.kremen@fel.cvut.cz

Introduction, Description Logics

▲ 直 ト 4 直 ト 直 少 Q (?) September 29, 2014 1 / 83

Our plan

Course Information

- 2 Towards Description Logics
- 3 Logics a Review
- 4 Semantic Networks and Frames
- 5 Towards Description Logics

6 ALC Language

3

- < ∃ →

< 🗗 🕨

• web page:

http://cw.felk.cvut.cz/doku.php/courses/ae4m33rzn/start

web page:

http://cw.felk.cvut.cz/doku.php/courses/ae4m33rzn/start

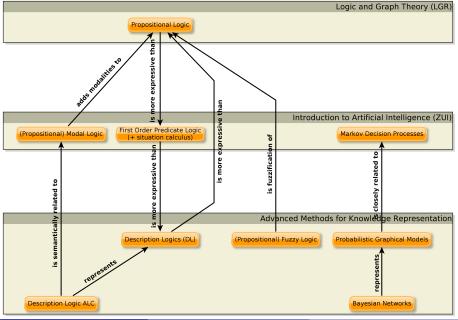
• three basic topics: description logics, fuzzy (description) logic, probabilistic models

web page:

http://cw.felk.cvut.cz/doku.php/courses/ae4m33rzn/start

- three basic topics: description logics, fuzzy (description) logic, probabilistic models
- Please go through the course web page carefully !!!

Course Roadmap

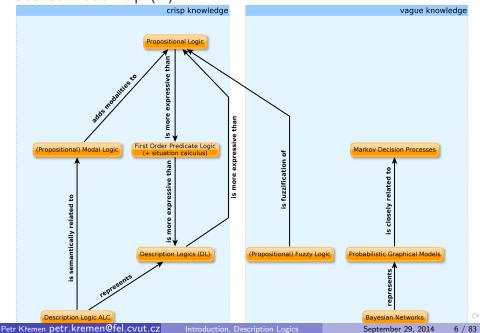


Petr Křemen petr.kremen@fel.cvut.cz

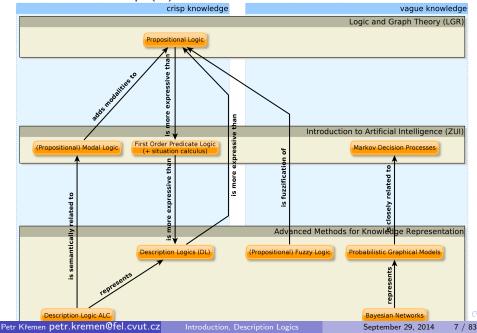
ntroduction, Description Logics

September 29, 2014 5 / 83

Course Roadmap (2)



Course Roadmap (3)



Towards Description Logics

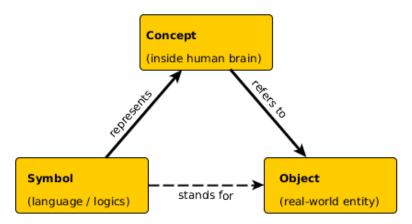
Petr Křemen petr.kremen@fel.cvut.cz

Introduction, Description Logics

3

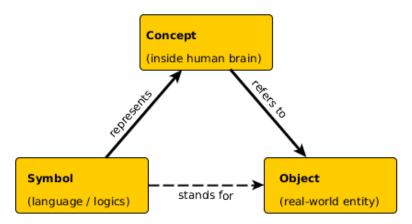
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Semiotic Triangle



refers to \sim modeled by *ontologies*; you can learn in AE0M33OSW course

Semiotic Triangle



refers to \sim modeled by *ontologies*; you can learn in AE0M33OSW course

represents \sim studied by formal knowledge representation languages – this course

Petr Křemen petr.kremen@fel.cvut.cz

Introduction, Description Logics

• deal with proper representation of conceptual knowledge in a domain

- deal with proper representation of conceptual knowledge in a domain
- is used in many AI domains, e.g.:

- deal with proper representation of conceptual knowledge in a domain
- is used in many AI domains, e.g.:
 - knowledge management search engines, data integration

- deal with proper representation of conceptual knowledge in a domain
- is used in many AI domains, e.g.:
 - knowledge management search engines, data integration
 - multiagent systems communication between agents

- deal with proper representation of conceptual knowledge in a domain
- is used in many AI domains, e.g.:
 - knowledge management search engines, data integration
 - multiagent systems communication between agents
 - machine learning language bias

- deal with proper representation of conceptual knowledge in a domain
- is used in many AI domains, e.g.:
 - knowledge management search engines, data integration
 - multiagent systems communication between agents
 - machine learning language bias
- involves many graphical/textual languages ranging from informal to formal ones, e.g. *relational algebra*, *Prolog*, *RDFS*, *OWL*, *topic maps*, *thesauri*, *conceptual graphs*

- deal with proper representation of conceptual knowledge in a domain
- is used in many AI domains, e.g.:
 - knowledge management search engines, data integration
 - multiagent systems communication between agents
 - machine learning language bias
- involves many graphical/textual languages ranging from informal to formal ones, e.g. *relational algebra*, *Prolog*, *RDFS*, *OWL*, *topic maps*, *thesauri*, *conceptual graphs*
- Most of them are based on some logical calculus.

Logics – a Review

イロト 不得 トイヨト イヨト 二日

propositional logic

3

propositional logic

Example

"Everyone is clever." $\Rightarrow \neg$ "John fails at exam."

3

propositional logic

Example

"Everyone is clever." $\Rightarrow \neg$ "John fails at exam."

• first order predicate logic

propositional logic

Example

"Everyone is clever." $\Rightarrow \neg$ "John fails at exam."

• first order predicate logic

Example

$$(\forall x)(Clever(x) \Rightarrow \neg((\exists y)(Exam(y) \land Fails(x, y))))$$

3

A B F A B F

propositional logic

Example

"Everyone is clever." $\Rightarrow \neg$ "John fails at exam."

• first order predicate logic

Example

 $(\forall x)(Clever(x) \Rightarrow \neg((\exists y)(Exam(y) \land Fails(x, y)))).$

• (propositional) modal logic

propositional logic

Example

"Everyone is clever." $\Rightarrow \neg$ "John fails at exam."

