Description Logics

Petr Křemen petr.kremen@fel.cvut.cz

FEL ČVUT

Our plan

Towards Description Logics

 \mathcal{ALC} Language

Towards Description Logics

Let's review our knowledge about FOPL ²

- What is a term, axiom/formula, theory, model, universal closure, resolution, logical consequence?
- What is an open-world assumption (OWA)/closed-world assumption (CWA)?
- What is the difference between a predicate (relation) and a predicate symbol ?
- What does it mean, when saying that FOPL is undecidable?
- What does it mean, when saying that FOPL is monotonic?
- What is the idea behind *Deduction Theorem*, *Soundness*, *Completeness*?

Isn't FOPL enough?

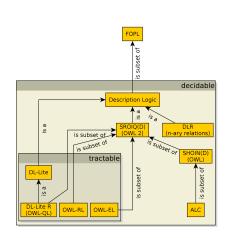
- Why do we speak about modal logics, description logics, etc.
 ?
 - FOPL is undecidable many logical consequences cannot be verified in finite time.
 - We often do not need full expressiveness of FOL.
- Well, we have Prolog wide-spread and optimized implementation of FOPL, right ?
 - Prolog is not an implementation of FOPL OWA vs. CWA, negation as failure, problems in expressing disjunctive knowledge, etc.
- Well, relational databases are also not enough?
 - RDBMS accept CWA and support just finite domains.
 - RDBMS are not flexible enough DB model change is complicated that adding/removing an axiom from an ontology.

Technologies sketched so far aren't enough?

- Semantic networks and Frames
 - Lack well defined (declarative) semantics
 - What is the semantiics of a "slot" in a frame (relation in semantic networks)? The slot must/might be filled once/multiple times?
- Conceptual graphs are beyond FOPL (thus undecidable).
- What are description logics (DLs)?
 - logic-based languages for modeling terminological knowledge, incomplete knowledge. Almost exclusively, DLs are decidable subsets of FOPL.
 - první jazyky vznikly jako snaha o formalizaci sémantických sítí a rámců. První implementace v 80's – systémy KL-ONE, KAON, Classic .

What are Description Logics?

- family of logic-based languages for modeling terminological knowledge, incomplete knowledge.
 Almost exclusively, DLs are decidable subsets of FOPL.
- first languages emerged as an experiment of giving formal semantics to semantic networks and frames. First implementations in 80's – KL-ONE, KAON, Classic.
- 90's *ALC*
- 2004 SHOIN(D) OWL
- 2009 SROIQ(D) OWL 2



\mathcal{ALC} Language

Concepts and Roles

Basic building blocks of DLs are :

- Theory \mathcal{K} (in OWL refered as Ontology) of DLs consists of a TBOX \mathcal{T} representing axioms generally valid in the domain, e.g. $\mathcal{T} = \{Man \sqsubseteq Person\}$ ABOX \mathcal{A} representing a particular relational structure (data), e.g. $\mathcal{A} = \{Man(JOHN)\}$
- DLs differ in their expressive power (concept/role constructors, axiom types).

Semantics, Interpretation

- as ALC is a subset of FOPL, let's define semantics analogously (and restrict interpretation function where applicable):
- Interpretation is a pair $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where $\Delta^{\mathcal{I}}$ is an interpretation domain and $\cdot^{\mathcal{I}}$ is an interpretation function.
- Having atomic concept A, atomic role R and individual a, then

$$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$$

$$R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$$

$$a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$$

ALC (= attributive language with complements)

Having concepts ${\it C}$, ${\it D}$, atomic concept ${\it A}$ and atomic role ${\it R}$, then for interpretation ${\it I}$:

	concept	${\sf concept}^{\mathcal{I}}$		description
	Т	$\Delta^{\mathcal{I}}$		(universal concept)
	\perp	Ø		(unsatisfiable concept)
	$\neg C$	$\Delta^{\mathcal{I}} \setminus \mathcal{C}^{\mathcal{I}}$		(negation)
	$C \sqcap D$	$C^{\mathcal{I}}\cap D^{\mathcal{I}}$		(intersection)
	$C \sqcup D$	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$		(union)
	$\forall R \cdot C$	$\{a \mid \forall b ((a, b) \in$	$\in R^{\mathcal{I}} \Rightarrow b \in C^{\mathcal{I}})$	(universal restriction)
	$\exists R \cdot C$	$\{a\mid \exists b((a,b)\in$	$\in R^{\mathcal{I}} \wedge b \in C^{\mathcal{I}})$	(existential restriction)
	axiom	$\mathcal{I} \models axiom \ iff$	description	
TBOX	$C \sqsubseteq D$	$C^{\mathcal{I}}\subseteq D^{\mathcal{I}}$	(inclusion)	
	$C \equiv D$	$C^{\mathcal{I}} = D^{\mathcal{I}}$	(equivalence)	
ABOX (UNA = unique name assumption 3)				
	axiom	$\mathcal{I} \models axiom \; iff$	description	_
	C(a)	$a^{\mathcal{I}} \in C^{\mathcal{I}}$	(concept assertion)	
	R(a,b)	$(a^\mathcal{I},b^\mathcal{I})\in R^\mathcal{I}$	(role assertion)	

