
Introduction, Description Logics

Petr Křemen
petr.kremen@fel.cvut.cz

September 22, 2014

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 1 / 43

Our plan

1 Course Information

2 Towards Description Logics

3 Logics – a Review

4 Semantic Networks and Frames

5 Towards Description Logics

6 ALC Language

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 2 / 43

Course Information

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 3 / 43

Course Information

web page:
http://cw.felk.cvut.cz/doku.php/courses/ae4m33rzn/start

three basic topics: description logics, fuzzy (description) logic,
probabilistic models

Please go through the course web page carefully !!!

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 4 / 43

http://cw.felk.cvut.cz/doku.php/courses/ae4m33rzn/start

Course Information

web page:
http://cw.felk.cvut.cz/doku.php/courses/ae4m33rzn/start

three basic topics: description logics, fuzzy (description) logic,
probabilistic models

Please go through the course web page carefully !!!

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 4 / 43

http://cw.felk.cvut.cz/doku.php/courses/ae4m33rzn/start

Course Information

web page:
http://cw.felk.cvut.cz/doku.php/courses/ae4m33rzn/start

three basic topics: description logics, fuzzy (description) logic,
probabilistic models

Please go through the course web page carefully !!!

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 4 / 43

http://cw.felk.cvut.cz/doku.php/courses/ae4m33rzn/start

Course Roadmap

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 5 / 43

Course Roadmap (2)

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 6 / 43

Course Roadmap (3)

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 7 / 43

Towards Description Logics

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 8 / 43

Semiotic Triangle

refers to ∼ modeled by ontologies; you can learn in AE0M33OSW
course

represents ∼ studied by formal knowledge representation languages –
this course

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 9 / 43

Semiotic Triangle

refers to ∼ modeled by ontologies; you can learn in AE0M33OSW
course

represents ∼ studied by formal knowledge representation languages –
this course

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 9 / 43

Knowledge Representation

deal with proper representation of conceptual knowledge in a domain

is used in many AI domains, e.g.:

I knowledge management – search engines, data integration
I multiagent systems – communication between agents
I machine learning – language bias

involves many graphical/textual languages ranging from informal to
formal ones, e.g. relational algebra, Prolog, RDFS, OWL, topic maps,
thesauri, conceptual graphs

Most of them are based on some logical calculus.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 10 / 43

Knowledge Representation

deal with proper representation of conceptual knowledge in a domain

is used in many AI domains, e.g.:

I knowledge management – search engines, data integration
I multiagent systems – communication between agents
I machine learning – language bias

involves many graphical/textual languages ranging from informal to
formal ones, e.g. relational algebra, Prolog, RDFS, OWL, topic maps,
thesauri, conceptual graphs

Most of them are based on some logical calculus.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 10 / 43

Knowledge Representation

deal with proper representation of conceptual knowledge in a domain

is used in many AI domains, e.g.:
I knowledge management – search engines, data integration

I multiagent systems – communication between agents
I machine learning – language bias

involves many graphical/textual languages ranging from informal to
formal ones, e.g. relational algebra, Prolog, RDFS, OWL, topic maps,
thesauri, conceptual graphs

Most of them are based on some logical calculus.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 10 / 43

Knowledge Representation

deal with proper representation of conceptual knowledge in a domain

is used in many AI domains, e.g.:
I knowledge management – search engines, data integration
I multiagent systems – communication between agents

I machine learning – language bias

involves many graphical/textual languages ranging from informal to
formal ones, e.g. relational algebra, Prolog, RDFS, OWL, topic maps,
thesauri, conceptual graphs

Most of them are based on some logical calculus.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 10 / 43

Knowledge Representation

deal with proper representation of conceptual knowledge in a domain

is used in many AI domains, e.g.:
I knowledge management – search engines, data integration
I multiagent systems – communication between agents
I machine learning – language bias

involves many graphical/textual languages ranging from informal to
formal ones, e.g. relational algebra, Prolog, RDFS, OWL, topic maps,
thesauri, conceptual graphs

Most of them are based on some logical calculus.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 10 / 43

Knowledge Representation

deal with proper representation of conceptual knowledge in a domain

is used in many AI domains, e.g.:
I knowledge management – search engines, data integration
I multiagent systems – communication between agents
I machine learning – language bias

involves many graphical/textual languages ranging from informal to
formal ones, e.g. relational algebra, Prolog, RDFS, OWL, topic maps,
thesauri, conceptual graphs

Most of them are based on some logical calculus.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 10 / 43

Knowledge Representation

deal with proper representation of conceptual knowledge in a domain

is used in many AI domains, e.g.:
I knowledge management – search engines, data integration
I multiagent systems – communication between agents
I machine learning – language bias

involves many graphical/textual languages ranging from informal to
formal ones, e.g. relational algebra, Prolog, RDFS, OWL, topic maps,
thesauri, conceptual graphs

Most of them are based on some logical calculus.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 10 / 43

Logics – a Review

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 11 / 43

Logics for Knowledge Representation

propositional logic

Example

“Everyone is clever.′′ ⇒ ¬“John fails at exam.′′

first order predicate logic

Example

(∀x)(Clever(x)⇒ ¬((∃y)(Exam(y) ∧ Fails(x , y)))).

(propositional) modal logic

Example

�((∀x)(Clever(x)⇒ 3¬((∃y)(Exam(y) ∧ Fails(x , y))))).

... what is the meaning of these formulas ?

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 12 / 43

Logics for Knowledge Representation

propositional logic

Example

“Everyone is clever.′′ ⇒ ¬“John fails at exam.′′

first order predicate logic

Example

(∀x)(Clever(x)⇒ ¬((∃y)(Exam(y) ∧ Fails(x , y)))).

(propositional) modal logic

Example

�((∀x)(Clever(x)⇒ 3¬((∃y)(Exam(y) ∧ Fails(x , y))))).

... what is the meaning of these formulas ?

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 12 / 43

Logics for Knowledge Representation

propositional logic

Example

“Everyone is clever.′′ ⇒ ¬“John fails at exam.′′

first order predicate logic

Example

(∀x)(Clever(x)⇒ ¬((∃y)(Exam(y) ∧ Fails(x , y)))).

(propositional) modal logic

Example

�((∀x)(Clever(x)⇒ 3¬((∃y)(Exam(y) ∧ Fails(x , y))))).

... what is the meaning of these formulas ?

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 12 / 43

Logics for Knowledge Representation

propositional logic

Example

“Everyone is clever.′′ ⇒ ¬“John fails at exam.′′

first order predicate logic

Example

(∀x)(Clever(x)⇒ ¬((∃y)(Exam(y) ∧ Fails(x , y)))).

(propositional) modal logic

Example

�((∀x)(Clever(x)⇒ 3¬((∃y)(Exam(y) ∧ Fails(x , y))))).

... what is the meaning of these formulas ?

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 12 / 43

Logics for Knowledge Representation

propositional logic

Example

“Everyone is clever.′′ ⇒ ¬“John fails at exam.′′

first order predicate logic

Example

(∀x)(Clever(x)⇒ ¬((∃y)(Exam(y) ∧ Fails(x , y)))).

(propositional) modal logic

Example

�((∀x)(Clever(x)⇒ 3¬((∃y)(Exam(y) ∧ Fails(x , y))))).

... what is the meaning of these formulas ?

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 12 / 43

Logics for Knowledge Representation

propositional logic

Example

“Everyone is clever.′′ ⇒ ¬“John fails at exam.′′

first order predicate logic

Example

(∀x)(Clever(x)⇒ ¬((∃y)(Exam(y) ∧ Fails(x , y)))).

(propositional) modal logic

Example

�((∀x)(Clever(x)⇒ 3¬((∃y)(Exam(y) ∧ Fails(x , y))))).

... what is the meaning of these formulas ?