• first order predicate logic

Example

$$(\forall x)(Clever(x) \Rightarrow \neg((\exists y)(Exam(y) \land Fails(x, y)))).$$

• (propositional) modal logic

Example

 $\Box((\forall x)(\mathit{Clever}(x) \Rightarrow \Diamond \neg((\exists y)(\mathit{Exam}(y) \land \mathit{Fails}(x,y))))).$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

propositional logic

Example

"Everyone is clever." $\Rightarrow \neg$ "John fails at exam."

• first order predicate logic

Example

$$(\forall x)(Clever(x) \Rightarrow \neg((\exists y)(Exam(y) \land Fails(x, y)))).$$

• (propositional) modal logic

Example

 $\Box((\forall x)(\mathit{Clever}(x) \Rightarrow \Diamond \neg((\exists y)(\mathit{Exam}(y) \land \mathit{Fails}(x,y))))).$

• ... what is the meaning of these formulas ?

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Logics for KR (2)

Logics are defined by their

• Syntax – to *represent* concepts

Logics trade-off

A logic calculus is always a trade-off between *expressiveness* and *tractability of reasoning*.

- ∢ ≣ →

Logics for KR (2)

Logics are defined by their

- Syntax to *represent* concepts
- Semantics to capture meaning of the syntactic constructs

Logics trade-off

A logic calculus is always a trade-off between *expressiveness* and *tractability of reasoning*.

Logics for KR (2)

Logics are defined by their

- Syntax to *represent* concepts
- Semantics to capture meaning of the syntactic constructs
- Proof Theory to enforce the semantics

Logics trade-off

A logic calculus is always a trade-off between *expressiveness* and *tractability of reasoning*.

Example

How to check satisfiability of the formula $A \lor (\neg (B \land A) \lor B \land C)$?

syntax – atomic formulas and \neg , \land , \lor , \Rightarrow

3

< 回 ト < 三 ト < 三 ト

Example

How to check satisfiability of the formula $A \lor (\neg (B \land A) \lor B \land C)$?

syntax – atomic formulas and \neg , \land , \lor , \Rightarrow

semantics (\models) – an interpretation assigns true/false to each formula.

< 回 ト < 三 ト < 三 ト

Example

How to check satisfiability of the formula $A \lor (\neg (B \land A) \lor B \land C)$?

syntax – atomic formulas and \neg , \land , \lor , \Rightarrow semantics (\models) – an interpretation assigns true/false to each formula. proof theory (\vdash) – resolution, tableau

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Example

How to check satisfiability of the formula $A \lor (\neg (B \land A) \lor B \land C)$?

syntax – atomic formulas and \neg , \land , \lor , \Rightarrow semantics (\models) – an interpretation assigns true/false to each formula. proof theory (\vdash) – resolution, tableau complexity – NP-Complete (Cook theorem)

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

First Order Predicate Logic

Example

What is the meaning of this sentence ?

 $(\forall x_1)((Student(x_1) \land (\exists x_2)(GraduateCourse(x_2) \land isEnrolledTo(x_1, x_2)))$ $\Rightarrow (\forall x_3)(isEnrolledTo(x_1, x_3) \Rightarrow GraduateCourse(x_3)))$

Student $\sqcap \exists isEnrolledTo.GraduateCourse \sqsubseteq \forall isEnrolledTo.GraduateCourse$

First Order Predicate Logic – quick informal review

syntax - constructs involve

syntax - constructs involve

term (variable x, constant symbol JOHN, function symbol applied to terms fatherOf(JOHN))

syntax – constructs involve term (variable x, constant symbol JOHN, function symbol applied to terms fatherOf(JOHN)) axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), possibly glued together with \neg , \land , \lor , \Rightarrow , \forall , \exists)

syntax – constructs involve term (variable x, constant symbol JOHN, function symbol applied to terms fatherOf(JOHN)) axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), possibly glued together with \neg , \land , \lor , \Rightarrow , \forall , \exists) universally closed formula formula without free variable $((\forall x)(\exists y)hasFather(x, y) \land Person(y))$

syntax – constructs involve term (variable x, constant symbol JOHN, function symbol applied to terms fatherOf(JOHN)) axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), possibly glued together with \neg , \land , \lor , \Rightarrow , \forall , \exists) universally closed formula formula without free variable $((\forall x)(\exists y)hasFather(x, y) \land Person(y))$

semantics – an interpretation (with valuation) assigns:

syntax – constructs involve term (variable x, constant symbol JOHN, function symbol applied to terms fatherOf(JOHN)) axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), possibly glued together with \neg , \land , \lor , \Rightarrow , \forall , \exists) universally closed formula formula without free variable $((\forall x)(\exists y)hasFather(x, y) \land Person(y))$ semantics – an interpretation (with valuation) assigns:

domain element to each term

syntax – constructs involve term (variable x, constant symbol JOHN, function symbol applied to terms *fatherOf(JOHN)*) axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), possibly glued together with \neg , \land , \lor , \Rightarrow , \forall , \exists) universally closed formula formula without free variable $((\forall x)(\exists y)$ has Father $(x, y) \land Person(y))$ semantics – an interpretation (with valuation) assigns: domain element to each term true/false to each closed formula

syntax – constructs involve term (variable x, constant symbol JOHN, function symbol applied to terms *fatherOf(JOHN)*) axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), possibly glued together with \neg , \land , \lor , \Rightarrow , \forall , \exists) universally closed formula formula without free variable $((\forall x)(\exists y)$ has Father $(x, y) \land Person(y))$ semantics – an interpretation (with valuation) assigns: domain element to each term true/false to each closed formula proof theory - resolution; Deduction Theorem, Soundness Theorem, Completeness Theorem

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

syntax – constructs involve term (variable x, constant symbol JOHN, function symbol applied to terms *fatherOf(JOHN)*) axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), possibly glued together with \neg , \land , \lor , \Rightarrow , \forall , \exists) universally closed formula formula without free variable $((\forall x)(\exists y)$ has Father $(x, y) \land Person(y))$ semantics – an interpretation (with valuation) assigns: domain element to each term true/false to each closed formula proof theory – resolution; Deduction Theorem, Soundness Theorem, Completeness Theorem complexity – undecidable (Goedel)

- 本間 ト イヨ ト イヨ ト 三 ヨ

Open World Assumption

OWA

FOPL accepts Open World Assumption, i.e. whatever is not known is not necessarily false.

