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Course Information

@ web page:
http://cw.felk.cvut.cz/doku.php/courses/ae4m33rzn/start

@ three basic topics: description logics, fuzzy (description) logic,
probabilistic models

o Please go through the course web page carefully !!!
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Semiotic Triangle

Concept

(inside human brain)

Symbaol Object

(real-world entity)

{language / logics) stands for

refers to ~ modeled by ontologies; you can learn in AEOM330SW
course
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Semiotic Triangle

Concept

(inside human brain)

Symbaol _ Object

(language /[ logics) stands for (real-world entity)

refers to ~ modeled by ontologies; you can learn in AEOM330SW
course
represents ~ studied by formal knowledge representation languages —
this course
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Knowledge Representation

o deal with proper representation of conceptual knowledge in a domain
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Knowledge Representation

o deal with proper representation of conceptual knowledge in a domain
@ is used in many Al domains, e.g.:

» knowledge management — search engines, data integration
» multiagent systems — communication between agents
» machine learning — language bias

e involves many graphical /textual languages ranging from informal to
formal ones, e.g. relational algebra, Prolog, RDFS, OWL, topic maps,
thesauri, conceptual graphs
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Knowledge Representation

o deal with proper representation of conceptual knowledge in a domain
@ is used in many Al domains, e.g.:
» knowledge management — search engines, data integration
» multiagent systems — communication between agents
» machine learning — language bias
e involves many graphical /textual languages ranging from informal to
formal ones, e.g. relational algebra, Prolog, RDFS, OWL, topic maps,
thesauri, conceptual graphs

@ Most of them are based on some logical calculus.
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Logics — a Review
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Logics for Knowledge Representation

@ propositional logic
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Logics for Knowledge Representation

@ propositional logic

“Everyone is clever.” = —“John fails at exam.”

Example J

Petr Ktemen petr.kremen@fel.cvut.cz Introduction, Description Logics



Logics for Knowledge Representation

@ propositional logic

“Everyone is clever.” = —“John fails at exam.”

Example J

o first order predicate logic
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Logics for Knowledge Representation

@ propositional logic
Example

“Everyone is clever.” = —“John fails at exam.” J

o first order predicate logic
Example
(Vx)(Clever(x) = —((3y)(Exam(y) A Fails(x,y))))- J
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Example
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Logics for Knowledge Representation

@ propositional logic

Example J

“Everyone is clever.” = —“John fails at exam.”

o first order predicate logic

Example
(Vx)(Clever(x) = —((3y)(Exam(y) A Fails(x,y))))- J

o (propositional) modal logic

Example
O((Vx)(Clever(x) = <&=((3y)(Exam(y) A Fails(x,y))))). J

@ ... what is the meaning of these formulas ?
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Logics for KR (2)

Logics are defined by their

@ Syntax — to represent concepts

Logics trade-off

A logic calculus is always a trade-off between expressiveness and
tractability of reasoning.
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Logics for KR (2)

Logics are defined by their
@ Syntax — to represent concepts
@ Semantics — to capture meaning of the syntactic constructs

@ Proof Theory — to enforce the semantics

Logics trade-off

A logic calculus is always a trade-off between expressiveness and
tractability of reasoning.
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Propositional Logic

Example
How to check satisfiability of the formula AV (=(BAA)VBAC)? J

syntax — atomic formulas and —, A, V, =
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Example

How to check satisfiability of the formula AV (=(BAA)VBAC)? J

syntax — atomic formulas and —, A, V, =

semantics (=) — an interpretation assigns true/false to each formula.
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Propositional Logic

Example
How to check satisfiability of the formula AV (=(BAA)VBAC)? J

syntax — atomic formulas and —, A, V, =

semantics (=) — an interpretation assigns true/false to each formula.

proof theory (=) — resolution, tableau

complexity — NP-Complete (Cook theorem)
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First Order Predicate Logic

Example

What is the meaning of this sentence 7

(Vx1)((Student(x1) A (3x2)( GraduateCourse(x2) A isEnrolledTo(x1, x2)))
= (Vx3)(isEnrolledTo(x1, x3) = GraduateCourse(x3)))