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 12 / 43

Logics for Knowledge Representation

propositional logic

Example

“Everyone is clever.′′ ⇒ ¬“John fails at exam.′′

first order predicate logic

Example

(∀x)(Clever(x)⇒ ¬((∃y)(Exam(y) ∧ Fails(x , y)))).

(propositional) modal logic

Example

�((∀x)(Clever(x)⇒ 3¬((∃y)(Exam(y) ∧ Fails(x , y))))).

... what is the meaning of these formulas ?

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 12 / 43

Logics for KR (2)

Logics are defined by their

Syntax – to represent concepts

Semantics – to capture meaning of the syntactic constructs

Proof Theory – to enforce the semantics

Logics trade-off

A logic calculus is always a trade-off between expressiveness and
tractability of reasoning.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 13 / 43

Logics for KR (2)

Logics are defined by their

Syntax – to represent concepts

Semantics – to capture meaning of the syntactic constructs

Proof Theory – to enforce the semantics

Logics trade-off

A logic calculus is always a trade-off between expressiveness and
tractability of reasoning.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 13 / 43

Logics for KR (2)

Logics are defined by their

Syntax – to represent concepts

Semantics – to capture meaning of the syntactic constructs

Proof Theory – to enforce the semantics

Logics trade-off

A logic calculus is always a trade-off between expressiveness and
tractability of reasoning.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 13 / 43

Propositional Logic

Example

How to check satisfiability of the formula A ∨ (¬(B ∧ A) ∨ B ∧ C) ?

syntax – atomic formulas and ¬, ∧, ∨, ⇒

semantics (|=) – an interpretation assigns true/false to each formula.

proof theory (`) – resolution, tableau

complexity – NP-Complete (Cook theorem)

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 14 / 43

Propositional Logic

Example

How to check satisfiability of the formula A ∨ (¬(B ∧ A) ∨ B ∧ C) ?

syntax – atomic formulas and ¬, ∧, ∨, ⇒
semantics (|=) – an interpretation assigns true/false to each formula.

proof theory (`) – resolution, tableau

complexity – NP-Complete (Cook theorem)

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 14 / 43

Propositional Logic

Example

How to check satisfiability of the formula A ∨ (¬(B ∧ A) ∨ B ∧ C) ?

syntax – atomic formulas and ¬, ∧, ∨, ⇒
semantics (|=) – an interpretation assigns true/false to each formula.

proof theory (`) – resolution, tableau

complexity – NP-Complete (Cook theorem)

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 14 / 43

Propositional Logic

Example

How to check satisfiability of the formula A ∨ (¬(B ∧ A) ∨ B ∧ C) ?

syntax – atomic formulas and ¬, ∧, ∨, ⇒
semantics (|=) – an interpretation assigns true/false to each formula.

proof theory (`) – resolution, tableau

complexity – NP-Complete (Cook theorem)

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 14 / 43

First Order Predicate Logic

Example

What is the meaning of this sentence ?

(∀x1)((Student(x1) ∧ (∃x2)(GraduateCourse(x2) ∧ isEnrolledTo(x1, x2)))

⇒ (∀x3)(isEnrolledTo(x1, x3)⇒ GraduateCourse(x3)))

Student u ∃isEnrolledTo.GraduateCourse v ∀isEnrolledTo.GraduateCourse

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 15 / 43

First Order Predicate Logic – quick informal review

syntax – constructs involve

term (variable x , constant symbol JOHN, function
symbol applied to terms fatherOf (JOHN))

axiom/formula (predicate symbols applied to terms
hasFather(x , JOHN), possibly glued together
with ¬, ∧, ∨, ⇒, ∀,∃)

universally closed formula formula without free variable
((∀x)(∃y)hasFather(x , y) ∧ Person(y))

semantics – an interpretation (with valuation) assigns:

domain element to each term
true/false to each closed formula

proof theory – resolution; Deduction Theorem, Soundness Theorem,
Completeness Theorem

complexity – undecidable (Goedel)

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 16 / 43

First Order Predicate Logic – quick informal review

syntax – constructs involve

term (variable x , constant symbol JOHN, function
symbol applied to terms fatherOf (JOHN))

axiom/formula (predicate symbols applied to terms
hasFather(x , JOHN), possibly glued together
with ¬, ∧, ∨, ⇒, ∀,∃)

universally closed formula formula without free variable
((∀x)(∃y)hasFather(x , y) ∧ Person(y))

semantics – an interpretation (with valuation) assigns:

domain element to each term
true/false to each closed formula

proof theory – resolution; Deduction Theorem, Soundness Theorem,
Completeness Theorem

complexity – undecidable (Goedel)

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 16 / 43

First Order Predicate Logic – quick informal review

syntax – constructs involve

term (variable x , constant symbol JOHN, function
symbol applied to terms fatherOf (JOHN))

axiom/formula (predicate symbols applied to terms
hasFather(x , JOHN), possibly glued together
with ¬, ∧, ∨, ⇒, ∀,∃)

universally closed formula formula without free variable
((∀x)(∃y)hasFather(x , y) ∧ Person(y))

semantics – an interpretation (with valuation) assigns:

domain element to each term
true/false to each closed formula

proof theory – resolution; Deduction Theorem, Soundness Theorem,
Completeness Theorem

complexity – undecidable (Goedel)

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 16 / 43

First Order Predicate Logic – quick informal review

syntax – constructs involve

term (variable x , constant symbol JOHN, function
symbol applied to terms fatherOf (JOHN))

axiom/formula (predicate symbols applied to terms
hasFather(x , JOHN), possibly glued together
with ¬, ∧, ∨, ⇒, ∀,∃)

universally closed formula formula without free variable
((∀x)(∃y)hasFather(x , y) ∧ Person(y))

semantics – an interpretation (with valuation) assigns:

domain element to each term
true/false to each closed formula

proof theory – resolution; Deduction Theorem, Soundness Theorem,
Completeness Theorem

complexity – undecidable (Goedel)

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 16 / 43

First Order Predicate Logic – quick informal review

syntax – constructs involve

term (variable x , constant symbol JOHN, function
symbol applied to terms fatherOf (JOHN))

axiom/formula (predicate symbols applied to terms
hasFather(x , JOHN), possibly glued together
with ¬, ∧, ∨, ⇒, ∀,∃)

universally closed formula formula without free variable
((∀x)(∃y)hasFather(x , y) ∧ Person(y))

semantics – an interpretation (with valuation) assigns:

domain element to each term
true/false to each closed formula

proof theory – resolution; Deduction Theorem, Soundness Theorem,
Completeness Theorem

complexity – undecidable (Goedel)

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 16 / 43

First Order Predicate Logic – quick informal review

syntax – constructs involve

term (variable x , constant symbol JOHN, function
symbol applied to terms fatherOf (JOHN))

axiom/formula (predicate symbols applied to terms
hasFather(x , JOHN), possibly glued together
with ¬, ∧, ∨, ⇒, ∀,∃)

universally closed formula formula without free variable
((∀x)(∃y)hasFather(x , y) ∧ Person(y))

semantics – an interpretation (with valuation) assigns:

domain element to each term

true/false to each closed formula

proof theory – resolution; Deduction Theorem, Soundness Theorem,
Completeness Theorem

complexity – undecidable (Goedel)

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 16 / 43

First Order Predicate Logic – quick informal review

syntax – constructs involve

term (variable x , constant symbol JOHN, function
symbol applied to terms fatherOf (JOHN))

axiom/formula (predicate symbols applied to terms
hasFather(x , JOHN), possibly glued together
with ¬, ∧, ∨, ⇒, ∀,∃)

universally closed formula formula without free variable
((∀x)(∃y)hasFather(x , y) ∧ Person(y))

semantics – an interpretation (with valuation) assigns:

domain element to each term
true/false to each closed formula

proof theory – resolution; Deduction Theorem, Soundness Theorem,
Completeness Theorem

complexity – undecidable (Goedel)