As a result, FOPL is monotonic, i.e.

monotonicity

No conclusion can be invalidated by adding extra knowledge.

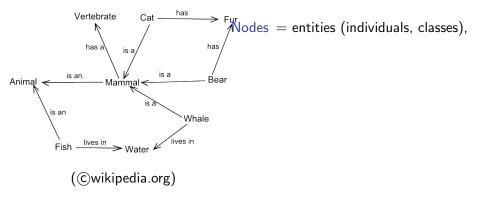
This is in contrary to relational databases, or Prolog that accept Closed World Assumption.

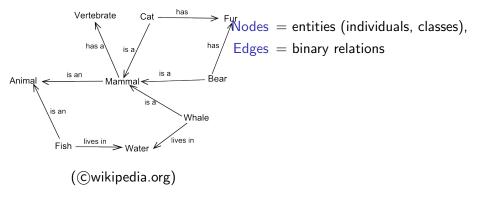
Semantic Networks and Frames

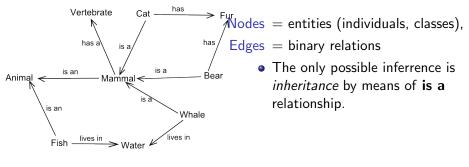
Petr Křemen petr.kremen@fel.cvut.cz

Introduction, Description Logics

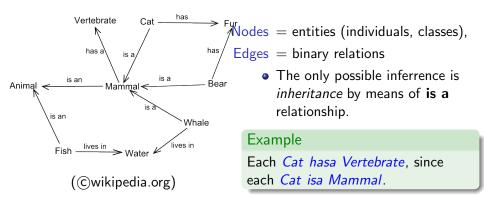
September 29, 2014 18 / 83

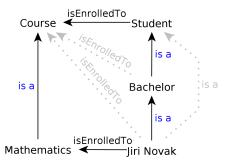




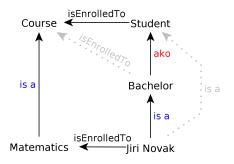


(©wikipedia.org)





However, this does not allow distinguishing individuals (instances) and groups (classes).



To solve this, a new relationship type "is a kind of" **ako** can be introduced and used for inheritance, while **is a** relationships would be restricted to expressing individual-group relationships.

are simple – from the point of logics they are not much more than a binary structure + ako and is a relationships with the following semantics:

are simple – from the point of logics they are not much more than a binary structure + ako and is a relationships with the following semantics:

$$\begin{split} \textit{relation}(X,Y) \land \textit{ako}(Z,X) \Rightarrow \textit{relation}(Z,Y). \\ \textit{isa}(X,Y) \land \textit{ako}(Y,Z) \Rightarrow \textit{isa}(X,Z). \\ \textit{ako}(X,Y) \land \textit{ako}(Y,Z) \Rightarrow \textit{ako}(X,Z). \end{split}$$

③ are simple – from the point of logics they are not much more than a binary structure + ako and is a relationships with the following semantics:

$$ext{relation}(X, Y) \land ext{ako}(Z, X) \Rightarrow ext{relation}(Z, Y).$$

 $ext{isa}(X, Y) \land ext{ako}(Y, Z) \Rightarrow ext{isa}(X, Z).$
 $ext{ako}(X, Y) \land ext{ako}(Y, Z) \Rightarrow ext{ako}(X, Z).$

Ino way to express non-monotonous knowledge (like FOL).

③ are simple – from the point of logics they are not much more than a binary structure + ako and is a relationships with the following semantics:

$$\begin{split} \textit{relation}(X,Y) \land \textit{ako}(Z,X) \Rightarrow \textit{relation}(Z,Y). \\ \textit{isa}(X,Y) \land \textit{ako}(Y,Z) \Rightarrow \textit{isa}(X,Z). \\ \textit{ako}(X,Y) \land \textit{ako}(Y,Z) \Rightarrow \textit{ako}(X,Z). \end{split}$$

on way to express non-monotonous knowledge (like FOL).
no easy way to express n-ary relationships (reification needed).

are simple – from the point of logics they are not much more than a binary structure + ako and is a relationships with the following semantics:

$$\begin{aligned} \textit{relation}(X,Y) \land \textit{ako}(Z,X) &\Rightarrow \textit{relation}(Z,Y). \\ \textit{isa}(X,Y) \land \textit{ako}(Y,Z) &\Rightarrow \textit{isa}(X,Z). \\ \textit{ako}(X,Y) \land \textit{ako}(Y,Z) &\Rightarrow \textit{ako}(X,Z). \end{aligned}$$

- © no way to express non-monotonous knowledge (like FOL).
- © no easy way to express n-ary relationships (reification needed).
- In way to express binary relationships characteristics transitivity, functionality, reflexivity, etc., or their hierarchies "to be a father means to be a parent", aj.,

are simple – from the point of logics they are not much more than a binary structure + ako and is a relationships with the following semantics:

$$\begin{aligned} \textit{relation}(X,Y) \land \textit{ako}(Z,X) &\Rightarrow \textit{relation}(Z,Y). \\ \textit{isa}(X,Y) \land \textit{ako}(Y,Z) &\Rightarrow \textit{isa}(X,Z). \\ \textit{ako}(X,Y) \land \textit{ako}(Y,Z) &\Rightarrow \textit{ako}(X,Z). \end{aligned}$$

- © no way to express non-monotonous knowledge (like FOL).
- © no easy way to express n-ary relationships (reification needed).
- On way to express binary relationships characteristics transitivity, functionality, reflexivity, etc., or their hierarchies "to be a father means to be a parent", aj.,
- ③ no way to express more complex constructs, like cardinality restrictions: "Each person has at most two legs."

are simple – from the point of logics they are not much more than a binary structure + ako and is a relationships with the following semantics:

$$\begin{aligned} & \textit{relation}(X,Y) \land \textit{ako}(Z,X) \Rightarrow \textit{relation}(Z,Y). \\ & \textit{isa}(X,Y) \land \textit{ako}(Y,Z) \Rightarrow \textit{isa}(X,Z). \\ & \textit{ako}(X,Y) \land \textit{ako}(Y,Z) \Rightarrow \textit{ako}(X,Z). \end{aligned}$$

- © no way to express non-monotonous knowledge (like FOL).
- © no easy way to express n-ary relationships (reification needed).
- On way to express binary relationships characteristics transitivity, functionality, reflexivity, etc., or their hierarchies "to be a father means to be a parent", aj.,
- ③ no way to express more complex constructs, like cardinality restrictions: "Each person has at most two legs."
- Wordnet, Semantic Wiki, aj.

frame: Škoda Favorit slots:

> is a: car has engine: four-stroke engine has transmission system: manual has carb: value: Jikov default: Pierburg

 more structured than semantic networks

([MvL93])

frame: Škoda Favorit slots:

> is a: car has engine: four-stroke engine has transmission system: manual has carb: value: Jikov default: Pierburg

- more structured than semantic networks
- forms that contain **slots** (binary relationships).