Student 1M JisEnrolled To.GraduateCourse C VisEnrolledTo.GraduateCourse

v
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First Order Predicate Logic — quick informal review

syntax — constructs involve
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syntax — constructs involve

term (variable x, constant symbol JOHN, function
symbol applied to terms fatherOf (JOHN))
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First Order Predicate Logic — quick informal review

syntax — constructs involve
term (variable x, constant symbol JOHN, function

symbol applied to terms fatherOf (JOHN))

axiom /formula (predicate symbols applied to terms
hasFather(x, JOHN), possibly glued together
with =, A, V, =, ¥,3)

universally closed formula formula without free variable
((Vx)(Jy)hasFather(x,y) A Person(y))

semantics — an interpretation (with valuation) assigns:

domain element to each term
true/false to each closed formula

proof theory — resolution; Deduction Theorem, Soundness Theorem,
Completeness Theorem
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First Order Predicate Logic — quick informal review

syntax — constructs involve
term (variable x, constant symbol JOHN, function

symbol applied to terms fatherOf (JOHN))

axiom /formula (predicate symbols applied to terms
hasFather(x, JOHN), possibly glued together
with =, A, V, =, ¥,3)

universally closed formula formula without free variable
((Vx)(Jy)hasFather(x,y) A Person(y))

semantics — an interpretation (with valuation) assigns:

domain element to each term
true/false to each closed formula

proof theory — resolution; Deduction Theorem, Soundness Theorem,
Completeness Theorem

complexity — undecidable (Goedel)
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Open World Assumption

OWA

FOPL accepts Open World Assumption, i.e. whatever is not known is not
necessarily false.

As a result, FOPL is monotonic, i.e.

monotonicity J

No conclusion can be invalidated by adding extra knowledge.

This is in contrary to relational databases, or Prolog that accept Closed
World Assumption.
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Semantic Networks and Frames
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Semantic Networks

Vertebrate Cat —9

odes = entities (individuals, classes),
has a / as
isan

Animal <———Mammal%———— Bear

is
is an

Whale

lives in lives in

Fish ————= \water

(©wikipedia.org)
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Semantic Networks

Vertebrate Cat—e .. T
odes = entities (individuals, classes),
has a hes/ Edges = binary relations
is an @ The only possible inferrence is

Animal <———Mamma|€’—— Bear

inheritance by means of is a
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(©wikipedia.org)
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Semantic Networks

Vertebrate Cat—e .. T
odes = entities (individuals, classes),
has a hes/ Edges = binary relations
is an @ The only possible inferrence is
Animal <——-Mamma|€’—— Bear . . .
inheritance by means of is a
is

is an re|ati0nship.
Whale

lives in lives in Exa m ple

Fish ————= water .
Each Cat hasa Vertebrate, since

(©wikipedia.org) each Cat isa Mammal.
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Semantic Networks (2)

isEnrolledTo isEnrolledT
Course <€ Student Course wstudent
A A

isa ako

isa Bachelor isa Bachelor

ISa IS a

. isEnrolledTo isEnrolledTo

Mathematics <€————Jiri Novak Matematics <€————Jiri Novak
However, this does not allow To solve this, a new relationship type
distinguishing individuals (instances) ‘is a kind of” ako can be introduced

and groups (classes). and used for inheritance, while is a

relationships would be restricted to
expressing individual-group
relationships.
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Semantic Networks (3)

© are simple — from the point of logics they are not much more than a
binary structure 4+ ako and is a relationships with the following
semantics:
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Semantic Networks (3)

© are simple — from the point of logics they are not much more than a
binary structure 4+ ako and is a relationships with the following
semantics:

relation(X, Y) A ako(Z,X) = relation(Z,Y).
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ako(X,Y) A ako(Y,Z) = ako(X, Z).
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® no way to express non-monotonous knowledge (like FOL).
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binary structure 4+ ako and is a relationships with the following
semantics:

relation(X, Y) A ako(Z,X) = relation(Z,Y).
isa(X,Y) A ako(Y,Z) = isa(X, Z).
ako(X,Y) A ako(Y,Z) = ako(X, Z).
® no way to express non-monotonous knowledge (like FOL).
® no easy way to express n-ary relationships (reification needed).

Petr Kremen petr.kremen@fel.cvut.cz Introduction, Description Logics September 22, 2014 21 /43



Semantic Networks (3)
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relation(X, Y) A ako(Z,X) = relation(Z,Y).
isa(X,Y) A ako(Y,Z) = isa(X, Z).
ako(X,Y) A ako(Y,Z) = ako(X, Z).

® no way to express non-monotonous knowledge (like FOL).

® no easy way to express n-ary relationships (reification needed).