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 16 / 43

First Order Predicate Logic – quick informal review

syntax – constructs involve

term (variable x , constant symbol JOHN, function
symbol applied to terms fatherOf (JOHN))

axiom/formula (predicate symbols applied to terms
hasFather(x , JOHN), possibly glued together
with ¬, ∧, ∨, ⇒, ∀,∃)

universally closed formula formula without free variable
((∀x)(∃y)hasFather(x , y) ∧ Person(y))

semantics – an interpretation (with valuation) assigns:

domain element to each term
true/false to each closed formula

proof theory – resolution; Deduction Theorem, Soundness Theorem,
Completeness Theorem

complexity – undecidable (Goedel)

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 16 / 43

First Order Predicate Logic – quick informal review

syntax – constructs involve

term (variable x , constant symbol JOHN, function
symbol applied to terms fatherOf (JOHN))

axiom/formula (predicate symbols applied to terms
hasFather(x , JOHN), possibly glued together
with ¬, ∧, ∨, ⇒, ∀,∃)

universally closed formula formula without free variable
((∀x)(∃y)hasFather(x , y) ∧ Person(y))

semantics – an interpretation (with valuation) assigns:

domain element to each term
true/false to each closed formula

proof theory – resolution; Deduction Theorem, Soundness Theorem,
Completeness Theorem

complexity – undecidable (Goedel)

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 16 / 43

Open World Assumption

OWA

FOPL accepts Open World Assumption, i.e. whatever is not known is not
necessarily false.

As a result, FOPL is monotonic, i.e.

monotonicity

No conclusion can be invalidated by adding extra knowledge.

This is in contrary to relational databases, or Prolog that accept Closed
World Assumption.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 17 / 43

Semantic Networks and Frames

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 18 / 43

Semantic Networks

(c©wikipedia.org)

Nodes = entities (individuals, classes),

Edges = binary relations

The only possible inferrence is
inheritance by means of is a
relationship.

Example

Each Cat hasa Vertebrate, since
each Cat isa Mammal .

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 19 / 43

Semantic Networks

(c©wikipedia.org)

Nodes = entities (individuals, classes),

Edges = binary relations

The only possible inferrence is
inheritance by means of is a
relationship.

Example

Each Cat hasa Vertebrate, since
each Cat isa Mammal .

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 19 / 43

Semantic Networks

(c©wikipedia.org)

Nodes = entities (individuals, classes),

Edges = binary relations

The only possible inferrence is
inheritance by means of is a
relationship.

Example

Each Cat hasa Vertebrate, since
each Cat isa Mammal .

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 19 / 43

Semantic Networks

(c©wikipedia.org)

Nodes = entities (individuals, classes),

Edges = binary relations

The only possible inferrence is
inheritance by means of is a
relationship.

Example

Each Cat hasa Vertebrate, since
each Cat isa Mammal .

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 19 / 43

Semantic Networks (2)

However, this does not allow
distinguishing individuals (instances)
and groups (classes).

To solve this, a new relationship type
“is a kind of” ako can be introduced
and used for inheritance, while is a
relationships would be restricted to
expressing individual-group
relationships.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 20 / 43

Semantic Networks (3)

, are simple – from the point of logics they are not much more than a
binary structure + ako and is a relationships with the following
semantics:

relation(X ,Y) ∧ ako(Z ,X)⇒ relation(Z ,Y).

isa(X ,Y) ∧ ako(Y ,Z)⇒ isa(X ,Z).

ako(X ,Y) ∧ ako(Y ,Z)⇒ ako(X ,Z).

/ no way to express non-monotonous knowledge (like FOL).

/ no easy way to express n-ary relationships (reification needed).

/ no way to express binary relationships characteristics – transitivity,
functionality, reflexivity, etc., or their hierarchies “to be a father
means to be a parent”, aj.,

/ no way to express more complex constructs, like cardinality
restrictions: “Each person has at most two legs.”

Wordnet, Semantic Wiki, aj.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 21 / 43

Semantic Networks (3)

, are simple – from the point of logics they are not much more than a
binary structure + ako and is a relationships with the following
semantics:

relation(X ,Y) ∧ ako(Z ,X)⇒ relation(Z ,Y).

isa(X ,Y) ∧ ako(Y ,Z)⇒ isa(X ,Z).

ako(X ,Y) ∧ ako(Y ,Z)⇒ ako(X ,Z).

/ no way to express non-monotonous knowledge (like FOL).

/ no easy way to express n-ary relationships (reification needed).

/ no way to express binary relationships characteristics – transitivity,
functionality, reflexivity, etc., or their hierarchies “to be a father
means to be a parent”, aj.,

/ no way to express more complex constructs, like cardinality
restrictions: “Each person has at most two legs.”

Wordnet, Semantic Wiki, aj.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 21 / 43

Semantic Networks (3)

, are simple – from the point of logics they are not much more than a
binary structure + ako and is a relationships with the following
semantics:

relation(X ,Y) ∧ ako(Z ,X)⇒ relation(Z ,Y).

isa(X ,Y) ∧ ako(Y ,Z)⇒ isa(X ,Z).

ako(X ,Y) ∧ ako(Y ,Z)⇒ ako(X ,Z).

/ no way to express non-monotonous knowledge (like FOL).

/ no easy way to express n-ary relationships (reification needed).

/ no way to express binary relationships characteristics – transitivity,
functionality, reflexivity, etc., or their hierarchies “to be a father
means to be a parent”, aj.,

/ no way to express more complex constructs, like cardinality
restrictions: “Each person has at most two legs.”

Wordnet, Semantic Wiki, aj.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 21 / 43

Semantic Networks (3)

, are simple – from the point of logics they are not much more than a
binary structure + ako and is a relationships with the following
semantics:

relation(X ,Y) ∧ ako(Z ,X)⇒ relation(Z ,Y).

isa(X ,Y) ∧ ako(Y ,Z)⇒ isa(X ,Z).

ako(X ,Y) ∧ ako(Y ,Z)⇒ ako(X ,Z).

/ no way to express non-monotonous knowledge (like FOL).

/ no easy way to express n-ary relationships (reification needed).

/ no way to express binary relationships characteristics – transitivity,
functionality, reflexivity, etc., or their hierarchies “to be a father
means to be a parent”, aj.,

/ no way to express more complex constructs, like cardinality
restrictions: “Each person has at most two legs.”

Wordnet, Semantic Wiki, aj.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 21 / 43

Semantic Networks (3)

, are simple – from the point of logics they are not much more than a
binary structure + ako and is a relationships with the following
semantics:

relation(X ,Y) ∧ ako(Z ,X)⇒ relation(Z ,Y).

isa(X ,Y) ∧ ako(Y ,Z)⇒ isa(X ,Z).

ako(X ,Y) ∧ ako(Y ,Z)⇒ ako(X ,Z).

/ no way to express non-monotonous knowledge (like FOL).

/ no easy way to express n-ary relationships (reification needed).

/ no way to express binary relationships characteristics – transitivity,
functionality, reflexivity, etc., or their hierarchies “to be a father
means to be a parent”, aj.,

/ no way to express more complex constructs, like cardinality
restrictions: “Each person has at most two legs.”

Wordnet, Semantic Wiki, aj.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 21 / 43

Semantic Networks (3)

, are simple – from the point of logics they are not much more than a
binary structure + ako and is a relationships with the following
semantics:

relation(X ,Y) ∧ ako(Z ,X)⇒ relation(Z ,Y).

isa(X ,Y) ∧ ako(Y ,Z)⇒ isa(X ,Z).

ako(X ,Y) ∧ ako(Y ,Z)⇒ ako(X ,Z).

/ no way to express non-monotonous knowledge (like FOL).

/ no easy way to express n-ary relationships (reification needed).