([MvL93])

frame: Škoda Favorit slots:

> is a: car has engine: four-stroke engine has transmission system: manual has carb: value: Jikov default: Pierburg

• Every slot has several **facets** (slot use restrictions), e.g. cardinality, defaults, etc.

- more structured than semantic networks
- forms that contain **slots** (binary relationships).

([MvL93])

frame: Škoda Favorit slots:

> is a: car has engine: four-stroke engine has transmission system: manual has carb: value: Jikov default: Pierburg

- more structured than semantic networks
- forms that contain **slots** (binary relationships).
 - ([MvL93])

- Every slot has several **facets** (slot use restrictions), e.g. cardinality, defaults, etc.
- Facets allow non-monotonic reasoning.

frame: Škoda Favorit slots:

> is a: car has engine: four-stroke engine has transmission system: manual has carb: value: Jikov default: Pierburg

- more structured than semantic networks
- forms that contain **slots** (binary relationships).

- Every slot has several **facets** (slot use restrictions), e.g. cardinality, defaults, etc.
- Facets allow non-monotonic reasoning.
- Daemons are triggers for actions perfomed on facets (read, write, delete). Can be used e.g for consistency checking.

([MvL93])

Example

Typically, Škoda Favorit **has carb** of type Pierburg, but this particular Škoda Favorit **has carb** of type Jikov.

 frames can be grouped into scenarios that represent typical situations, e.g. going into a restaurant. [MvL93]

Example

Typically, Škoda Favorit **has carb** of type Pierburg, but this particular Škoda Favorit **has carb** of type Jikov.

- frames can be grouped into *scenarios* that represent typical situations, e.g. going into a restaurant. [MvL93]
- OKBC http://www.ai.sri.com/ okbc

Example

Typically, Škoda Favorit **has carb** of type Pierburg, but this particular Škoda Favorit **has carb** of type Jikov.

- frames can be grouped into scenarios that represent typical situations, e.g. going into a restaurant. [MvL93]
- OKBC http://www.ai.sri.com/ okbc
- Protégé http://protege.stanford.edu/overview/protege-frames.html

Protégé

newspaper Protégé 3.2.1 (file:/ho Elit Edit Broject Window Tools Help	me/kremen/programs/Proteg	e_3.2.1/exa	mples/newspaper/newspa	aper.pprj, Protégé Files (.pont and .pir	ns)) 원산 등 🗉
068 406× m	14 V V				< protég
😑 Classes 🐂 Slots 🚍 Forms 🔶 Insta	nces 🗛 Queries				
CLASS BROWSER	CLASS EDITOR				
For Project: • newspaper	For Class: . STANDARD-SLOT	nstance of STAN	IDARD-CLASS)		A S X
Class Hierarchy 🛛 🔒 🤘 💥 💌	Name		Documentation	Constraints	A 关 # #
O :THING	:STANDARD-SLOT				
▼ O :SYSTEM-CLASS					
▼ O:META-CLASS	Role				
V 👶 :CLASS	Concrete 😑				
A STANDARD-CLASS					
V O SLOT	Template Slots				- んん 光 申 =* =*
STANDARD-SLOT	Name	Cardinality	Type	Other Facets	
O :FACET O :CONSTRAINT	-ASSOCIATED-FACET	single	Instance of FACET	inverse-slote:ASSOCIATED-SLOT	
O CONSTRAINT	DIRECT-DOMAIN	multiple	Instance of CLASS	inverse-slot=:DIRECT-TEMPLATE-SLOTS	
O RELATION	DIRECT-SUBSLOTS	multiple	Instance of SLOT	inverse-slot=:DIRECT-SUPERSLOTS	
V O Author	DIRECT-SUPERSLOTS	multiple	Instance of SLOT	inverse-slot=:DIRECT-SUBSLOTS	
News Service	DIRECT-TYPE	multiple	Class with superclass :SLOT	inverse-slot=:DIRECT-INSTANCES	
Columnist	= :DOCUMENTATION	multiple	String		
Editor	INAME :NAME	single	String		
Reporter	SLOT-CONSTRAINTS	multiple	Instance of :CONSTRAINT		
V O Content	SLOT-DEFAULTS	multiple	Any		
V O Advertisement	SLOT-INVERSE	single	Instance of SLOT	inverse-slot=:SLOT-INVERSE	
Personals_Ad	SLOT-MAXIMUM-CARDINALITY	single	Integer	default=1	
Standard_Ad	SLOT-MINIMUM-CARDINALITY	single	Integer		
Article	SLOT-NUMERIC-MAXIMUM	single	Float		
Library	SLOT-NUMERIC-MINIMUM	single	Float		
Newspaper	SLOT-VALUE-TYPE	multiple	Any	default=String	
	SLOT-VALUES	multiple	Any		
✓ 86					
Sumarcharan					
Superclasses					
0 3101					
p					

Petr Křemen petr.kremen@fel.cvut.cz

3

<ロ> (日) (日) (日) (日) (日)

very simple structures for knowledge representation,

- very simple structures for knowledge representation,
- nonmonotonic reasoning,

- © very simple structures for knowledge representation,
- nonmonotonic reasoning,
- ad-hoc reasoning procedures, that complicates (and broadens ambiguity during) translation to First Order Predicate Logic (FOPL),

- © very simple structures for knowledge representation,
- nonmonotonic reasoning,
- ad-hoc reasoning procedures, that complicates (and broadens ambiguity during) translation to First Order Predicate Logic (FOPL),
- © problems querying, debugging.

Towards Description Logics

Petr Křemen petr.kremen@fel.cvut.cz

Introduction, Description Logics

September 29, 2014 20

< 回 ト < 三 ト < 三 ト

26 / 83

• Why not First Order Predicate Logic ?

