
Description logics – syntax, semantics, reasoning, querying and

debugging

Petr Křemen
petr.kremen@fel.cvut.cz

October 26, 2015

1 Course Information

Course Information

• web page: http://cw.felk.cvut.cz/doku.php/courses/ae4m33rzn/start

• three basic topics: description logics, fuzzy (description) logic, probabilistic models

• Please go through the course web page carefully !!!

Technical Roadmap

1

http://cw.felk.cvut.cz/doku.php/courses/ae4m33rzn/start

Technical Roadmap (2)

Technical Roadmap (3)

2

2 Towards Description Logics

Semiotic Triangle

3

refers to ∼ modeled by ontologies; you can learn in AE0M33OSW course

represents ∼ studied by formal knowledge representation languages – this course

Ontologies

Ontologies
in IT are formal informational artifacts explicitely representing shared conceptualization.

• basic idea = we need to model (and reason) on concepts (i.e. “meanings”) not terms (i.e. “symbols”,
“words”, “phrases”). We need to know, what our mean.

• compare words Man vs. Person.

• but we need to use words to model the concepts ...

Ontologies (2)

Principle of application. A concept satisfies the principle of application if we are able to decide, whether
an “object” belongs to the concept or not. E.g. nice vs. red vs. woman.

4

Principle of identity. Each concept is equipped with a principle of identity saying, what must be fulfilled
for an object to belong to the concept. E.g. an artificial key, birth number vs. particular human brain

Many concept types – universals vs. individuals, endurants vs. perdurants, etc.

... and much more

Ontologies can be represented formally, in order to exploit automated reasoning on concept-
s/meanings.

3 Logics

Formal Ontologies

• deal with proper representation of conceptual knowledge in a domain

• background for many AI techniques, e.g.:

– knowledge management – search engines, data integration

– multiagent systems – communication between agents

– machine learning – language bias

• involves many graphical/textual languages ranging from informal to formal ones, e.g. relational algebra,
Prolog, RDFS, OWL, topic maps, thesauri, conceptual graphs

• Most of them are based on some logical calculus.

Logics for Ontologies

• propositional logic

Example 1. “John is clever.′′ ⇒ ¬“John fails at exam.′′

• first order predicate logic

Example 2. (∀x)(Clever(x)⇒ ¬((∃y)(Exam(y) ∧ Fails(x, y)))).

• (propositional) modal logic

Example 3. �((∀x)(Clever(x)⇒ 3¬((∃y)(Exam(y) ∧ Fails(x, y))))).

• ... what is the meaning of these formulas ?

Logics for Ontologies (2)
Logics are defined by their

• Syntax – to represent concepts (defining symbols)

• Semantics – to capture meaning of the syntactic constructs (defining concepts)

• Proof Theory – to enforce the semantics

Logics trade-off
A logical calculus is always a trade-off between expressiveness and tractability of reasoning.

5

Propositional Logic

Example 4. How to check satisfiability of the formula A ∨ (¬(B ∧A) ∨B ∧ C) ?

syntax – atomic formulas and ¬, ∧, ∨, ⇒

semantics (|=) – an interpretation assigns true/false to each formula.

proof theory (`) – resolution, tableau

complexity – NP-Complete (Cook theorem)

First Order Predicate Logic

Example 5. What is the meaning of this sentence ?

(∀x1)((Student(x1) ∧ (∃x2)(GraduateCourse(x2) ∧ isEnrolledTo(x1, x2)))

⇒ (∀x3)(isEnrolledTo(x1, x3)⇒ GraduateCourse(x3)))

Student u ∃isEnrolledTo.GraduateCourse v ∀isEnrolledTo.GraduateCourse

First Order Predicate Logic – quick informal review

syntax – constructs involve

term (variable x, constant symbol JOHN , function symbol applied to terms fatherOf(JOHN))

axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), possibly glued together
with ¬, ∧, ∨, ⇒, ∀,∃)

universally closed formula formula without free variable ((∀x)(∃y)hasFather(x, y) ∧ Person(y))

semantics – an interpretation (with valuation) assigns:

domain element to each term

true/false to each closed formula

proof theory – resolution; Deduction Theorem, Soundness Theorem, Completeness Theorem

complexity – undecidable (Goedel)

Open World Assumption

OWA
FOPL accepts Open World Assumption, i.e. whatever is not known is not necessarily false.

As a result, FOPL is monotonic, i.e.

monotonicity
No conclusion can be invalidated by adding extra knowledge.

This is in contrary to relational databases, or Prolog that accept Closed World Assumption.

6

4 Semantic Networks and Frames

Semantic Networks

(c©wikipedia.org)

Nodes = entities (individuals, classes),

Edges = binary relations

• The only possible inference is inheritance by means of is a relationship.

Example

Each Cat hasa Vertebrate, since each Cat isa Mammal .

Semantic Networks (2)

7

8

However, this does not allow distinguishing individuals (instances) and groups (classes).
To solve this, a new relationship type “is a kind of” ako can be introduced and used for inheritance,

while is a relationships would be restricted to expressing individual-group relationships.

Semantic Networks (3)

, are simple – from the point of logics they are not much more than a binary structure + ako and is a
relationships with the following semantics:

relation(X,Y) ∧ ako(Z,X)⇒ relation(Z, Y).

isa(X,Y) ∧ ako(Y,Z)⇒ isa(X,Z).

ako(X,Y) ∧ ako(Y,Z)⇒ ako(X,Z).