/ no way to express binary relationships characteristics – transitivity,
functionality, reflexivity, etc., or their hierarchies “to be a father
means to be a parent”, aj.,

/ no way to express more complex constructs, like cardinality
restrictions: “Each person has at most two legs.”

Wordnet, Semantic Wiki, aj.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 21 / 43

Semantic Networks (3)

, are simple – from the point of logics they are not much more than a
binary structure + ako and is a relationships with the following
semantics:

relation(X ,Y) ∧ ako(Z ,X)⇒ relation(Z ,Y).

isa(X ,Y) ∧ ako(Y ,Z)⇒ isa(X ,Z).

ako(X ,Y) ∧ ako(Y ,Z)⇒ ako(X ,Z).

/ no way to express non-monotonous knowledge (like FOL).

/ no easy way to express n-ary relationships (reification needed).

/ no way to express binary relationships characteristics – transitivity,
functionality, reflexivity, etc., or their hierarchies “to be a father
means to be a parent”, aj.,

/ no way to express more complex constructs, like cardinality
restrictions: “Each person has at most two legs.”

Wordnet, Semantic Wiki, aj.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 21 / 43

Frames

frame: Škoda Favorit
slots:

is a: car
has engine: four-stroke engine
has transmission system: manual
has carb: value: Jikov

default: Pierburg

more structured than semantic
networks

forms that contain slots (binary
relationships).

([MvL93])

Every slot has several facets
(slot use restrictions), e.g.
cardinality, defaults, etc.

, Facets allow non-monotonic
reasoning.

, Daemons are triggers for actions
perfomed on facets (read, write,
delete). Can be used e.g for
consistency checking.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 22 / 43

Frames

frame: Škoda Favorit
slots:

is a: car
has engine: four-stroke engine
has transmission system: manual
has carb: value: Jikov

default: Pierburg

more structured than semantic
networks

forms that contain slots (binary
relationships).

([MvL93])

Every slot has several facets
(slot use restrictions), e.g.
cardinality, defaults, etc.

, Facets allow non-monotonic
reasoning.

, Daemons are triggers for actions
perfomed on facets (read, write,
delete). Can be used e.g for
consistency checking.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 22 / 43

Frames

frame: Škoda Favorit
slots:

is a: car
has engine: four-stroke engine
has transmission system: manual
has carb: value: Jikov

default: Pierburg

more structured than semantic
networks

forms that contain slots (binary
relationships).

([MvL93])

Every slot has several facets
(slot use restrictions), e.g.
cardinality, defaults, etc.

, Facets allow non-monotonic
reasoning.

, Daemons are triggers for actions
perfomed on facets (read, write,
delete). Can be used e.g for
consistency checking.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 22 / 43

Frames

frame: Škoda Favorit
slots:

is a: car
has engine: four-stroke engine
has transmission system: manual
has carb: value: Jikov

default: Pierburg

more structured than semantic
networks

forms that contain slots (binary
relationships).

([MvL93])

Every slot has several facets
(slot use restrictions), e.g.
cardinality, defaults, etc.

, Facets allow non-monotonic
reasoning.

, Daemons are triggers for actions
perfomed on facets (read, write,
delete). Can be used e.g for
consistency checking.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 22 / 43

Frames

frame: Škoda Favorit
slots:

is a: car
has engine: four-stroke engine
has transmission system: manual
has carb: value: Jikov

default: Pierburg

more structured than semantic
networks

forms that contain slots (binary
relationships).

([MvL93])

Every slot has several facets
(slot use restrictions), e.g.
cardinality, defaults, etc.

, Facets allow non-monotonic
reasoning.

, Daemons are triggers for actions
perfomed on facets (read, write,
delete). Can be used e.g for
consistency checking.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 22 / 43

Frames (2)

Example

Typically, Škoda Favorit has carb of type Pierburg, but this particular
Škoda Favorit has carb of type Jikov.

frames can be grouped into scenarios that represent typical situations,
e.g. going into a restaurant. [MvL93]

OKBC - http://www.ai.sri.com/ okbc

Protégé - http://protege.stanford.edu/overview/protege-frames.html

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 23 / 43

Frames (2)

Example

Typically, Škoda Favorit has carb of type Pierburg, but this particular
Škoda Favorit has carb of type Jikov.

frames can be grouped into scenarios that represent typical situations,
e.g. going into a restaurant. [MvL93]

OKBC - http://www.ai.sri.com/ okbc

Protégé - http://protege.stanford.edu/overview/protege-frames.html

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 23 / 43

Frames (2)

Example

Typically, Škoda Favorit has carb of type Pierburg, but this particular
Škoda Favorit has carb of type Jikov.

frames can be grouped into scenarios that represent typical situations,
e.g. going into a restaurant. [MvL93]

OKBC - http://www.ai.sri.com/ okbc

Protégé - http://protege.stanford.edu/overview/protege-frames.html

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 23 / 43

Protégé

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 24 / 43

Frames and Semantics Networks – Summary

, very simple structures for knowledge representation,

, nonmonotonic reasoning,

/ ad-hoc reasoning procedures, that complicates (and broadens
ambiguity during) translation to First Order Predicate Logic (FOPL),

/ problems – querying, debugging.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 25 / 43

Frames and Semantics Networks – Summary

, very simple structures for knowledge representation,

, nonmonotonic reasoning,

/ ad-hoc reasoning procedures, that complicates (and broadens
ambiguity during) translation to First Order Predicate Logic (FOPL),

/ problems – querying, debugging.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 25 / 43

Frames and Semantics Networks – Summary

, very simple structures for knowledge representation,

, nonmonotonic reasoning,

/ ad-hoc reasoning procedures, that complicates (and broadens
ambiguity during) translation to First Order Predicate Logic (FOPL),

/ problems – querying, debugging.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 25 / 43

Frames and Semantics Networks – Summary

, very simple structures for knowledge representation,

, nonmonotonic reasoning,

/ ad-hoc reasoning procedures, that complicates (and broadens
ambiguity during) translation to First Order Predicate Logic (FOPL),

/ problems – querying, debugging.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 25 / 43

Towards Description Logics

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 26 / 43

Languages sketched so far aren’t enough ?

Why not First Order Predicate Logic ?

/ FOPL is undecidable – many logical consequences cannot be verified in
finite time.

I We often do not need full expressiveness of FOL.

Well, we have Prolog – wide-spread and optimized implementation of
FOPL, right ?

/ Prolog is not an implementation of FOPL – OWA vs. CWA, negation
as failure, problems in expressing disjunctive knowledge, etc.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 27 / 43

Languages sketched so far aren’t enough ?

Why not First Order Predicate Logic ?

/ FOPL is undecidable – many logical consequences cannot be verified in
finite time.

I We often do not need full expressiveness of FOL.

Well, we have Prolog – wide-spread and optimized implementation of
FOPL, right ?

/ Prolog is not an implementation of FOPL – OWA vs. CWA, negation
as failure, problems in expressing disjunctive knowledge, etc.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 27 / 43

Languages sketched so far aren’t enough ?

Why not First Order Predicate Logic ?

/ FOPL is undecidable – many logical consequences cannot be verified in
finite time.

I We often do not need full expressiveness of FOL.

Well, we have Prolog – wide-spread and optimized implementation of
FOPL, right ?

/ Prolog is not an implementation of FOPL – OWA vs. CWA, negation
as failure, problems in expressing disjunctive knowledge, etc.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 27 / 43

Languages sketched so far aren’t enough ?

Why not First Order Predicate Logic ?

/ FOPL is undecidable – many logical consequences cannot be verified in
finite time.

I We often do not need full expressiveness of FOL.

Well, we have Prolog – wide-spread and optimized implementation of
FOPL, right ?

/ Prolog is not an implementation of FOPL – OWA vs. CWA, negation
as failure, problems in expressing disjunctive knowledge, etc.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 27 / 43

Languages sketched so far aren’t enough ?