- Why not First Order Predicate Logic ?
 - FOPL is undecidable many logical consequences cannot be verified in finite time.

- Why not First Order Predicate Logic ?
 - FOPL is undecidable many logical consequences cannot be verified in finite time.
 - We often do not need full expressiveness of FOL.

- Why not First Order Predicate Logic ?
 - FOPL is undecidable many logical consequences cannot be verified in finite time.
 - ▶ We often do not need full expressiveness of FOL.
- Well, we have Prolog wide-spread and optimized implementation of FOPL, right ?

- Why not First Order Predicate Logic ?
 - FOPL is undecidable many logical consequences cannot be verified in finite time.
 - ▶ We often do not need full expressiveness of FOL.
- Well, we have Prolog wide-spread and optimized implementation of FOPL, right ?
 - Prolog is not an implementation of FOPL OWA vs. CWA, negation as failure, problems in expressing disjunctive knowledge, etc.

• Relational algebra

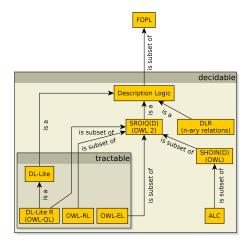
• Relational algebra

accepts CWA and supports just finite domains.

- Relational algebra
 - accepts CWA and supports just finite domains.
- Semantic networks and Frames

- Relational algebra
 - accepts CWA and supports just finite domains.
- Semantic networks and Frames
 - Lack well defined (declarative) semantics

- Relational algebra
 - accepts CWA and supports just finite domains.
- Semantic networks and Frames
 - Lack well defined (declarative) semantics
 - What is the semantics of a "slot" in a frame (relation in semantic networks) ? The slot must/might be filled once/multiple times ?



< 🗇 🕨

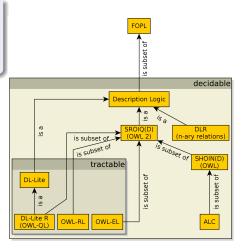
→ Ξ →

3

- ∢ ≣ →

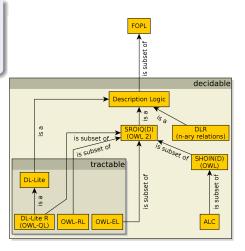
Introduction, Description Logi

Petr Křemen petr.kremen@fel.cvut.cz

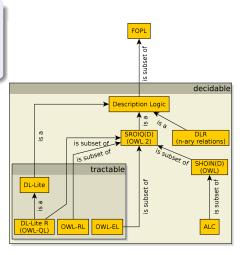


Description logics (DLs) are (almost exclusively) decidable subsets of FOPL aimed at modeling *terminological incomplete knowledge*.

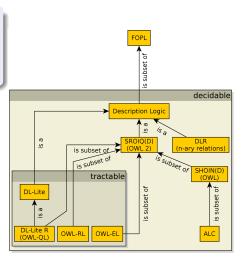
 first languages emerged as an experiment of giving formal semantics to semantic networks and frames. First implementations in 80's – KL-ONE, KAON, Classic.



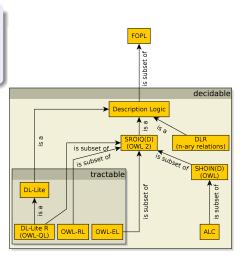
- first languages emerged as an experiment of giving formal semantics to semantic networks and frames. First implementations in 80's – KL-ONE, KAON, Classic.
- 90's *ALC*



- first languages emerged as an experiment of giving formal semantics to semantic networks and frames. First implementations in 80's – KL-ONE, KAON, Classic.
- 90's *ALC*
- 2004 $\mathcal{SHOIN}(\mathcal{D})$ OWL



- first languages emerged as an experiment of giving formal semantics to semantic networks and frames. First implementations in 80's – KL-ONE, KAON, Classic.
- 90's *ALC*
- 2004 SHOIN(D) OWL
- 2009 SROIQ(D) OWL 2



${\cal ALC}$ Language

3

< 回 > < 三 > < 三 >

• Basic building blocks of DLs are :

< 行

Basic building blocks of DLs are :

 (atomic) concepts - representing (named) unary predicates / classes,
 e.g. Parent, or Person □ ∃hasChild · Person.

 Basic building blocks of DLs are :

 (atomic) concepts - representing (named) unary predicates / classes, e.g. Parent, or Person □∃hasChild · Person.
 (atomic) roles - represent (named) binary predicates / relations, e.g. hasChild

Basic building blocks of DLs are :

 (atomic) concepts - representing (named) unary predicates / classes, e.g. Parent, or Person □∃hasChild · Person.
 (atomic) roles - represent (named) binary predicates / relations, e.g. hasChild
 individuals - represent ground terms / individuals, e.g. JOHN

Basic building blocks of DLs are :

 (atomic) concepts - representing (named) unary predicates / classes, e.g. Parent, or Person □∃hasChild · Person.
 (atomic) roles - represent (named) binary predicates / relations, e.g. hasChild
 individuals - represent ground terms / individuals, e.g. JOHN

ullet Theory $\mathcal K$ (in OWL refered as Ontology) of DLs consists of a

Basic building blocks of DLs are :

(atomic) concepts - representing (named) unary predicates / classes,
e.g. Parent, or Person □∃hasChild · Person.

(atomic) roles - represent (named) binary predicates / relations, e.g. hasChild

individuals - represent ground terms / individuals, e.g. JOHN

Theory K (in OWL refered as Ontology) of DLs consists of a

TBOX T - representing axioms generally valid in the domain, e.g. T = {Man ⊑ Person}

Basic building blocks of DLs are : (atomic) concepts - representing (named) unary predicates / classes, e.g. Parent, or Person $\Box \exists hasChild \cdot Person$. (atomic) roles - represent (named) binary predicates / relations, e.g. hasChild individuals - represent ground terms / individuals, e.g. JOHN • Theory \mathcal{K} (in OWL refered as Ontology) of DLs consists of a TBOX \mathcal{T} - representing axioms generally valid in the domain, e.g. $\mathcal{T} = \{Man \sqsubset Person\}$ ABOX A - representing a particular relational structure (data), e.g. $\mathcal{A} = \{Man(JOHN)\}$

 Basic building blocks of DLs are : (atomic) concepts - representing (named) unary predicates / classes, e.g. Parent, or Person $\Box \exists hasChild \cdot Person$. (atomic) roles - represent (named) binary predicates / relations, e.g. hasChild individuals - represent ground terms / individuals, e.g. JOHN • Theory \mathcal{K} (in OWL refered as Ontology) of DLs consists of a TBOX \mathcal{T} - representing axioms generally valid in the domain, e.g. $\mathcal{T} = \{Man \sqsubset Person\}$ ABOX A - representing a particular relational structure (data), e.g. $\mathcal{A} = \{Man(JOHN)\}$ DLs differ in their expressive power (concept/role constructors, axiom)

types).