/ no way to express non-monotonous knowledge (like FOL).

/ no easy way to express n-ary relationships (reification needed).

/ no way to express binary relationships characteristics – transitivity, functionality, reflexivity, etc., or
their hierarchies “to be a father means to be a parent”, etc.,

/ no way to express more complex constructs, like cardinality restrictions: “Each person has at most
two legs.”

• Wordnet, Semantic Wiki, etc.

9

Frames

frame: Škoda Favorit
slots:

is a: car
has engine: four-stroke engine
has transmission system: manual
has carb: value: Jikov

default : Pierburg

• more structured than semantic networks

• forms that contain slots (binary relationships).

([MvL93])

• Every slot has several facets (slot use restrictions), e.g. cardinality, defaults, etc.

, Facets allow non-monotonic reasoning.

, Daemons are triggers for actions perfomed on facets (read, write, delete). Can be used e.g for consis-
tency checking.

Frames (2)

Example
Typically, Škoda Favorit has carb of type Pierburg, but this particular Škoda Favorit has carb of type
Jikov.

• frames can be grouped into scenarios that represent typical situations, e.g. going into a restaurant.
[MvL93]

• OKBC - http://www.ai.sri.com/ okbc

• Protégé - http://protege.stanford.edu/overview/protege-frames.html

Protégé

10

Frames and Semantics Networks – Summary

, very simple structures for knowledge representation,

, nonmonotonic reasoning,

/ ad-hoc reasoning procedures, that complicates (and broadens ambiguity during) translation to First
Order Predicate Logic (FOPL),

/ problems – querying, debugging.

5 Towards Description Logics

Languages sketched so far aren’t enough ?

• Why not First Order Predicate Logic ?

/ FOPL is undecidable – many logical consequences cannot be verified in finite time.

– We often do not need full expressiveness of FOL.

• Well, we have Prolog – wide-spread and optimized implementation of FOPL, right ?

/ Prolog is not an implementation of FOPL – OWA vs. CWA, negation as failure, problems in
expressing disjunctive knowledge, etc.

Languages sketched so far aren’t enough ?

• Relational algebra

– accepts CWA and supports just finite domains.

• Semantic networks and Frames

– Lack well defined (declarative) semantics

– What is the semantics of a “slot” in a frame (relation in semantic networks) ? The slot must/might
be filled once/multiple times ?

What are Description Logics ?

Description logics (DLs) are (almost exclusively) decidable subsets of FOPL aimed at modeling termi-
nological incomplete knowledge.

• first languages emerged as an experiment of giving formal semantics to semantic networks and frames.
First implementations in 80’s – KL-ONE, KAON, Classic.

• 90’s ALC

• 2004 SHOIN (D) – OWL

• 2009 SROIQ(D) – OWL 2

11

6 ALC Language

Concepts and Roles

• Basic building blocks of DLs are :

(atomic) concepts - representing (named) unary predicates / classes, e.g. Parent , or Person u
∃hasChild · Person.

(atomic) roles - represent (named) binary predicates / relations, e.g. hasChild

individuals - represent ground terms / individuals, e.g. JOHN

12

• Theory K = (T ,A) (in OWL refered as Ontology) consists of a

TBOX T - representing axioms generally valid in the domain, e.g. T = {Man v Person}
ABOX A - representing a particular relational structure (data), e.g. A = {Man(JOHN), loves(JOHN ,MARY)}

• DLs differ in their expressive power (concept/role constructors, axiom types).

Semantics, Interpretation

• as ALC is a subset of FOPL, let’s define semantics analogously (and restrict interpretation function
where applicable):

• Interpretation is a pair I = (∆I , ·I), where ∆I is an interpretation domain and ·I is an interpretation
function.

• Having atomic concept A, atomic role R and individual a, then

AI ⊆ ∆I

RI ⊆ ∆I ×∆I

aI ∈ ∆I

ALC (= attributive language with complements)

Having concepts C , D, atomic concept A and atomic role R, then for interpretation I :

concept conceptI description

> ∆I (universal concept)

⊥ ∅ (unsatisfiable concept)

¬C ∆I \ CI (negation)

C1 u C2 C1
I ∩ C2

I (intersection)

C1 t C2 C1
I ∪ C2

I (union)

∀R · C {a | ∀b ((a, b) ∈ RI ⇒ b ∈ CI)} (universal restriction)

∃R · C {a | ∃b ((a, b) ∈ RI ∧ b ∈ CI)} (existential restriction)

TBOX

axiom I |= axiom iff description

C1 v C2 C1
I ⊆ C2

I (inclusion)

C1 ≡ C2 C1
I = C2

I (equivalence)

ABOX (UNA = unique name assumption1)

axiom I |= axiom iff description

C (a) aI ∈ CI (concept assertion)

R(a1 , a2) (a1
I , a2

I) ∈ RI (role assertion)

Logical Consequence
For an arbitrary set S of axioms (resp. theory K = (T ,A), where S = T ∪ A) :

Model

I |= S if I |= α for all α ∈ S (I is a model of S, resp. K)

Logical Consequence

S |= β if I |= β whenever I |= S (β is a logical consequence of S, resp. K)

• S is consistent, if S has at least one model

1two different individuals denote two different domain elements

13

ALC – Example

Example
Consider an information system for genealogical data. Information integration from various sources is crucial
– databases, information systems with different data models. As an integration layer, let’s use a description
logic theory. Let’s have atomic concepts Person,Man,GrandParent and atomic role hasChild .