³two different individuals denote two different domain elements

Logical Consequence

For an arbitrary set S of axioms (resp. theory $\mathcal{K}=(\mathcal{T},\mathcal{A})$, where $S=\mathcal{T}\cup\mathcal{A}$), then

- $\mathcal{I} \models S$ if $\mathcal{I} \models \alpha$ for all $\alpha \in S$ (\mathcal{I} is a model of S, resp. \mathcal{K})
- $S \models \beta$ if $\mathcal{I} \models \beta$ whenever $\mathcal{I} \models S$ (β is a logical consequence of S, resp. \mathcal{K})
- S is consistent, if S has at least one model

ALC – Example

Example

Consider an information system for genealogical data. Information integration from various sources is crucial – databases, information systems with *different data models*. As an integration layer, let's use a description logic theory. Let's have atomic concepts *Person*, *Man*, *GrandParent* and atomic role *hasChild*.

- How to express a set of persons that have just men as their descendants, if any ?
 - Person □ ∀hasChild · Man
- How to define concept GrandParent?
 - GrandParent \equiv Person $\sqcap \exists hasChild \cdot \exists hasChild \cdot \top$
- How does the previous axiom look like in FOPL ?

$$\forall x \, (\textit{GrandParent}(x) \equiv (\textit{Person}(x) \land \exists y \, (\textit{hasChild}(x, y) \\ \land \exists z \, (\textit{hasChild}(y, z)))))$$

Interpretation – Example

Example

- Consider an ontology $\mathcal{K}_1 = (\{GrandParent \equiv Person \sqcap \exists hasChild \cdot \exists hasChild \cdot \top\}, \{GrandParent(JOHN)\}),$ modelem \mathcal{K}_1 může být např. interpretace \mathcal{I}_1 :
 - $\Delta^{\mathcal{I}_1} = Man^{\mathcal{I}_1} = Person^{\mathcal{I}_1} = \{John, Phillipe, Martin\}$
 - $hasChild^{\mathcal{I}_1} = \{(John, Phillipe), (Phillipe, Martin)\}$
 - $GrandParent^{\mathcal{I}_1} = \{John\}$
 - $JOHN^{\mathcal{I}_1} = \{John\}$
- this model is finite and has the form of a tree with the root in the node *Jan*:

Shape of DL Models

The last example revealed several important properties of DL models:

TMP (tree model property), if every satisfiable concept⁴ *C* of the language has a model in the shape of a *rooted tree*.

FMP (finite model property), if every consistent theory $\mathcal K$ of the language has a *finite model*.

Both properties represent important characteristics of a DL that directly influence inferencing (see next lecture).

In particular (generalized) TMP is a characteristics that is shared by most DLs and significantly reduces their computational complexity.

⁴Concept is satisfiable, if at least one model interprets it as a non-empty set

Example

Example

primitive concept defined concept

```
Woman \equiv Person \sqcap Female
```

 $Man \equiv Person \sqcap \neg Woman$

 $Mother \equiv Woman \sqcap \exists hasChild \cdot Person$

 $Father \equiv Man \sqcap \exists hasChild \cdot Person$

 $Parent \equiv Father \sqcup Mother$

 $Grandmother \equiv Mother \sqcap \exists hasChild \cdot Parent$

 $MotherWithoutDaughter \equiv Mother \sqcap \forall hasChild \cdot \neg Woman$

Wife \equiv Woman \sqcap ∃hasHusband · Man

Example – CWA \times OWA

Example

hasChild(JOCASTA, OEDIPUS) hasChild(JOCASTA, POLYNEIKES) ABOX hasChild(OEDIPUS, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS) Patricide(OEDIPUS) ¬Patricide(THERSANDROS) Edges represent role assertions of hasChild; colors distinguish concepts instances – Patricide a ¬Patricide POLYNEIKES -> THERSANDROS JOCASTA -**OFDIPUS** Q1 $(\exists hasChild \cdot (Patricide \sqcap \exists hasChild \cdot \neg Patricide))(JOCASTA),$ $IOCASTA \longrightarrow \bullet \longrightarrow \bullet$ Q2 Find individuals x such that $\mathcal{K} \models C(x)$, where C is $\neg Patricide \sqcap \exists hasChild \vdash \cdot (Patricide \sqcap \exists hasChild \vdash) \cdot \{JOCASTA\}$ What is the difference, when considering CWA?

 $IOCASTA \longrightarrow \bullet \longrightarrow x$