Semantics, Interpretation

• as ALC is a subset of FOPL, let's define semantics analogously (and restrict interpretation function where applicable):

Semantics, Interpretation

- as ALC is a subset of FOPL, let's define semantics analogously (and restrict interpretation function where applicable):
- Interpretation is a pair $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where $\Delta^{\mathcal{I}}$ is an interpretation domain and $\cdot^{\mathcal{I}}$ is an interpretation function.

Semantics, Interpretation

- as ALC is a subset of FOPL, let's define semantics analogously (and restrict interpretation function where applicable):
- Interpretation is a pair $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where $\Delta^{\mathcal{I}}$ is an interpretation domain and $\cdot^{\mathcal{I}}$ is an interpretation function.
- Having atomic concept A, atomic role R and individual a, then

$$\begin{aligned} A^{\mathcal{I}} &\subseteq \Delta^{\mathcal{I}} \\ R^{\mathcal{I}} &\subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \\ a^{\mathcal{I}} &\in \Delta^{\mathcal{I}} \end{aligned}$$

ALC (= attributive language with complements)

Having concepts C, D, atomic concept A and atomic role R, then for interpretation \mathcal{I} :

concept	$concept^{\mathcal{I}}$	description
Т	$\Delta^{\mathcal{I}}$	(universal concept)
\perp	Ø	(unsatisfiable concept)
¬ <i>C</i>	$\Delta^{\mathcal{I}} \setminus \mathbf{C}^{\mathcal{I}}$	(negation)
$C_1 \sqcap C_2$	$C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}}$	(intersection)
$C_1 \sqcup C_2$	$C_1^{\mathcal{I}} \cup C_2^{\mathcal{I}}$	(union)
$\forall R \cdot C$	$\{a \mid \forall b ((a, b) \in \mathbb{R}^{\mathcal{I}} \Rightarrow b \in \mathbb{C}^{\mathcal{I}})\}$	(universal restriction)
∃ R · C	$\{a \mid \exists b ((a,b) \in {\it R}^{{\cal I}} \land b \in {\it C}^{{\cal I}})\}$	(existential restriction)

 1 two different individuals denote two different domain elements - < =

ALC (= attributive language with complements)

Having concepts C, D, atomic concept A and atomic role R, then for interpretation \mathcal{I} :

	concept	$concept^{\mathcal{I}}$	description
	Т	$\Delta^{\mathcal{I}}$	(universal concept)
	\perp	Ø	(unsatisfiable concept)
	$\neg C$	$\Delta^{\mathcal{I}} \setminus \boldsymbol{C}^{\mathcal{I}}$	(negation)
	$C_1 \sqcap C_2$	$C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}}$	(intersection)
	$C_1 \sqcup C_2$	$C_1^{\mathcal{I}} \cup C_2^{\mathcal{I}}$	(union)
	$\forall \mathbf{R} \cdot \mathbf{C}$	$\{a \mid \forall b ((a, b) \in \mathbb{R}^{\mathcal{I}} \Rightarrow b \in \mathbb{C}^{\mathcal{I}})\}$	{ (universal restriction)
	∃ R · C	$\{a \mid \exists b ((a, b) \in \mathbf{R}^{\mathcal{I}} \land b \in \mathbf{C}^{\mathcal{I}})\}$	(existential restriction)
	axiom	$\mathcal{I} \models axiom \ iff \mathit{description}$	
TBOX	$C_1 \sqsubseteq C_2$	$C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}} \qquad (\text{inclusion})$	
	$C_1 \equiv C_2$	$C_1^{\mathcal{I}} = C_2^{\mathcal{I}}$ (equivalence)	

¹two different individuals denote two different domain elements - -

ALC (= attributive language with complements)

Having concepts C, D, atomic concept A and atomic role R, then for interpretation \mathcal{I} :

	concept	$concept^{\mathcal{I}}$		description
	Т	$\Delta^{\mathcal{I}}$		(universal concept)
	\perp	Ø		(unsatisfiable concept)
	¬ <i>C</i>	$\Delta^{\mathcal{I}} \setminus \mathbf{C}^{\mathcal{I}}$		(negation)
	$C_1 \sqcap C_2$	$C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}}$		(intersection)
	$C_1 \sqcup C_2$	$C_1^{\mathcal{I}} \cup C_2^{\mathcal{I}}$		(union)
	∀ R · C	$\{a \mid \forall b ((a, b) \in A)\}$	$\mathbb{R}^{\mathcal{I}} \Rightarrow b \in \mathbb{C}^{\mathcal{I}})\}$	(universal restriction)
	∃ R · C	$\{a \mid \exists b ((a,b) \in A)\}$	$R^{\mathcal{I}} \wedge b \in C^{\mathcal{I}})\}$	(existential restriction)
	axiom	$\mathcal{I} \models axiom iff$	description	
TBOX		$C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}}$	(inclusion)	
	$C_1 \equiv C_2$	$C_1^{\mathcal{I}} = C_2^{\mathcal{I}}$	(equivalence)	
ABOX	(UNA = uni	que name assump	tion ¹)	
	axiom	$\mathcal{I} \models axiom \ iff$	description	
	C (a)	$a^{\mathcal{I}} \in C^{\mathcal{I}}$	(concept asse	rtion)
	$R(a_1,a_2)$	$(a_1^{\mathcal{I}}, a_2^{\mathcal{I}}) \in R^2$	^{<i>I</i>} (role assertion	ו)

¹two different individuals denote two different domain elements

For an arbitrary set S of axioms (resp. theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where $S = \mathcal{T} \cup \mathcal{A}$), then

- 3

< 回 ト < 三 ト < 三 ト

For an arbitrary set S of axioms (resp. theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where $S = T \cup A$), then