• Set of persons that have just men as their descendants, if any ? (specify a concept)

– Person u ∀hasChild ·Man

• How to define concept GrandParent ? (specify an axiom)

– GrandParent ≡ Person u ∃hasChild · ∃hasChild · >

• How does the previous axiom look like in FOPL ?

∀x (GrandParent(x) ≡ (Person(x) ∧ ∃y (hasChild(x, y)

∧∃z (hasChild(y, z)))))

ALC Example – T

Example

Woman ≡ Person u Female

Man ≡ Person u ¬Woman

Mother ≡ Woman u ∃hasChild · Person

Father ≡ Man u ∃hasChild · Person

Parent ≡ Father tMother

Grandmother ≡ Mother u ∃hasChild · Parent
MotherWithoutDaughter ≡ Mother u ∀hasChild · ¬Woman

Wife ≡ Woman u ∃hasHusband ·Man

Interpretation – Example

Example

• Consider a theoryK1 = ({GrandParent ≡ Personu∃hasChild ·∃hasChild · >}, {GrandParent(JOHN)}).
Find some model.

• a model of K1 can be interpretation I1 :

– ∆I1 = ManI1 = PersonI1 = {John, Phillipe,Martin}
– hasChildI1 = {(John, Phillipe), (Phillipe,Martin)}
– GrandParentI1 = {John}
– JOHN I1 = {John}

• this model is finite and has the form of a tree with the root in the node John :

14

Shape of DL Models

The last example revealed several important properties of DL models:

Tree model property (TMP)

Every consistent K = ({}, {C (I)}) has a model in the shape of a rooted tree.

Finite model property (FMP)

Every consistent K = (T ,A) has a finite model.

Both properties represent important characteristics of ALC that significantly speed-up reasoning.

In particular (generalized) TMP is a characteristics that is shared by most DLs and significantly reduces
their computational complexity.

Example – CWA × OWA

Example 6. ABOX
hasChild(JOCASTA,OEDIPUS) hasChild(JOCASTA, POLY NEIKES)
hasChild(OEDIPUS, POLYNEIKES) hasChild(POLYNEIKES,THERSANDROS)
Patricide(OEDIPUS) ¬Patricide(THERSANDROS)

Edges represent role assertions of hasChild ; red/green colors distinguish concepts instances – Patricide a ¬Patricide

JOCASTA //
**

POLYNEIKES // THERSANDROS

OEDIPUS

33

Q1 (∃hasChild · (Patricide u ∃hasChild · ¬Patricide))(JOCASTA),

JOCASTA // • // •

Q2 Find individuals x such that K |= C (x), where C is

¬Patricide u ∃hasChild− · (Patricide u ∃hasChild−) · {JOCASTA}

What is the difference, when considering CWA ?

JOCASTA // • // x

7 Inference Problems

Inference Problems in TBOX
We have introduced syntax and semantics of the language ALC. Now, let’s look on automated reasoning.

Having a ALC theory K = (T ,A). For TBOX T and concepts C(i), we want to decide whether

(unsatisfiability) concept C is unsatisfiable, i.e. T |= C v ⊥ ?

(subsumption) concept C1 subsumes concept C2 , i.e. T |= C2 v C1 ?

(equivalence) two concepts C1 and C2 are equivalent, i.e. T |= C1 ≡ C2 ?

(disjoint) two concepts C1 and C2 are disjoint, i.e. T |= C1 u C2 v ⊥ ?

All these tasks can be reduced to unsatisfiability checking of a single concept ...

15

Reducting Subsumption to Unsatisfiability

Example
These reductions are straighforward – let’s show, how to reduce subsumption checking to unsatisfiability
checking. Reduction of other inference problems to unsatisfiability is analogous.

(T |= C1 v C2) iff

(∀I)(I |= T =⇒ I |= C1 v C2) iff

(∀I)(I |= T =⇒ C1
I ⊆ C2

I) iff

(∀I)(I |= T =⇒ C1
I ∩ (∆I \ C2

I) ⊆ ∅ iff

(∀I)(I |= T =⇒ I |= C1 u ¬C2 v ⊥ iff

(T |= C1 u ¬C2 v ⊥)

Inference Problems for ABOX

... and for ABOX A, axiom α, concept C , role R and individuals a(i) we want to decide whether

(consistency checking) ABOX A is consistent w.r.t. T (in short if K is consistent).

(instance checking) T ∪ A |= C (a)?

(role checking) T ∪ A |= R(a1 , a2)?

(instance retrieval) find all individuals a, for which T ∪ A |= C (a).

realization find the most specific concept C from a set of concepts, such that T ∪ A |= C (a).

All these tasks, as well as concept unsatisfiability checking, can be reduced to consistency
checking. Under which condition and how ?

Reduction of concept unsatisfiability to theory consistency

Example
Consider an ALC theory K = (T ,A), a concept C and a fresh individual af not occuring in K:

(T |= C v ⊥) iff

(∀I)(I |= T =⇒ I |= C v ⊥) iff

(∀I)(I |= T =⇒ C I ⊆ ∅) iff

¬
[
(∃I)(I |= T ∧ C I * ∅)

]
iff

¬
[
(∃I)(I |= T ∧ af

I ∈ C I)
]

iff

(T , {C (af)}) is inconsistent

Note that for more expressive description logics than ALC, the ABOX has to be taken into account as
well due to its interaction with TBOX.