® no way to express binary relationships characteristics — transitivity,
functionality, reflexivity, etc., or their hierarchies “to be a father
means to be a parent”, aj.,
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Semantic Networks (3)

© are simple — from the point of logics they are not much more than a
binary structure 4+ ako and is a relationships with the following
semantics:

relation(X, Y) A ako(Z,X) = relation(Z,Y).
isa(X,Y) A ako(Y,Z) = isa(X, Z).
ako(X,Y) A ako(Y,Z) = ako(X, Z).

no way to express non-monotonous knowledge (like FOL).

© ®

no easy way to express n-ary relationships (reification needed).

® no way to express binary relationships characteristics — transitivity,
functionality, reflexivity, etc., or their hierarchies “to be a father
means to be a parent”, aj.,

® no way to express more complex constructs, like cardinality

restrictions: “Each person has at most two legs.”
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Semantic Networks (3)

© are simple — from the point of logics they are not much more than a
binary structure 4+ ako and is a relationships with the following
semantics:

relation(X, Y) A ako(Z,X) = relation(Z,Y).
isa(X,Y) A ako(Y,Z) = isa(X, Z).
ako(X,Y) A ako(Y,Z) = ako(X, Z).

no way to express non-monotonous knowledge (like FOL).

© ®

no easy way to express n-ary relationships (reification needed).

® no way to express binary relationships characteristics — transitivity,
functionality, reflexivity, etc., or their hierarchies “to be a father
means to be a parent”, aj.,

® no way to express more complex constructs, like cardinality
restrictions: “Each person has at most two legs.”
@ Wordnet, Semantic Wiki, aj.
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Frames

frame: Skoda Favorit
slots:
is a: car
has engine: four-stroke engine
has transmission system: manual
has carb: value: Jikov
default: Pierburg

@ more structured than semantic
networks

(IMvL93])
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has engine: four-stroke engine
has transmission system: manual
has carb: value: Jikov
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@ more structured than semantic
networks

e forms that contain slots (binary
relationships).
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Frames

frame: Skoda Favorit
slots:

is a: car
@ Every slot has several facets

has engine: four-stroke engine T
has transmission system: manual (slot use restrictions), e.g.

has carb: value: Jikov cardinality, defaults, etc.
default: Pierburg

@ more structured than semantic
networks

e forms that contain slots (binary
relationships).

([MvL93])
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Frames

frame: Skoda Favorit
slots:

is a: car E lot h | facet
has engine: four-stroke engine @ Lvery slot has several tacets

has transmission system: manual (slot use restrictions), e.g.
has carb: value: Jikov cardinality, defaults, etc.

default: Pierb .
erau 1erbure © Facets allow non-monotonic

reasoning.

@ more structured than semantic
networks

e forms that contain slots (binary
relationships).

([MvL93])
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Frames

frame: Skoda Favorit
slots:

is a: car E lot h | facet
has engine: four-stroke engine @ Lvery slot has several tacets

has transmission system: manual (slot use restrictions), e.g.
has carb: value: Jikov cardinality, defaults, etc.

default: Pierb .
erau 1erbure © Facets allow non-monotonic

reasoning.

©

Daemons are triggers for actions
perfomed on facets (read, write,

_ _ delete). Can be used e.g for
e forms that contain slots (binary consistency checking

relationships).

@ more structured than semantic
networks

([MvL93])
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Frames (2)

Example

Typically, Skoda Favorit has carb of type Pierburg, but this particular
Skoda Favorit has carb of type Jikov.

@ frames can be grouped into scenarios that represent typical situations,
e.g. going into a restaurant. [MvL93]
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Example

Typically, Skoda Favorit has carb of type Pierburg, but this particular
Skoda Favorit has carb of type Jikov.

@ frames can be grouped into scenarios that represent typical situations,
e.g. going into a restaurant. [MvL93]

e OKBC - http://www.ai.sri.com/ okbc
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Frames (2)

Example

Typically, Skoda Favorit has carb of type Pierburg, but this particular
Skoda Favorit has carb of type Jikov.