Why not First Order Predicate Logic ?

/ FOPL is undecidable – many logical consequences cannot be verified in
finite time.

I We often do not need full expressiveness of FOL.

Well, we have Prolog – wide-spread and optimized implementation of
FOPL, right ?

/ Prolog is not an implementation of FOPL – OWA vs. CWA, negation
as failure, problems in expressing disjunctive knowledge, etc.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 27 / 43

Languages sketched so far aren’t enough ?

Relational algebra

I accepts CWA and supports just finite domains.

Semantic networks and Frames

I Lack well defined (declarative) semantics
I What is the semantics of a “slot” in a frame (relation in semantic

networks) ? The slot must/might be filled once/multiple times ?

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 28 / 43

Languages sketched so far aren’t enough ?

Relational algebra
I accepts CWA and supports just finite domains.

Semantic networks and Frames

I Lack well defined (declarative) semantics
I What is the semantics of a “slot” in a frame (relation in semantic

networks) ? The slot must/might be filled once/multiple times ?

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 28 / 43

Languages sketched so far aren’t enough ?

Relational algebra
I accepts CWA and supports just finite domains.

Semantic networks and Frames

I Lack well defined (declarative) semantics
I What is the semantics of a “slot” in a frame (relation in semantic

networks) ? The slot must/might be filled once/multiple times ?

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 28 / 43

Languages sketched so far aren’t enough ?

Relational algebra
I accepts CWA and supports just finite domains.

Semantic networks and Frames
I Lack well defined (declarative) semantics

I What is the semantics of a “slot” in a frame (relation in semantic
networks) ? The slot must/might be filled once/multiple times ?

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 28 / 43

Languages sketched so far aren’t enough ?

Relational algebra
I accepts CWA and supports just finite domains.

Semantic networks and Frames
I Lack well defined (declarative) semantics
I What is the semantics of a “slot” in a frame (relation in semantic

networks) ? The slot must/might be filled once/multiple times ?

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 28 / 43

What are Description Logics ?

Description logics (DLs) are (almost
exclusively) decidable subsets of
FOPL aimed at modeling
terminological incomplete knowledge.

first languages emerged as an
experiment of giving formal
semantics to semantic networks
and frames. First
implementations in 80’s –
KL-ONE, KAON, Classic.

90’s ALC
2004 SHOIN (D) – OWL

2009 SROIQ(D) – OWL 2

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 29 / 43

What are Description Logics ?

Description logics (DLs) are (almost
exclusively) decidable subsets of
FOPL aimed at modeling
terminological incomplete knowledge.

first languages emerged as an
experiment of giving formal
semantics to semantic networks
and frames. First
implementations in 80’s –
KL-ONE, KAON, Classic.

90’s ALC
2004 SHOIN (D) – OWL

2009 SROIQ(D) – OWL 2

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 29 / 43

What are Description Logics ?

Description logics (DLs) are (almost
exclusively) decidable subsets of
FOPL aimed at modeling
terminological incomplete knowledge.

first languages emerged as an
experiment of giving formal
semantics to semantic networks
and frames. First
implementations in 80’s –
KL-ONE, KAON, Classic.

90’s ALC
2004 SHOIN (D) – OWL

2009 SROIQ(D) – OWL 2

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 29 / 43

What are Description Logics ?

Description logics (DLs) are (almost
exclusively) decidable subsets of
FOPL aimed at modeling
terminological incomplete knowledge.

first languages emerged as an
experiment of giving formal
semantics to semantic networks
and frames. First
implementations in 80’s –
KL-ONE, KAON, Classic.

90’s ALC

2004 SHOIN (D) – OWL

2009 SROIQ(D) – OWL 2

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 29 / 43

What are Description Logics ?

Description logics (DLs) are (almost
exclusively) decidable subsets of
FOPL aimed at modeling
terminological incomplete knowledge.

first languages emerged as an
experiment of giving formal
semantics to semantic networks
and frames. First
implementations in 80’s –
KL-ONE, KAON, Classic.

90’s ALC
2004 SHOIN (D) – OWL

2009 SROIQ(D) – OWL 2

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 29 / 43

What are Description Logics ?

Description logics (DLs) are (almost
exclusively) decidable subsets of
FOPL aimed at modeling
terminological incomplete knowledge.

first languages emerged as an
experiment of giving formal
semantics to semantic networks
and frames. First
implementations in 80’s –
KL-ONE, KAON, Classic.

90’s ALC
2004 SHOIN (D) – OWL

2009 SROIQ(D) – OWL 2

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 29 / 43

ALC Language

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 30 / 43

Concepts and Roles

Basic building blocks of DLs are :

(atomic) concepts - representing (named) unary predicates / classes,
e.g. Parent, or Person u ∃hasChild · Person.

(atomic) roles - represent (named) binary predicates / relations, e.g.
hasChild

individuals - represent ground terms / individuals, e.g. JOHN

Theory K (in OWL refered as Ontology) of DLs consists of a

TBOX T - representing axioms generally valid in the domain, e.g.
T = {Man v Person}

ABOX A - representing a particular relational structure (data),
e.g. A = {Man(JOHN)}

DLs differ in their expressive power (concept/role constructors, axiom
types).

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 31 / 43

Concepts and Roles

Basic building blocks of DLs are :

(atomic) concepts - representing (named) unary predicates / classes,
e.g. Parent, or Person u ∃hasChild · Person.

(atomic) roles - represent (named) binary predicates / relations, e.g.
hasChild

individuals - represent ground terms / individuals, e.g. JOHN

Theory K (in OWL refered as Ontology) of DLs consists of a

TBOX T - representing axioms generally valid in the domain, e.g.
T = {Man v Person}

ABOX A - representing a particular relational structure (data),
e.g. A = {Man(JOHN)}

DLs differ in their expressive power (concept/role constructors, axiom
types).

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 31 / 43

Concepts and Roles

Basic building blocks of DLs are :

(atomic) concepts - representing (named) unary predicates / classes,
e.g. Parent, or Person u ∃hasChild · Person.

(atomic) roles - represent (named) binary predicates / relations, e.g.
hasChild

individuals - represent ground terms / individuals, e.g. JOHN

Theory K (in OWL refered as Ontology) of DLs consists of a

TBOX T - representing axioms generally valid in the domain, e.g.
T = {Man v Person}

ABOX A - representing a particular relational structure (data),
e.g. A = {Man(JOHN)}

DLs differ in their expressive power (concept/role constructors, axiom
types).

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 31 / 43

Concepts and Roles

Basic building blocks of DLs are :

(atomic) concepts - representing (named) unary predicates / classes,
e.g. Parent, or Person u ∃hasChild · Person.

(atomic) roles - represent (named) binary predicates / relations, e.g.
hasChild

individuals - represent ground terms / individuals, e.g. JOHN

Theory K (in OWL refered as Ontology) of DLs consists of a

TBOX T - representing axioms generally valid in the domain, e.g.
T = {Man v Person}

ABOX A - representing a particular relational structure (data),
e.g. A = {Man(JOHN)}

DLs differ in their expressive power (concept/role constructors, axiom
types).

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 31 / 43

Concepts and Roles

Basic building blocks of DLs are :

(atomic) concepts - representing (named) unary predicates / classes,
e.g. Parent, or Person u ∃hasChild · Person.

(atomic) roles - represent (named) binary predicates / relations, e.g.
hasChild

individuals - represent ground terms / individuals, e.g. JOHN

Theory K (in OWL refered as Ontology) of DLs consists of a

TBOX T - representing axioms generally valid in the domain, e.g.
T = {Man v Person}

ABOX A - representing a particular relational structure (data),
e.g. A = {Man(JOHN)}

DLs differ in their expressive power (concept/role constructors, axiom
types).