8 Inference Algorithms

Inference Algorithms in Description Logics

Structural Comparison is polynomial, but complete just for some simple DLs without full negation, e.g.
ALN , see [BCM+03].

16

Tableaux Algorithms represent the State of Art for complex DLs – sound, complete, finite

other ... – e.g. resolution-based transformation to finite automata , etc.

We will introduce tableau algorithms.

Tableaux Algorithms

• Tableaux Algorithms (TAs) serve for checking theory consistency in a simple manner: “Consistency
of the given ABOX A w.r.t. TBOX T (resp. consistency of theory K) is proven if we
succeed in constructing a model of T ∪ A.” (resp. theory K)

• Each TA can be seen as a production system :

– state of TA (∼ data base) is made up by a set of completion graphs (see next slide),

– inference rules (∼ production rules) implement semantics of particular constructs of the given
language, e.g. ∃,u, etc. and serve to modify the completion graphs according to

– choosen strategy for rule application

• TAs are not new in DL – they were known for FOL as well.

Completion Graphs

completion graph is a labeled oriented graph G = (VG, EG, LG)), where each node x ∈ VG is labeled with
a set LG(x) of concepts and each edge 〈x, y〉 ∈ EG is labeled with a set of edges LG(〈x, y〉)2

direct clash occurs in a completion graph G = (VG, EG, LG)), if {A,¬A} ⊆ LG(x), or ⊥ ∈ LG(x), for some
atomic concept A and a node x ∈ VG

complete completion graph is a completion graph G = (VG, EG, LG)), to which no completion rule from
the set of TA completion rules can be applied.

Do not mix with notion of complete graphs known from graph theory.

Completion Graphs (2)

We define also I |= G iff I |= AG, where AG is an ABOX constructed from G, as follows

• C (a) for each node a ∈ VG and each concept C ∈ LG(a) and

• R(a1 , a2) for each edge 〈a1 , a2 〉 ∈ EG and each role R ∈ LG(a1 , a2)

8.1 Tableau Algorithm for ALC
Tableau Algorithm for ALC with empty TBOX

let’s have K = (T ,A). For a moment, consider for simplicity that T = ∅.

0 (Preprocessing) Transform all concepts appearing in K to the “negational normal form” (NNF) by
equivalent operations known from propositional and predicate logics. As a result, all concepts contain
negation ¬ at most just before atomic concepts, e.g. ¬(C1 u C2) is equivalent (de Morgan rules) to
¬C1 t ¬C2).

1 (Initialization) Initial state of the algorithm is S0 = {G0}, where G0 = (VG0 , EG0 , LG0) is made up
from A as follows:

2Next in the text the notation is often shortened as LG(x, y) instead of LG(〈x, y〉).

17

– for each C (a) ∈ A put a ∈ VG0 and C ∈ LG0(a)

– for each R(a1 , a2) ∈ A put 〈a1 , a2 〉 ∈ EG0
and R ∈ LG0

(a1 , a2)

– Sets VG0
, EG0

, LG0
are smallest possible with these properties.

Tableau algorithm for ALC without TBOX (2)
. . .

2 (Consistency Check) Current algorithm state is S. If each G ∈ S contains a direct clash, terminate
with result “INCONSISTENT”

3 (Model Check) Let’s choose one G ∈ S that doesn’t contain a direct clash. If G is complete w.r.t. rules
shown next, the algorithm terminates with result “CONSISTENT”

4 (Rule Application) Find a rule that is applicable to G and apply it. As a result, we obtain from the
state S a new state S′. Jump to step 2.

TA for ALC without TBOX – Inference Rules

→u rule

if (C1 u C2) ∈ LG(a) and {C1 ,C2} * LG(a) for some a ∈ VG.

then S′ = S ∪ {G′} \ {G}, where G′ = (VG, EG, LG′), and LG′ (a) = LG(a) ∪ {C1 ,C2} and otherwise is the same as LG.

→t rule

if (C1 t C2) ∈ LG(a) and {C1 ,C2} ∩ LG(a) = ∅ for some a ∈ VG.

then S′ = S ∪ {G1, G2} \ {G}, where G(1|2) = (VG, EG, LG(1|2)), and LG(1|2) (a) = LG(a) ∪ {C (1|2)} and otherwise is the

same as LG.

→∃ rule

if (∃R · C) ∈ LG(a1) and there exists no a2 ∈ VG such that R ∈ LG(a1 , a2) and at the same time C ∈ LG(a2).

then S′ = S ∪{G′} \ {G}, where G′ = (VG ∪{a2}, EG ∪{〈a1 , a2 〉}, LG′), a LG′ (a2) = {C}, LG′ (a1 , a2) = {R} and otherwise

is the same as LG.

→∀ rule

if (∀R · C) ∈ LG(a1) and there exists a2 ∈ VG such that R ∈ LG(a, a1) and at the same time C /∈ LG(a2).

then S′ = S ∪ {G′} \ {G}, where G′ = (VG, EG, LG′), and LG′ (a2) = LG(a2) ∪ {C} and otherwise is the same as LG.