@ frames can be grouped into scenarios that represent typical situations,
e.g. going into a restaurant. [MvL93]

e OKBC - http://www.ai.sri.com/ okbc

@ Protégé - http://protege.stanford.edu/overview/protege-frames.html
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Protégé
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Frames and Semantics Networks — Summary

© very simple structures for knowledge representation,
© nonmonotonic reasoning,

® ad-hoc reasoning procedures, that complicates (and broadens
ambiguity during) translation to First Order Predicate Logic (FOPL),

® problems — querying, debugging.
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Towards Description Logics

Petr Ktemen petr.kremen@fel.cvut.cz Introduction, Description Logics



Languages sketched so far aren’t enough 7

@ Why not First Order Predicate Logic ?
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Languages sketched so far aren’t enough 7

@ Why not First Order Predicate Logic ?
® FOPL is undecidable — many logical consequences cannot be verified in
finite time.
» We often do not need full expressiveness of FOL.
@ Well, we have Prolog — wide-spread and optimized implementation of
FOPL, right ?
® Prolog is not an implementation of FOPL — OWA vs. CWA, negation
as failure, problems in expressing disjunctive knowledge, etc.
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Languages sketched so far aren’t enough 7

@ Relational algebra
» accepts CWA and supports just finite domains.
@ Semantic networks and Frames

» Lack well defined (declarative) semantics
» What is the semantics of a “slot” in a frame (relation in semantic
networks) ? The slot must/might be filled once/multiple times ?
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What are Description Logics 7

Description logics (DLs) are (almost
exclusively) decidable subsets of
FOPL aimed at modeling
terminological incomplete knowledge.
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Description logics (DLs) are (almost
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ALC Language
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@ Basic building blocks of DLs are :
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@ Basic building blocks of DLs are :

(atomic) concepts - representing (named) unary predicates / classes,
e.g. Parent, or Person 1 JhasChild - Person.
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e.g. Parent, or Person M dhasChild - Person.
(atomic) roles - represent (named) binary predicates / relations, e.g.
hasChild
individuals - represent ground terms / individuals, e.g. JOHN
@ Theory KC (in OWL refered as Ontology) of DLs consists of a

TBOX T - representing axioms generally valid in the domain, e.g.
T = {Man C Person}
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e.g. Parent, or Person 1 JhasChild - Person.
(atomic) roles - represent (named) binary predicates / relations, e.g.
hasChild
individuals - represent ground terms / individuals, e.g. JOHN

@ Theory KC (in OWL refered as Ontology) of DLs consists of a
TBOX T - representing axioms generally valid in the domain, e.g.
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Concepts and Roles

@ Basic building blocks of DLs are :
(atomic) concepts - representing (named) unary predicates / classes,
e.g. Parent, or Person 1 JhasChild - Person.
(atomic) roles - represent (named) binary predicates / relations, e.g.
hasChild
individuals - represent ground terms / individuals, e.g. JOHN

@ Theory KC (in OWL refered as Ontology) of DLs consists of a
TBOX T - representing axioms generally valid in the domain, e.g.
T = {Man C Person}
ABOX A - representing a particular relational structure (data),
e.g. A= {Man(JOHN)}
e DLs differ in their expressive power (concept/role constructors, axiom
types).
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Semantics, Interpretation

@ as ALC is a subset of FOPL, let's define semantics analogously (and
restrict interpretation function where applicable):
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Semantics, Interpretation

@ as ALC is a subset of FOPL, let's define semantics analogously (and
restrict interpretation function where applicable):

o Interpretation is a pair Z = (AZ, 1), where AZ is an interpretation
domain and -Z is an interpretation function.
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Semantics, Interpretation

@ as ALC is a subset of FOPL, let's define semantics analogously (and
restrict interpretation function where applicable):

o Interpretation is a pair Z = (AZ, 1), where AZ is an interpretation
domain and -Z is an interpretation function.

@ Having atomic concept A, atomic role R and individual a, then

AIQAI
RT c AT x AT
af e AT
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ALC (= attributive language with complements)

Having concepts C, D, atomic concept A and atomic role R, then for
interpretation 7 :

concept  concept? description

T AT (universal concept)

€ 0 (unsatisfiable concept)
-C AT\ T (negation)

C;nC, CGIncG? (intersection)

C; UG C1I @]} CQI (union)

VR - C {a|Vb((a,b) € RT = bc CT)} (universal restriction)
3R -C {a|3b((a,b) € R”T Abe CT)} (existential restriction)