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 31 / 43

Concepts and Roles

Basic building blocks of DLs are :

(atomic) concepts - representing (named) unary predicates / classes,
e.g. Parent, or Person u ∃hasChild · Person.

(atomic) roles - represent (named) binary predicates / relations, e.g.
hasChild

individuals - represent ground terms / individuals, e.g. JOHN

Theory K (in OWL refered as Ontology) of DLs consists of a

TBOX T - representing axioms generally valid in the domain, e.g.
T = {Man v Person}

ABOX A - representing a particular relational structure (data),
e.g. A = {Man(JOHN)}

DLs differ in their expressive power (concept/role constructors, axiom
types).

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 31 / 43

Concepts and Roles

Basic building blocks of DLs are :

(atomic) concepts - representing (named) unary predicates / classes,
e.g. Parent, or Person u ∃hasChild · Person.

(atomic) roles - represent (named) binary predicates / relations, e.g.
hasChild

individuals - represent ground terms / individuals, e.g. JOHN

Theory K (in OWL refered as Ontology) of DLs consists of a

TBOX T - representing axioms generally valid in the domain, e.g.
T = {Man v Person}

ABOX A - representing a particular relational structure (data),
e.g. A = {Man(JOHN)}

DLs differ in their expressive power (concept/role constructors, axiom
types).

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 31 / 43

Concepts and Roles

Basic building blocks of DLs are :

(atomic) concepts - representing (named) unary predicates / classes,
e.g. Parent, or Person u ∃hasChild · Person.

(atomic) roles - represent (named) binary predicates / relations, e.g.
hasChild

individuals - represent ground terms / individuals, e.g. JOHN

Theory K (in OWL refered as Ontology) of DLs consists of a

TBOX T - representing axioms generally valid in the domain, e.g.
T = {Man v Person}

ABOX A - representing a particular relational structure (data),
e.g. A = {Man(JOHN)}

DLs differ in their expressive power (concept/role constructors, axiom
types).

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 31 / 43

Semantics, Interpretation

as ALC is a subset of FOPL, let’s define semantics analogously (and
restrict interpretation function where applicable):

Interpretation is a pair I = (∆I , ·I), where ∆I is an interpretation
domain and ·I is an interpretation function.

Having atomic concept A, atomic role R and individual a, then

AI ⊆ ∆I

RI ⊆ ∆I ×∆I

aI ∈ ∆I

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 32 / 43

Semantics, Interpretation

as ALC is a subset of FOPL, let’s define semantics analogously (and
restrict interpretation function where applicable):

Interpretation is a pair I = (∆I , ·I), where ∆I is an interpretation
domain and ·I is an interpretation function.

Having atomic concept A, atomic role R and individual a, then

AI ⊆ ∆I

RI ⊆ ∆I ×∆I

aI ∈ ∆I

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 32 / 43

Semantics, Interpretation

as ALC is a subset of FOPL, let’s define semantics analogously (and
restrict interpretation function where applicable):

Interpretation is a pair I = (∆I , ·I), where ∆I is an interpretation
domain and ·I is an interpretation function.

Having atomic concept A, atomic role R and individual a, then

AI ⊆ ∆I

RI ⊆ ∆I ×∆I

aI ∈ ∆I

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 32 / 43

ALC (= attributive language with complements)

Having concepts C , D, atomic concept A and atomic role R, then for
interpretation I :

concept conceptI description

> ∆I (universal concept)

⊥ ∅ (unsatisfiable concept)

¬C ∆I \ CI (negation)

C1 u C2 C1
I ∩ C2

I (intersection)

C1 t C2 C1
I ∪ C2

I (union)

∀R · C {a | ∀b ((a, b) ∈ RI ⇒ b ∈ CI)} (universal restriction)

∃R · C {a | ∃b ((a, b) ∈ RI ∧ b ∈ CI)} (existential restriction)

TBOX

axiom I |= axiom iff description

C1 v C2 C1
I ⊆ C2

I (inclusion)
C1 ≡ C2 C1

I = C2
I (equivalence)

ABOX (UNA = unique name assumption1)

axiom I |= axiom iff description

C(a) aI ∈ CI (concept assertion)

R(a1 , a2) (a1I , a2I) ∈ RI (role assertion)

1two different individuals denote two different domain elements
Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 33 / 43

ALC (= attributive language with complements)

Having concepts C , D, atomic concept A and atomic role R, then for
interpretation I :

concept conceptI description

> ∆I (universal concept)

⊥ ∅ (unsatisfiable concept)

¬C ∆I \ CI (negation)

C1 u C2 C1
I ∩ C2

I (intersection)

C1 t C2 C1
I ∪ C2

I (union)

∀R · C {a | ∀b ((a, b) ∈ RI ⇒ b ∈ CI)} (universal restriction)

∃R · C {a | ∃b ((a, b) ∈ RI ∧ b ∈ CI)} (existential restriction)

TBOX

axiom I |= axiom iff description

C1 v C2 C1
I ⊆ C2

I (inclusion)
C1 ≡ C2 C1

I = C2
I (equivalence)

ABOX (UNA = unique name assumption1)

axiom I |= axiom iff description

C(a) aI ∈ CI (concept assertion)

R(a1 , a2) (a1I , a2I) ∈ RI (role assertion)

1two different individuals denote two different domain elements
Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 33 / 43

ALC (= attributive language with complements)

Having concepts C , D, atomic concept A and atomic role R, then for
interpretation I :

concept conceptI description

> ∆I (universal concept)

⊥ ∅ (unsatisfiable concept)

¬C ∆I \ CI (negation)

C1 u C2 C1
I ∩ C2

I (intersection)

C1 t C2 C1
I ∪ C2

I (union)

∀R · C {a | ∀b ((a, b) ∈ RI ⇒ b ∈ CI)} (universal restriction)

∃R · C {a | ∃b ((a, b) ∈ RI ∧ b ∈ CI)} (existential restriction)

TBOX

axiom I |= axiom iff description

C1 v C2 C1
I ⊆ C2

I (inclusion)
C1 ≡ C2 C1

I = C2
I (equivalence)

ABOX (UNA = unique name assumption1)

axiom I |= axiom iff description

C(a) aI ∈ CI (concept assertion)

R(a1 , a2) (a1I , a2I) ∈ RI (role assertion)

1two different individuals denote two different domain elements
Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 33 / 43

Logical Consequence

For an arbitrary set S of axioms (resp. theory K = (T ,A), where
S = T ∪ A), then

Model

I |= S if I |= α for all α ∈ S (I is a model of S , resp. K)

Logical Consequence

S |= β if I |= β whenever I |= S (β is a logical consequence of S , resp. K)

S is consistent, if S has at least one model

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 34 / 43

Logical Consequence

For an arbitrary set S of axioms (resp. theory K = (T ,A), where
S = T ∪ A), then

Model

I |= S if I |= α for all α ∈ S (I is a model of S , resp. K)

Logical Consequence

S |= β if I |= β whenever I |= S (β is a logical consequence of S , resp. K)

S is consistent, if S has at least one model

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 34 / 43

Logical Consequence

For an arbitrary set S of axioms (resp. theory K = (T ,A), where
S = T ∪ A), then

Model

I |= S if I |= α for all α ∈ S (I is a model of S , resp. K)

Logical Consequence

S |= β if I |= β whenever I |= S (β is a logical consequence of S , resp. K)

S is consistent, if S has at least one model

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 34 / 43

Logical Consequence

For an arbitrary set S of axioms (resp. theory K = (T ,A), where
S = T ∪ A), then

Model

I |= S if I |= α for all α ∈ S (I is a model of S , resp. K)

Logical Consequence

S |= β if I |= β whenever I |= S (β is a logical consequence of S , resp. K)

S is consistent, if S has at least one model

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 34 / 43

Logical Consequence

For an arbitrary set S of axioms (resp. theory K = (T ,A), where
S = T ∪ A), then

Model

I |= S if I |= α for all α ∈ S (I is a model of S , resp. K)

Logical Consequence

S |= β if I |= β whenever I |= S (β is a logical consequence of S , resp. K)

S is consistent, if S has at least one model

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 34 / 43

ALC – Example

Example

Consider an information system for genealogical data. Information
integration from various sources is crucial – databases, information
systems with different data models. As an integration layer, let’s use a
description logic theory. Let’s have atomic concepts
Person,Man,GrandParent and atomic role hasChild .