TA Run Example

Example 7. Let’s check consistency of the ontology K2 = (∅,A2), where A2 = {(∃maDite ·Muz u∃maDite ·
Prarodic u ¬∃maDite · (Muz u Prarodic))(JAN)}).

• Let’s transform the concept into NNF: ∃maDite ·Muzu∃maDite ·Prarodicu∀maDite ·(¬Muz t ¬Prarodic)

• Initial state G0 of the TA is

18

TA Run Example (2)

Example 8. . . .

• Now, four sequences of steps 2,3,4 of the TA are performed. TA state in step 4, evolves as follows:

• {G0}
u-rule−→ {G1}

∃ -rule−→ {G2}
∃ -rule−→ {G3}

∀ -rule−→ {G4}, where G4 is

TA Run Example (3)

Example 9. . . .

• By now, we applied just deterministic rules (we still have just a single completion graph). At this point
no other deterministic rule is applicable.

• Now, we have to apply the t-rule to the concept ¬Muz t¬Rodic either in the label of node “0”, or in
the label of node “1”. Its application e.g. to node “1” we obtain the state {G5, G6} (G5 left, G6 right)

TA Run Example (4)

Example 10. . . .

• We see that G5 contains a direct clash in node “1”. The only other option is to go through the graph
G6. By application of t-rule we obtain the state {G5, G7, G8}, where G7 (left), G8 (right) are derived
from G6 :

19

• G7 is complete and without direct clash.

TA Run Example (5)

Example 11. . . . A canonical model I2 can be created from G7. Is it the only model of K2 ?

• ∆I2 = {Jan, i1, i2},

• maDiteI2 = {〈Jan, i1〉, 〈Jan, i2〉},

• PrarodicI2 = {i1},

• MuzI2 = {i2},

• “JAN ′′
I2 = Jan, “0 ′′

I2 = i2, “1 ′′
I2 = i1,

Finiteness
Finiteness of the TA is an easy consequence of the following:

• K is finite

• in each step, TA state can be enriched at most by one completion graph (only by application of →t
rule). Number of disjunctions (t) in K is finite, i.e. the t can be applied just finite number of times.

• for each completion graph G = (VG, EG, LG) it holds that number of nodes in VG is less or equal to
the number of individuals in A plus number of existential quantifiers in A.

• after application of any of the following rules→u,→∃ ,→∀ graph G is either enriched with a new node,
new edge, or labeling of an existing node/edge is enriched. All these operations are finite.

Soundness

• Soundness of the TA can be verified as follows. For any I |= AGi
, it must hold that I |= AGi+1

. We
have to show that application of each rule preserves consistency. As an example, let’s take the →∃
rule:

– Before application of →∃ rule, (∃R · C) ∈ LGi(a1) held for a1 ∈ VGi .

– As a result a1
I ∈ (∃R · C)I .

– Next, i ∈ ∆I must exist such that 〈a1
I , i〉 ∈ RI and at the same time i ∈ C I .

– By application of →∃ a new node a2 was created in Gi+1 and the label of edge 〈a1 , a2 〉 and node
a2 has been adjusted.

20

– It is enough to place i = a2
I to see that after rule application the domain element (necessary

present in any interpretation because of ∃ construct semantics) has been “materialized”. As a
result, the rule is correct.

• For other rules, the soundness is shown in a similar way.

Completeness

• To prove completeness of the TA, it is necessary to construct a model for each complete completion
graph G that doesn’t contain a direct clash. Canonical model I can be constructed as follows:

– the domain ∆I will consist of all nodes of G.

– for each atomic concept A let’s define AI = {a | A ∈ LG(a)}
– for each atomic role R let’s define RI = {〈a1 , a2 〉 | R ∈ LG(a1 , a2)}

• Observe that I is a model of AG. A backward induction can be used to show that I must be also a
model of each previous step and thus also A.

A few remarks on TAs

• Why we need completion graphs ? Aren’t ABOXes enough to maintain the state for TA ?

– indeed, for ALC they would be enough. However, for complex DLs a TA state cannot be stored
in an ABOX.

• What about complexity of the algorithm ?

– P-SPACE (between NP and EXP-TIME).

General Inclusions
We have presented the tableau algorithm for consistency checking of K = (∅,A). How the situation

changes when T 6= ∅ ?

• consider T containing axioms of the form C i v D i for 1 ≤ i ≤ n. Such T can be transformed into a
single axiom

> v >C

where >C denotes a concept (¬C 1 tD1) u . . . u (¬Cn tDn)

• for each model I of the theory K, each element of ∆I must belong to >IC . How to achieve this ?

General Inclusions (2)
What about this ?

→v rule

if >C /∈ LG(a) for some a ∈ VG.

then S′ = S ∪ {G′} \ {G}, where G′ = (VG, EG, LG′), a LG′ (a) = LG(a) ∪ {>C} and otherwise is the same as LG.

Example

Consider K3 = ({Muz v ∃maRodice ·Muz},A2). Then >C is ¬Muz t∃maRodice ·Muz . Let’s use the
introduced TA enriched by →v rule. Repeating several times the application of rules →v, →t, →∃
to G7 (that is not complete w.r.t. to →v rule) from the previous example we get . . .

21

General Inclusions (3)

Example

. . . this algorithm doesn’t necessarily terminate /.

Blocking in TA

• TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite
completion graph.

• The mechanism that enforces finite representation is called blocking.