Ltwo different individuals denote two different domain elements
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interpretation 7 :
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T AT (universal concept)
€ 0 (unsatisfiable concept)
-C AT\ T (negation)
C;nC, CGIncG? (intersection)
C; UG C1I @]} CQI (union)
VR - C {a|Vb((a,b) € RT = bc CT)} (universal restriction)
3R -C {a|3b((a,b) € R”T Abe CT)} (existential restriction)
axiom T |= axiom iff  description
TBOX C,CC CGTCCt (inclusion)
Ci=C CGI=c*t (equivalence)
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ALC (= attributive language with complements)

Having concepts C, D, atomic concept A and atomic role R, then for
interpretation 7 :

concept  concept? description
T AT (universal concept)
€ 0 (unsatisfiable concept)
-C AT\ T (negation)
C;nC, CGIncG? (intersection)
C; UG C1I @]} CQI (union)
VR - C {a|Vb((a,b) € RT = bc CT)} (universal restriction)
3R -C {a|3b((a,b) € R”T Abe CT)} (existential restriction)
axiom T |= axiom iff  description
TBOX C,CC CGTCCt (inclusion)
Ci=C CGI=c*t (equivalence)
ABOX (UNA = unique name assumption?)
axiom 7 |= axiom iff description
C(a) at e ct (concept assertion)

R(az,az) (ar%,a2%) € RT  (role assertion)

Ytwo different individuals denote two different domain elements
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Logical Consequence

For an arbitrary set S of axioms (resp. theory K = (T,.A), where
S=TU.A), then
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IESifZEaforallae$s (Zisamodelof S, resp. K) J
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Logical Consequence

For an arbitrary set S of axioms (resp. theory K = (T,.A), where
S=TU.A), then

Model
IESifZEaforallae$s (Zisamodelof S, resp. K)

Logical Consequence
S E BifZ = 5 whenever Z = S ([ is a logical consequence of S, resp. K)
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Logical Consequence

For an arbitrary set S of axioms (resp. theory K = (T,.A), where
S=TU.A), then

Model
IESifZEaforallae$s (Zisamodelof S, resp. K)

Logical Consequence
S E BifZ = 5 whenever Z = S ([ is a logical consequence of S, resp. K)

v

@ S is consistent, if S has at least one model
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ALC — Example

Example
Consider an information system for genealogical data. Information
integration from various sources is crucial — databases, information
systems with different data models. As an integration layer, let's use a
description logic theory. Let's have atomic concepts
Person, Man, GrandParent and atomic role hasChild.

@ How to express a set of persons that have just men as their

descendants, if any ?
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Consider an information system for genealogical data. Information
integration from various sources is crucial — databases, information
systems with different data models. As an integration layer, let's use a
description logic theory. Let's have atomic concepts
Person, Man, GrandParent and atomic role hasChild.
@ How to express a set of persons that have just men as their
descendants, if any ?
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@ How to define concept GrandParent 7
GrandParent = Person M 3hasChild - 3hasChild - T
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ALC — Example

Example
Consider an information system for genealogical data. Information
integration from various sources is crucial — databases, information
systems with different data models. As an integration layer, let's use a
description logic theory. Let's have atomic concepts
Person, Man, GrandParent and atomic role hasChild.
@ How to express a set of persons that have just men as their
descendants, if any ?
Person M YhasChild - Man
@ How to define concept GrandParent 7
GrandParent = Person M 3hasChild - 3hasChild - T

@ How does the previous axiom look like in FOPL ?

Vx (GrandParent(x) = (Person(x) A 3y (hasChild(x, y)
A3z (hasChild(y, z)))))
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Interpretation — Example

Example

o Consider a theory K1 = ({ GrandParent =
Person 1 3hasChild - IhasChild - T}, { GrandParent(JOHN)}). Find
some model.
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Example
o Consider a theory K1 = ({ GrandParent =
Person 1 3hasChild - IhasChild - T}, { GrandParent(JOHN)}). Find
some model.
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o Consider a theory K1 = ({ GrandParent =
Person 1 3hasChild - IhasChild - T}, { GrandParent(JOHN)}). Find
some model.
@ a model of 1 can be interpretation Z; :
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o Consider a theory K1 = ({ GrandParent =
Person 1 3hasChild - IhasChild - T}, { GrandParent(JOHN)}). Find
some model.
@ a model of 1 can be interpretation Z; :
AT = Man™ = Person™ = { John, Phillipe, Martin}
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Interpretation — Example

Example

o Consider a theory K1 = ({ GrandParent =
Person 1 3hasChild - IhasChild - T}, { GrandParent(JOHN)}). Find
some model.
@ a model of 1 can be interpretation Z; :
AT = Man™ = Person™ = {John, Phillipe, Martin}
hasChild™ = {(John, Phillipe), (Phillipe, Martin)}
GrandParent™ = { John}
JOHN* = { John}
@ this model is finite and has the form of a tree with the root in the
node John :

| Person, Man, GrandParent: John - Person, Man: Phillipe - Person, Man : Martin
hasChild hasChild
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Shape of DL Models

The last example revealed several important properties of DL models:
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Shape of DL Models

The last example revealed several important properties of DL models:
Tree model property

Every satisfiable ALC concept® C has a model in the shape of a rooted
tree.