Model

 $\mathcal{I} \models S$ if $\mathcal{I} \models \alpha$ for all $\alpha \in S$ (\mathcal{I} is a model of S, resp. \mathcal{K})

3

< 回 ト < 三 ト < 三 ト

For an arbitrary set S of axioms (resp. theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where $S = T \cup A$), then

Model

 $\mathcal{I} \models S$ if $\mathcal{I} \models \alpha$ for all $\alpha \in S$ (\mathcal{I} is a model of S, resp. \mathcal{K})

3

< 回 ト < 三 ト < 三 ト

For an arbitrary set S of axioms (resp. theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where $S = \mathcal{T} \cup \mathcal{A}$), then

Model $\mathcal{I} \models S$ if $\mathcal{I} \models \alpha$ for all $\alpha \in S$ (\mathcal{I} is a model of S, resp. \mathcal{K})

Logical Consequence

 $S \models \beta$ if $\mathcal{I} \models \beta$ whenever $\mathcal{I} \models S$ (β is a logical consequence of S, resp. \mathcal{K})

イロト イポト イヨト イヨト 二日

For an arbitrary set S of axioms (resp. theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where $S = \mathcal{T} \cup \mathcal{A}$), then

Model $\mathcal{I} \models S$ if $\mathcal{I} \models \alpha$ for all $\alpha \in S$ (\mathcal{I} is a model of S, resp. \mathcal{K})

Logical Consequence

 $S \models \beta$ if $\mathcal{I} \models \beta$ whenever $\mathcal{I} \models S$ (β is a logical consequence of S, resp. \mathcal{K})

• S is consistent, if S has at least one model

- 4 週 ト - 4 三 ト - 4 三 ト

Example

Consider an information system for genealogical data. Information integration from various sources is crucial – databases, information systems with *different data models*. As an integration layer, let's use a description logic theory. Let's have atomic concepts *Person*, *Man*, *GrandParent* and atomic role *hasChild*.

• How to express a set of persons that have just men as their descendants, if any ?

Example

Consider an information system for genealogical data. Information integration from various sources is crucial – databases, information systems with *different data models*. As an integration layer, let's use a description logic theory. Let's have atomic concepts *Person*, *Man*, *GrandParent* and atomic role *hasChild*.

- How to express a set of persons that have just men as their descendants, if any ?
 - Person □ ∀hasChild · Man

Example

Consider an information system for genealogical data. Information integration from various sources is crucial – databases, information systems with *different data models*. As an integration layer, let's use a description logic theory. Let's have atomic concepts *Person*, *Man*, *GrandParent* and atomic role *hasChild*.

- How to express a set of persons that have just men as their descendants, if any ?
 - Person □ ∀hasChild · Man
- How to define concept *GrandParent* ?

Example

Consider an information system for genealogical data. Information integration from various sources is crucial – databases, information systems with *different data models*. As an integration layer, let's use a description logic theory. Let's have atomic concepts *Person*, *Man*, *GrandParent* and atomic role *hasChild*.

- How to express a set of persons that have just men as their descendants, if any ?
 - Person □ ∀hasChild · Man
- How to define concept *GrandParent* ?

 $GrandParent \equiv Person \sqcap \exists hasChild \cdot \exists hasChild \cdot \top$

Example

Consider an information system for genealogical data. Information integration from various sources is crucial – databases, information systems with *different data models*. As an integration layer, let's use a description logic theory. Let's have atomic concepts *Person*, *Man*, *GrandParent* and atomic role *hasChild*.

- How to express a set of persons that have just men as their descendants, if any ?
 - Person □ ∀hasChild · Man
- How to define concept GrandParent ?

 $GrandParent \equiv Person \sqcap \exists hasChild \cdot \exists hasChild \cdot \top$

• How does the previous axiom look like in FOPL ?

 $\forall x (GrandParent(x) \equiv (Person(x) \land \exists y (hasChild(x, y) \land \exists z (hasChild(y, z)))))$

Example

• Consider a theory $\mathcal{K}_1 = (\{GrandParent \equiv$ *Person* $\sqcap \exists hasChild \cdot \exists hasChild \cdot \top$ }, {*GrandParent*(*JOHN*)}). Find some model.

3

- ×

Example

- Consider a theory K₁ = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}). Find some model.
- a model of \mathcal{K}_1 can be interpretation \mathcal{I}_1 :

Example

 Consider a theory K₁ = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}). Find some model.

• a model of \mathcal{K}_1 can be interpretation \mathcal{I}_1 :

Example

 Consider a theory K₁ = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}). Find some model.

 \bullet a model of \mathcal{K}_1 can be interpretation \mathcal{I}_1 :

$$\Delta^{\mathcal{I}_1} = \underset{\tau}{Man}^{\mathcal{I}_1} = \underset{\tau}{Person}^{\mathcal{I}_1} = \{John, Phillipe, Martin\}$$

$$\blacktriangleright hasChild^{\mathcal{I}_1} = \{(John, Phillipe), (Phillipe, Martin)\}$$

Example

- Consider a theory K₁ = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}). Find some model.
- \bullet a model of \mathcal{K}_1 can be interpretation \mathcal{I}_1 :
 - $\Delta^{\mathcal{I}_1} = \underbrace{\mathsf{Man}}_{\tau}^{\mathcal{I}_1} = \underbrace{\mathsf{Person}}_{\tau}^{\mathcal{I}_1} = \{ John, Phillipe, Martin \}$
 - $\vdash hasChild^{\mathcal{I}_1} = \{(John, Phillipe), (Phillipe, Martin)\}$
 - **GrandParent** $\mathcal{I}_1 = \{John\}$

Example

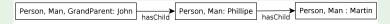
- Consider a theory K₁ = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}). Find some model.
- \bullet a model of \mathcal{K}_1 can be interpretation \mathcal{I}_1 :
 - $\Delta^{\mathcal{I}_1} = \underbrace{\mathsf{Man}}_{\tau}^{\mathcal{I}_1} = \underbrace{\mathsf{Person}}_{\tau}^{\mathcal{I}_1} = \{ John, Phillipe, Martin \}$
 - $\vdash hasChild^{\mathcal{I}_1} = \{(John, Phillipe), (Phillipe, Martin)\}$
 - GrandParent^{\mathcal{I}_1} = {John}

$$\blacktriangleright JOHN^{\mathcal{I}_1} = \{John\}$$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Example