• Blocking ensures that inference rules will be applicable until their changes will not repeat “sufficiently
frequently”.

22

• For ALC it can be shown that so called subset blocking is enough:

– In completion graph G a node x (not present in ABOX A) is blocked by node y, if
there is an oriented path from y to x and LG(x) ⊆ LG(y).

• exists− rule is only applicable if the node a1 in its definition is not blocked by another node.

Blocking in TA (2)

• In the previous example, the blocking ensures that node “2 ′′ is blocked by node “0 ′′ and no other
expansion occurs. Which model corresponds to such graph ?

• Introduced TA with subset blocking is sound, complete and finite decision procedure for
ALC.

Let’s play . . .

• http://krizik.felk.cvut.cz/km/dl/index.html

9 From ALC to OWL(2)-DL

Extending . . .ALC ...

• We have introduced ALC, together with a decision procedure. Its expressiveness is higher than propo-
sitional calculus, still it is insufficient for many practical applications.

• Let’s take a look, how to extend ALC while preserving decidability.

Extending . . .ALC ... (2)

N (Number restructions) are used for restricting the number of successors in the given role for the given

concept.

syntax (concept) semantics

(≥ n R)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}
∣∣∣ ≥ n }

(≤ n R)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}
∣∣∣ ≤ n }

(= n R)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}
∣∣∣ = n

}

Example

– Concept Woman u (≤ 3 hasChild) denotes women who have at most 3 children.

– What denotes the axiom Car v (≥ 4 hasWheel) ?

– ... and Bicycle ≡ (= 2 hasWheel) ?

23

Extending . . .ALC ... (3)

Q (Qualified number restrictions) are used for restricting the number of successors of the given type in

the given role for the given concept.

syntax (concept) semantics

(≥ n R C)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}
∣∣∣ ≥ n }

(≤ n R C)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}
∣∣∣ ≤ n }

(= n R C)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}
∣∣∣ = n

}

Example

– Concept Woman u (≥ 3 hasChild Man) denotes women who have at least 3 sons.

– What denotes the axiom Car v (≥ 4 hasPart Wheel) ?

– Which qualified number restrictions can be expressed in ALC ?

Extending . . .ALC ... (4)

O (Nominals) can be used for naming a concept elements explicitely.
syntax (concept) semantics

{a1, . . . , an} {aI1 , . . . , aIn}

Example

– Concept {MALE ,FEMALE} denotes a gender concept that must be interpreted with at most
two elements. Why at most ?

– Continent ≡ {EUROPE,ASIA,AMERICA,AUSTRALIA,AFRICA,ANTARCTICA} ?

Extending . . .ALC ... (5)

I (Inverse roles) are used for defining role inversion.
syntax (role) semantics

R− (RI)−1

Example

– Role hasChild− denotes the relationship hasParent .

– What denotes axiom Person v
(
= 2 hasChild−

)
?

– What denotes axiom Person v ∃hasChild− · ∃hasChild · > ?

Extending . . .ALC ... (6)

·trans (Role transitivity axiom) denotes that a role is transitive. Attention – it is not a transitive closure

operator.
syntax (axiom) semantics

trans(R) RI is transitive

Example

– Role isPartOf can be defined as transitive, while role hasParent is not. What about roles hasPart ,
hasPart−, hasGrandFather− ?

– What is a transitive closure of a relationship ? What is the difference between a transitive closure
of hasDirectBossI and hasBossI .

24

Extending . . .ALC ...(7)

H (Role hierarchy) serves for expressing role hierarchies (taxonomies) – similarly to concept hierarchies.
syntax (axiom) semantics

R v S RI ⊆ SI

Example

– Role hasMother can be defined as a special case of the role hasParent .

– What is the difference between a concept hierarchy Mother v Parent and role hierarchy hasMother v
hasParent .

Extending . . .ALC ... (8)

R (role extensions) serve for defining expressive role constructs, like role chains, role disjunctions, etc.
syntax semantics

R ◦ S v P RI ◦ SI v PI

Dis(R,R) RI ∩ SI = ∅
∃R · Self {a|(a, a) ∈ RI}

Example

– How would you define the role hasUncle by means of hasSibling and hasParent ?

– how to express that R is transitive, using a role chain ?

– Whom does the following concept denote Person u ∃likes · Self ?

Global restrictions

• Simple roles have no (direct or indirect) subroles that are either transitive or are defined by means of
property chains

hasFatherohasBrother v hasUncle

hasUncle v hasRelative

hasBiologicalFather v hasFather

hasRelative and hasUncle are not simple.

• Each concept construct and each axiom from this list contains only simple roles:

– number restrictions – (≥ n R), (= n R), (≤ n R) + their qualified versions

– ∃R · Self
– specifying functionality/inverse functionality (leads to number restrictions)

– specifying irreflexivity, asymmetry, and disjoint object properties.

Extending . . .ALC ... – OWL-DL a OWL2-DL

• From the previously introduced extensions, two prominent decidable supersets of ALC can be con-
structed:

– SHOIN is a description logics that backs OWL-DL.

– SROIQ is a description logics that backs OWL2-DL.