?Concept is satisfiable, if at least one model interprets it as a non-empty set
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The last example revealed several important properties of DL models
Tree model property

Every satisfiable ALC concept® C has a model in the shape of a rooted
tree.

?Concept is satisfiable, if at least one model interprets it as a non-empty set

Finite model property

Every consistent theory IC has a finite model. J

Both properties represent important characteristics of a DL that
directly influence inferencing (see next lecture).
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Shape of DL Models

The last example revealed several important properties of DL models:

Tree model property

Every satisfiable ALC concept® C has a model in the shape of a rooted
tree.

?Concept is satisfiable, if at least one model interprets it as a non-empty set

Finite model property
Every consistent theory IC has a finite model. J

Both properties represent important characteristics of a DL that
directly influence inferencing (see next lecture).

In particular (generalized) TMP is a characteristics that is shared by
most DLs and significantly reduces their computational complexity.
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Example

Example

primitive concept
defined concept

Woman

Man

Mother

Father

Parent

Grandmother
MotherWithoutDaughter
Wife

Person 1 Female

Person 1 ~Woman

Woman M JhasChild - Person
Man 11 dhasChild - Person
Father LI Mother

Mother M hasChild - Parent
Mother M YhasChild - —Woman
Woman M dhasHusband - Man
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Example - CWA x OWA

Example
hasChild(JOCASTA, OEDIPUS) hasChild(JOCASTA, POLYNEIKES)
ABOX  hasChild(OEDIPUS, POLYNEIKES)  hasChild(POLYNEIKES, THERSANDROS)
Patricide( OEDIPUS) —Patricide( THERSANDROS)

v
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Example - CWA x OWA

Example
hasChild(JOCASTA, OEDIPUS) hasChild(JOCASTA, POLYNEIKES)
ABOX  hasChild(OEDIPUS, POLYNEIKES)  hasChild(POLYNEIKES, THERSANDROS)
Patricide( OEDIPUS) —Patricide( THERSANDROS)

Edges represent role assertions of hasChild; red/green colors distinguish
concepts instances — FPatricide a —Patricide

JOCASTA ———— = POLYNEIKES —= THERSANDROS
T~ —
OEDIPUS
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Example - CWA x OWA

Example
hasChild(JOCASTA, OEDIPUS) hasChild(JOCASTA, POLYNEIKES)
ABOX  hasChild(OEDIPUS, POLYNEIKES)  hasChild(POLYNEIKES, THERSANDROS)
Patricide( OEDIPUS) —Patricide( THERSANDROS)

Edges represent role assertions of hasChild; red/green colors distinguish
concepts instances — FPatricide a —Patricide

JOCASTA ———— = POLYNEIKES —= THERSANDROS
T~ —
OEDIPUS

Q1 (3hasChild - (Patricide M 3hasChild - —Patricide))(JOCASTA),

JOCASTA — o —> o
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Example - CWA x OWA

Example
hasChild(JOCASTA, OEDIPUS) hasChild(JOCASTA, POLYNEIKES)
ABOX  hasChild(OEDIPUS, POLYNEIKES)  hasChild(POLYNEIKES, THERSANDROS)
Patricide(OEDIPUS) —Patricide( THERSANDROS)

Edges represent role assertions of hasChild; red/green colors distinguish
concepts instances — FPatricide a —Patricide

JOCASTA ———— = POLYNEIKES —= THERSANDROS
T~ —
OEDIPUS

Q1 (3hasChild - (Patricide M 3hasChild - —Patricide))(JOCASTA),
JOCASTA —= o —> o
Q2 Find individuals x such that K = C(x), where C is
—Patricide M 3hasChild™ - (Patricide M 3hasChild ) - {JOCASTA}
What is the difference, when considering CWA ?
JOCASTA —> o —> x
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