How to express a set of persons that have just men as their
descendants, if any ?

I Person u ∀hasChild ·Man

How to define concept GrandParent ?

I GrandParent ≡ Person u ∃hasChild · ∃hasChild · >

How does the previous axiom look like in FOPL ?

∀x (GrandParent(x) ≡ (Person(x) ∧ ∃y (hasChild(x , y)

∧∃z (hasChild(y , z)))))

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 35 / 43

ALC – Example

Example

Consider an information system for genealogical data. Information
integration from various sources is crucial – databases, information
systems with different data models. As an integration layer, let’s use a
description logic theory. Let’s have atomic concepts
Person,Man,GrandParent and atomic role hasChild .

How to express a set of persons that have just men as their
descendants, if any ?

I Person u ∀hasChild ·Man

How to define concept GrandParent ?

I GrandParent ≡ Person u ∃hasChild · ∃hasChild · >

How does the previous axiom look like in FOPL ?

∀x (GrandParent(x) ≡ (Person(x) ∧ ∃y (hasChild(x , y)

∧∃z (hasChild(y , z)))))

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 35 / 43

ALC – Example

Example

Consider an information system for genealogical data. Information
integration from various sources is crucial – databases, information
systems with different data models. As an integration layer, let’s use a
description logic theory. Let’s have atomic concepts
Person,Man,GrandParent and atomic role hasChild .

How to express a set of persons that have just men as their
descendants, if any ?

I Person u ∀hasChild ·Man

How to define concept GrandParent ?

I GrandParent ≡ Person u ∃hasChild · ∃hasChild · >
How does the previous axiom look like in FOPL ?

∀x (GrandParent(x) ≡ (Person(x) ∧ ∃y (hasChild(x , y)

∧∃z (hasChild(y , z)))))

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 35 / 43

ALC – Example

Example

Consider an information system for genealogical data. Information
integration from various sources is crucial – databases, information
systems with different data models. As an integration layer, let’s use a
description logic theory. Let’s have atomic concepts
Person,Man,GrandParent and atomic role hasChild .

How to express a set of persons that have just men as their
descendants, if any ?

I Person u ∀hasChild ·Man

How to define concept GrandParent ?
I GrandParent ≡ Person u ∃hasChild · ∃hasChild · >

How does the previous axiom look like in FOPL ?

∀x (GrandParent(x) ≡ (Person(x) ∧ ∃y (hasChild(x , y)

∧∃z (hasChild(y , z)))))

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 35 / 43

ALC – Example

Example

Consider an information system for genealogical data. Information
integration from various sources is crucial – databases, information
systems with different data models. As an integration layer, let’s use a
description logic theory. Let’s have atomic concepts
Person,Man,GrandParent and atomic role hasChild .

How to express a set of persons that have just men as their
descendants, if any ?

I Person u ∀hasChild ·Man

How to define concept GrandParent ?
I GrandParent ≡ Person u ∃hasChild · ∃hasChild · >

How does the previous axiom look like in FOPL ?

∀x (GrandParent(x) ≡ (Person(x) ∧ ∃y (hasChild(x , y)

∧∃z (hasChild(y , z)))))

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 35 / 43

Interpretation – Example

Example

Consider a theory K1 = ({GrandParent ≡
Person u ∃hasChild · ∃hasChild · >}, {GrandParent(JOHN)}). Find
some model.

a model of K1 can be interpretation I1 :

I ∆I1 = ManI1 = PersonI1 = {John,Phillipe,Martin}
I hasChildI1 = {(John,Phillipe), (Phillipe,Martin)}
I GrandParentI1 = {John}
I JOHNI1 = {John}

this model is finite and has the form of a tree with the root in the
node John :

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 36 / 43

Interpretation – Example

Example

Consider a theory K1 = ({GrandParent ≡
Person u ∃hasChild · ∃hasChild · >}, {GrandParent(JOHN)}). Find
some model.

a model of K1 can be interpretation I1 :

I ∆I1 = ManI1 = PersonI1 = {John,Phillipe,Martin}
I hasChildI1 = {(John,Phillipe), (Phillipe,Martin)}
I GrandParentI1 = {John}
I JOHNI1 = {John}

this model is finite and has the form of a tree with the root in the
node John :

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 36 / 43

Interpretation – Example

Example

Consider a theory K1 = ({GrandParent ≡
Person u ∃hasChild · ∃hasChild · >}, {GrandParent(JOHN)}). Find
some model.

a model of K1 can be interpretation I1 :
I ∆I1 = ManI1 = PersonI1 = {John,Phillipe,Martin}

I hasChildI1 = {(John,Phillipe), (Phillipe,Martin)}
I GrandParentI1 = {John}
I JOHNI1 = {John}

this model is finite and has the form of a tree with the root in the
node John :

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 36 / 43

Interpretation – Example

Example

Consider a theory K1 = ({GrandParent ≡
Person u ∃hasChild · ∃hasChild · >}, {GrandParent(JOHN)}). Find
some model.

a model of K1 can be interpretation I1 :
I ∆I1 = ManI1 = PersonI1 = {John,Phillipe,Martin}
I hasChildI1 = {(John,Phillipe), (Phillipe,Martin)}

I GrandParentI1 = {John}
I JOHNI1 = {John}

this model is finite and has the form of a tree with the root in the
node John :

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 36 / 43

Interpretation – Example

Example

Consider a theory K1 = ({GrandParent ≡
Person u ∃hasChild · ∃hasChild · >}, {GrandParent(JOHN)}). Find
some model.

a model of K1 can be interpretation I1 :
I ∆I1 = ManI1 = PersonI1 = {John,Phillipe,Martin}
I hasChildI1 = {(John,Phillipe), (Phillipe,Martin)}
I GrandParentI1 = {John}

I JOHNI1 = {John}
this model is finite and has the form of a tree with the root in the
node John :

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 36 / 43

Interpretation – Example

Example

Consider a theory K1 = ({GrandParent ≡
Person u ∃hasChild · ∃hasChild · >}, {GrandParent(JOHN)}). Find
some model.

a model of K1 can be interpretation I1 :
I ∆I1 = ManI1 = PersonI1 = {John,Phillipe,Martin}
I hasChildI1 = {(John,Phillipe), (Phillipe,Martin)}
I GrandParentI1 = {John}
I JOHNI1 = {John}

this model is finite and has the form of a tree with the root in the
node John :

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 36 / 43

Interpretation – Example

Example

Consider a theory K1 = ({GrandParent ≡
Person u ∃hasChild · ∃hasChild · >}, {GrandParent(JOHN)}). Find
some model.

a model of K1 can be interpretation I1 :
I ∆I1 = ManI1 = PersonI1 = {John,Phillipe,Martin}
I hasChildI1 = {(John,Phillipe), (Phillipe,Martin)}
I GrandParentI1 = {John}
I JOHNI1 = {John}

this model is finite and has the form of a tree with the root in the
node John :

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 36 / 43

Shape of DL Models

The last example revealed several important properties of DL models:

Tree model property

Every satisfiable ALC concepta C has a model in the shape of a rooted
tree.

aConcept is satisfiable, if at least one model interprets it as a non-empty set

Finite model property

Every consistent theory K has a finite model.

Both properties represent important characteristics of a DL that
directly influence inferencing (see next lecture).