25

– Both OWL-DL and OWL2-DL are semantic web languages – they extend the corresponding
description logics by:

syntactic sugar – axioms NegativeObjectPropertyAssertion, AllDisjoint, etc.

extralogical constructs – imports, annotations

data types – XSD datatypes are used

Extending ALC – Reasoning

• What is the impact of the extensions to the automated reasoning procedure ? The introduced tableau
algorithm for ALC has to be adjusted as follows:

– additional inference rules reflecting the semantics of newly added constructs (O,N ,Q)

– definition of R-neighbourhood of a node in a completion graph. R-neighbourhood notion general-
izes simple tests of two nodes being connected with an edge, e.g. in ∃-rule. (H,R, I)

– new conditions for direct clash detection

– more strict blocking conditions (blocking over graph structures).

• This results in significant computation blowup – from EXPTIME (ALC) to

– NEXPTIME for SHOIN
– N2EXPTIME for SROIQ

Rules and Description Logics

• How to express e.g. that “A cousin is someone whose parent is a sibling of your parent.” ?

• ... we need rules, like

hasCousin(?c1, ?c2)← hasParent(?c1, ?p1), hasParent(?c2, ?p2),

Man(?c2), hasSibling(?p1, ?p2)

• in general, each variable can bind domain elements (similarly to undistinguished variables in the next
lecture); however, such version is undecidable.

DL-safe rules

DL-safe rules are decidable conjunctive rules where each variable only binds individuals (i.e. repre-
sentation of domain elements, not domain elements themselves).

Other extensions

Modal Logic introduces modal operators – possibility/necessity, used in multiagent systems.

Example 12. • (� represents e.g. the ”believe” operator of an agent)

�(Man v Person u ∀hasFather ·Man) (1)

• As ALC is a syntactic variant to a multi-modal propositional logic, where each role represents the accessibility relationa
between worlds in Kripke structure, the previous example can be transformed to the modal logic as:

•
�(Man ⇒ Person ∧�hasFatherMan) (2)

Vague Knowledge - fuzzy, probabilistic and possibilistic extensions

Data Types (D) allow integrating a data domain (numbers, strings), e.g. Person u ∃hasAge · 23 represents the concept describing
“23-years old persons”.

26

10 Conjunctive Queries

What we have ...

• Consistency checking is not enough. What if we would like to ask more, e.g. ... How many
czech writers died in the Czech Republic according to DBPedia ? SELECT COUNT(?x)
?x ¡http://dbpedia.org/ontology/deathPlace¿ ¡http://dbpedia.org/resource/Czech Republic¿ . ?x dc-
terms:subject ¡http://dbpedia.org/resource/Category:Czech writers¿ at the following endpoint: http:
//dbpedia-live.openlinksw.com/sparql/

Query Types

Conjunctive (ABox) queries – queries asking for individual tuples complying with a graph-like pattern.

Metaqueries – queries asking for individual/concept/role tuples. There are several languages for metaque-
ries, e.g. SPARQL-DL, OWL-SAIQL, etc.

Example

In SPARQL-DL, the query “Find all people together with their type.” can be written as follows :

Type(?x, ?c), SubClassOf(?c,Person)

Conjunctive (ABox) queries

Example
“Find all mothers and their daughters having at least one brother.” :

Q(?x, ?z) ← Woman(?x), hasChild(?x, ?y), hasChild(?x, ?z),

Man(?y),Woman(?z)

Conjunctive (ABox) queries are analogous to database SELECT-PROJECT-JOIN queries. A conjunctive
query is in the form

Q(?x1, . . . , ?xD)← t1, . . . tT ,

where each ti is either

• C (yk) (where C is a concept)

• R(yk, yl) (where R is a role)

and yi is either (i) an individual, or (ii) variable from a new set V (variables will be differentiated from
individuals by the prefix “?”). Next, we need all ?xi to be present also in one of ti.

Conjunctive ABox Queries – Semantics

• Conjunctive queries of the form Q() are called boolean – such queries only test existence of a relational
structure in each model I of the ontology K.

• Consider any interpretation I = (∆I , ·I). Evaluation η is a function from the set of individuals and
variables into ∆I that coincides with I on individuals.

• Then I |=η Q(), iff

– η(yk) ∈ C I for each atom C (yk) from Q() and

– 〈η(yk), η(yl)〉 ∈ RI for each atom R(yk, yl) from Q()

• Interpretation I is a model of Q(), iff I |=η Q() for some η.

• Next, K |= Q() (Q() is satisfiable in K) iff I |= Q() whenever I |= K

27

http://dbpedia-live.openlinksw.com/sparql/
http://dbpedia-live.openlinksw.com/sparql/

Conjunctive ABox Queries – Variables

• Queries without variables are not practically interesting. For queries with variables we define semantics
as follows. An N-tuple 〈i1, . . . , in〉 is a solution to Q(?x1, . . . , ?xn) in theory K, whenever K |= Q′(),
for a boolean query Q′ obtained from Q by replacing all occurences of ?x1 in all tk by an individual
i1, etc.

• In conjunctive queries two types of variables can be defined:

distinguished occur in the query head as well as body, e.g. ?x, ?z in the previous example. These
variables are evaluated as domain elements that are necessarily interpretations of some individual
from K. That individual is the binding to the distinguished variable in the query result.

undistinguished occur only in the query body, e.g. ?y in the previous example. Their can be
interpretated as any domain elements.

Conjunctive Queries – Examples

Example
Let’s have a theory K4 = (∅, {(∃R1 · C1)(i1),R2 (i1 , i2),C2 (i2)}).