- Consider a theory K₁ = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}). Find some model.
- \bullet a model of \mathcal{K}_1 can be interpretation \mathcal{I}_1 :
 - $\Delta^{\mathcal{I}_1} = \underbrace{\mathsf{Man}}_{\tau}^{\mathcal{I}_1} = \underbrace{\mathsf{Person}}_{\tau}^{\mathcal{I}_1} = \{ John, Phillipe, Martin \}$
 - $\models hasChild^{\mathcal{I}_1} = \{(John, Phillipe), (Phillipe, Martin)\}$
 - GrandParent^{\mathcal{I}_1} = {John}
 - $JOHN^{\mathcal{I}_1} = \{John\}$
- this model is finite and has the form of a tree with the root in the node *John* :



・ 同 ト ・ ヨ ト ・ ヨ ト

The last example revealed several important properties of DL models:

The last example revealed several important properties of DL models:

The last example revealed several important properties of DL models:

Tree model property

Every satisfiable ALC concept^a C has a model in the shape of a *rooted tree*.

^aConcept is satisfiable, if at least one model interprets it as a non-empty set

The last example revealed several important properties of DL models:

Tree model property

Every satisfiable ALC concept^a C has a model in the shape of a *rooted tree*.

^aConcept is satisfiable, if at least one model interprets it as a non-empty set

The last example revealed several important properties of DL models:

Tree model property

Every satisfiable ALC concept^a C has a model in the shape of a *rooted tree*.

^aConcept is satisfiable, if at least one model interprets it as a non-empty set

Finite model property

Every consistent theory \mathcal{K} has a *finite model*.

12 N 4 12 N

The last example revealed several important properties of DL models:

Tree model property

Every satisfiable ALC concept^a C has a model in the shape of a *rooted tree*.

^aConcept is satisfiable, if at least one model interprets it as a non-empty set

Finite model property

Every consistent theory \mathcal{K} has a *finite model*.

Both properties represent important characteristics of a DL that directly influence inferencing (see next lecture).

- A TE N - A TE N

The last example revealed several important properties of DL models:

Tree model property

Every satisfiable ALC concept^a C has a model in the shape of a *rooted tree*.

^aConcept is satisfiable, if at least one model interprets it as a non-empty set

Finite model property

Every consistent theory \mathcal{K} has a *finite model*.

Both properties represent important characteristics of a DL that directly influence inferencing (see next lecture).

In particular (generalized) TMP is a characteristics that is shared by most DLs and significantly reduces their computational complexity.

Example

Example

primitive concept defined concept

Woman	≡	Person □ Female
Man	≡	<i>Person</i> □ ¬ <i>Woman</i>
Mother	≡	Woman ⊓ ∃hasChild • Person
Father	≡	<i>Man</i> ⊓ ∃ <i>hasChild</i> · <i>Person</i>
Parent	≡	Father 🗆 Mother
Grandmother	≡	<i>Mother</i> ⊓ ∃ <i>hasChild</i> · <i>Parent</i>
herWithoutDaughter	≡	Mother $\sqcap \forall hasChild \cdot \neg Woman$
Wife	\equiv	Woman □ ∃hasHusband • Man

Petr Křemen petr.kremen@fel.cvut.cz

Mot

3

- 4 回 > - 4 回 > - 4 回 >

$\mathsf{Example}-\mathsf{CWA}\,\times\,\mathsf{OWA}$

Example

ABOX

hasChild(JOCASTA, OEDIPUS) hasChild(OEDIPUS, POLYNEIKES) Patricide(OEDIPUS) hasChild(JOCASTA, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS) ¬Patricide(THERSANDROS)

$\mathsf{Example}-\mathsf{CWA}\,\times\,\mathsf{OWA}$

Example

ABOX hasChild(JOCASTA, OEDIPUS) has hasChild(OEDIPUS, POLYNEIKES) has Patricide(OEDIPUS) ¬I

hasChild(JOCASTA, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS) ¬Patricide(THERSANDROS)

Edges represent role assertions of *hasChild*; red/green colors distinguish concepts instances – *Patricide* a ¬*Patricide*

JOCASTA > POLYNEIKES —> THERSANDROS

Example – CWA \times OWA

Example

ABOX hasChild(JOCASTA, OEDIPUS) hasChild(OEDIPUS, POLYNEIKES) Patricide(OEDIPUS) Edges represent role assertions of hasChild; red/green colors distinguish concepts instances – Patricide a ¬Patricide JOCASTA → POLYNEIKES → THERSANDROS

Q1 $(\exists hasChild \cdot (Patricide \sqcap \exists hasChild \cdot \neg Patricide))(JOCASTA),$

 $JOCASTA \longrightarrow \bullet \longrightarrow \bullet$

Example – CWA \times OWA

Example

ABOX hasChild(JOCASTA, OEDIPUS) hasChild(OEDIPUS, POLYNEIKES) Patricide(OEDIPUS) basChild(POLYNEIKES, THERSANDROS) ¬Patricide(THERSANDROS) Edges represent role assertions of hasChild; red/green colors distinguish concepts instances – Patricide a ¬Patricide JOCASTA → POLYNEIKES → THERSANDROS OEDIPUS

Q1 $(\exists hasChild \cdot (Patricide \sqcap \exists hasChild \cdot \neg Patricide))(JOCASTA),$

 $JOCASTA \longrightarrow \bullet \longrightarrow \bullet$

Q2 Find individuals x such that $\mathcal{K} \models C(x)$, where C is

 \neg *Patricide* $\sqcap \exists$ *hasChild*⁻ \cdot (*Patricide* $\sqcap \exists$ *hasChild*⁻) \cdot {*JOCASTA*}

What is the difference, when considering CWA ?

 $JOCASTA \longrightarrow \bullet \longrightarrow x$

- * Vladimír Mařík, Olga Štěpánková, and Jiří Lažanský. Umělá inteligence 6 [in czech], Chapter "Ontologie a deskripční logiky".
 Academia, 2013.
- Vladimír Mařík, Olga Štěpánková, and Jiří Lažanský. Umělá inteligence 1. Academia, 1993.
- * Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter Patel-Schneider, editors. The Description Logic Handbook, Theory, Implementation and Applications, Chapters 2-4. Cambridge, 2003.
 - * Enrico Franconi. Course on Description Logics. http://www.inf.unibz.it/ franconi/dl/course/, cit. 22.9.2013.