In particular (generalized) TMP is a characteristics that is shared by
most DLs and significantly reduces their computational complexity.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 37 / 43

Shape of DL Models

The last example revealed several important properties of DL models:

Tree model property

Every satisfiable ALC concepta C has a model in the shape of a rooted
tree.

aConcept is satisfiable, if at least one model interprets it as a non-empty set

Finite model property

Every consistent theory K has a finite model.

Both properties represent important characteristics of a DL that
directly influence inferencing (see next lecture).

In particular (generalized) TMP is a characteristics that is shared by
most DLs and significantly reduces their computational complexity.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 37 / 43

Shape of DL Models

The last example revealed several important properties of DL models:

Tree model property

Every satisfiable ALC concepta C has a model in the shape of a rooted
tree.

aConcept is satisfiable, if at least one model interprets it as a non-empty set

Finite model property

Every consistent theory K has a finite model.

Both properties represent important characteristics of a DL that
directly influence inferencing (see next lecture).

In particular (generalized) TMP is a characteristics that is shared by
most DLs and significantly reduces their computational complexity.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 37 / 43

Shape of DL Models

The last example revealed several important properties of DL models:

Tree model property

Every satisfiable ALC concepta C has a model in the shape of a rooted
tree.

aConcept is satisfiable, if at least one model interprets it as a non-empty set

Finite model property

Every consistent theory K has a finite model.

Both properties represent important characteristics of a DL that
directly influence inferencing (see next lecture).

In particular (generalized) TMP is a characteristics that is shared by
most DLs and significantly reduces their computational complexity.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 37 / 43

Shape of DL Models

The last example revealed several important properties of DL models:

Tree model property

Every satisfiable ALC concepta C has a model in the shape of a rooted
tree.

aConcept is satisfiable, if at least one model interprets it as a non-empty set

Finite model property

Every consistent theory K has a finite model.

Both properties represent important characteristics of a DL that
directly influence inferencing (see next lecture).

In particular (generalized) TMP is a characteristics that is shared by
most DLs and significantly reduces their computational complexity.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 37 / 43

Shape of DL Models

The last example revealed several important properties of DL models:

Tree model property

Every satisfiable ALC concepta C has a model in the shape of a rooted
tree.

aConcept is satisfiable, if at least one model interprets it as a non-empty set

Finite model property

Every consistent theory K has a finite model.

Both properties represent important characteristics of a DL that
directly influence inferencing (see next lecture).

In particular (generalized) TMP is a characteristics that is shared by
most DLs and significantly reduces their computational complexity.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 37 / 43

Shape of DL Models

The last example revealed several important properties of DL models:

Tree model property

Every satisfiable ALC concepta C has a model in the shape of a rooted
tree.

aConcept is satisfiable, if at least one model interprets it as a non-empty set

Finite model property

Every consistent theory K has a finite model.

Both properties represent important characteristics of a DL that
directly influence inferencing (see next lecture).

In particular (generalized) TMP is a characteristics that is shared by
most DLs and significantly reduces their computational complexity.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 37 / 43

Example

Example

primitive concept
defined concept

Woman ≡ Person u Female

Man ≡ Person u ¬Woman

Mother ≡ Woman u ∃hasChild · Person

Father ≡ Man u ∃hasChild · Person

Parent ≡ Father tMother

Grandmother ≡ Mother u ∃hasChild · Parent

MotherWithoutDaughter ≡ Mother u ∀hasChild · ¬Woman

Wife ≡ Woman u ∃hasHusband ·Man

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 38 / 43

Example – CWA × OWA

Example

ABOX
hasChild(JOCASTA,OEDIPUS) hasChild(JOCASTA, POLYNEIKES)
hasChild(OEDIPUS, POLYNEIKES) hasChild(POLYNEIKES,THERSANDROS)
Patricide(OEDIPUS) ¬Patricide(THERSANDROS)

Edges represent role assertions of hasChild ; red/green colors distinguish
concepts instances – Patricide a ¬Patricide

JOCASTA //
**

POLYNEIKES // THERSANDROS

OEDIPUS

44

Q1 (∃hasChild · (Patricide u ∃hasChild · ¬Patricide))(JOCASTA),

JOCASTA // • // •

Q2 Find individuals x such that K |= C(x), where C is

¬Patricide u ∃hasChild− · (Patricide u ∃hasChild−) · {JOCASTA}

What is the difference, when considering CWA ?

JOCASTA // • // x

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 39 / 43

Example – CWA × OWA

Example

ABOX
hasChild(JOCASTA,OEDIPUS) hasChild(JOCASTA, POLYNEIKES)
hasChild(OEDIPUS, POLYNEIKES) hasChild(POLYNEIKES,THERSANDROS)
Patricide(OEDIPUS) ¬Patricide(THERSANDROS)

Edges represent role assertions of hasChild ; red/green colors distinguish
concepts instances – Patricide a ¬Patricide

JOCASTA //
**

POLYNEIKES // THERSANDROS

OEDIPUS

44

Q1 (∃hasChild · (Patricide u ∃hasChild · ¬Patricide))(JOCASTA),

JOCASTA // • // •

Q2 Find individuals x such that K |= C(x), where C is

¬Patricide u ∃hasChild− · (Patricide u ∃hasChild−) · {JOCASTA}

What is the difference, when considering CWA ?

JOCASTA // • // x

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 39 / 43

Example – CWA × OWA

Example

ABOX
hasChild(JOCASTA,OEDIPUS) hasChild(JOCASTA, POLYNEIKES)
hasChild(OEDIPUS, POLYNEIKES) hasChild(POLYNEIKES,THERSANDROS)
Patricide(OEDIPUS) ¬Patricide(THERSANDROS)

Edges represent role assertions of hasChild ; red/green colors distinguish
concepts instances – Patricide a ¬Patricide

JOCASTA //
**

POLYNEIKES // THERSANDROS

OEDIPUS

44

Q1 (∃hasChild · (Patricide u ∃hasChild · ¬Patricide))(JOCASTA),

JOCASTA // • // •

Q2 Find individuals x such that K |= C(x), where C is

¬Patricide u ∃hasChild− · (Patricide u ∃hasChild−) · {JOCASTA}

What is the difference, when considering CWA ?

JOCASTA // • // x

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 39 / 43

Example – CWA × OWA

Example

ABOX
hasChild(JOCASTA,OEDIPUS) hasChild(JOCASTA, POLYNEIKES)
hasChild(OEDIPUS, POLYNEIKES) hasChild(POLYNEIKES,THERSANDROS)
Patricide(OEDIPUS) ¬Patricide(THERSANDROS)

Edges represent role assertions of hasChild ; red/green colors distinguish
concepts instances – Patricide a ¬Patricide

JOCASTA //
**

POLYNEIKES // THERSANDROS

OEDIPUS

44

Q1 (∃hasChild · (Patricide u ∃hasChild · ¬Patricide))(JOCASTA),

JOCASTA // • // •

Q2 Find individuals x such that K |= C(x), where C is

¬Patricide u ∃hasChild− · (Patricide u ∃hasChild−) · {JOCASTA}

What is the difference, when considering CWA ?

JOCASTA // • // x

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 39 / 43

* Vladiḿır Mǎŕık, Olga Štěpánková, and Jǐŕı Lažanský.
Umělá inteligence 6 [in czech], Chapter “Ontologie a deskripčńı
logiky”.
Academia, 2013.

* Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter Patel-Schneider, editors.
The Description Logic Handbook, Theory, Implementation and
Applications, Chapters 2-4.
Cambridge, 2003.

* Enrico Franconi.
Course on Description Logics.
http://www.inf.unibz.it/ franconi/dl/course/, cit. 22.9.2013.

Petr Křemen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 40 / 43

	Course Information
	Towards Description Logics
	Logics – a Review
	Semantic Networks and Frames
	Towards Description Logics
	ALC Language