• Does K |= Q1() hold for Q1()← R1 (?x1, ?x2) ?

• What are the solutions of the query Q2(?x1)← R1 (?x1, ?x2) for K ?

• What are the solutions of the query Q3(?x1, ?x2)← R1 (?x1, ?x2) for K ?

11 Evaluation of Conjunctive Queries in ALC
Satisfiability of ALC Boolean Queries

• Satisfiability of the boolean query Q() having a tree shape can be checked by means of the rolling-up
technique.

– Each two atoms C1 (yk) and C2 (yk) can be replaced by a single query atom of the form (C1 u
C2)(yk).

– Each query atom of the form R(yk, yl) can be replaced by the term (∃R ·X)(yk), if yl occurs in
at most one other query atom of the form C (yl) (if there is no C (yl) atom in the query, consider
w.l.o.g. that C is >). X equals to

∗ (i) C , whenever yl is a variable,

∗ (ii)C uYl, whenever yl is an individual. Yl is a representative concept of individual yl occuring
neither in K nor in Q. For each yl it is necessary to extend ABox of K with concept assertion
Yl(yl).

Satisfiability of ALC Boolean Queries (2)
. . . after rolling-up the query we obtain the query Q()′ ← C (y), that is satisfied in K, iff Q() is satisfied

in K:

• If y is an individual, then Q′() is satisfied, whenever K |= C (y) (i.e. K ∪ {(¬C)(y)} is inconsistent)

• If y is a variable, then Q′() is satisfied, whenever K ∪ {C v ⊥} is inconsistent. Why ?

Example
Consider a query Q4() ← R1 (?x1, ?x2),R2 (?x1, ?x3),C2 (?x3). This query can be rolled-up into the query
Q′4 ← (∃R1 · > u ∃R2 · C2)(?x1). This query is satisfiable in K4, as K4 ∪ {(∃R1 · > u ∃R2 · C2) v ⊥} is
inconsistent.

28

Satisfiability of Boolean Queries in ALC (3)
... and what to do with queries with distinguished variables ?

• Let’s consider just queries that form “connected component” and contain for some variable yk at least
two query atoms of the form R1 (y1, yk) and R2 (y2, yk).

• Question: Why is it enough to take just one connected component?

• Let’s make use of the tree model property of ALC. Each pair of atoms R1 (y1, yk) and
R2 (y2, yk) can be satisfied only if yk is interpreted as a domain element, that is an in-
terpretation of an individual – yk can be treated as distinguished. Why (see next slide)
?

• For SHOIN and SROIQ there is no sound and complete decision procedure for general boolean
queries.

ALC Model Example

Queries with Distinguished Variables – naive pruning
Consider arbitrary query Q(?x1, . . . , ?xD). How to evaluate it ?

• naive way: Replace each distinguished variable xi with each individual occuring in K. Solutions are
those D-tuples 〈i1, . . . , iD〉, for which a boolean query created from Q by replacing each xk with ik is
satisfiable.

29

Example 13. Remind that K4 = (∅, {(∃R1 · C1)(i1),R2 (i1 , i2),C2 (i2)}). The query

Q5(?x1)← R1 (?x1, ?x2),R2 (?x1, ?x3),C2 (?x3)

has solution 〈i1〉 as
Q′5()← R1 (i1, ?x2),R2 (i1, ?x3),C2 (?x3)

can be rolled into Q′′5() for which K4 |= Q′′5 :

Q′′5()← (∃R1 · > u ∃R2 · C2)(i1)

Queries with Distinguished Variables – naive pruning
... another example

Example 14. The query

Q6(?x1, ?x3)← R1 (?x1, ?x2),R2 (?x1, ?x3),C2 (?x3)

has solution 〈i1 , i2 〉 as
Q′6()← R1 (i1 , ?x2),R2 (i1 , i2),C2 (i2)

can be rolled into Q′′6 for which K4∪{I2 (i2)} |= Q′′6 .

Q′′6()← (∃R1 · > u ∃R2 · (C2 u I2))(i1).

Similarly Q7(?x1, ?x2)← R1 (?x1, ?x2),R2 (?x1, ?x3),C2 (?x3) has no solution.

Queries with Distinguished Variables – iterative pruning

• ... a bit more clever strategy than replacing all variables: First, let’s replace just the first
variable ?x1 with each individual from K, resulting in Q2. If the subquery of Q2 containing all query
atoms from Q2 without distinguished variables is not a logical consequence of K, then we do not need
to test potential bindings for other variables.

• Many other optimizations are available.

Queries with Distinguished Variables – iterative pruning

Example 15. For the query Q6(?x1, ?x3), the naive strategy needs to check four different bindings (resulting
in four tableau algorithm runs)

〈i1 , i1 〉,
〈i1 , i2 〉,
〈i2 , i1 〉,
〈i2 , i2 〉.

Out of them only 〈i1 , i2 〉 is a solution for Q6. Consider only partial binding 〈i2 〉 for ?x1. Applying this
binding to Q6 we get Q7(?x3) = R1 (i2 , ?x2),R2 (i2 , ?x3),C2 (?x3). Its distinguished-variable-free subquery
is Q′7() = R1 (i2 , ?x2) and K4 2 Q′7. Because of monotonicity of ALC, we do not need to check the two
bindings for ?x3 in this case which saves us one tableau algorithm run.

30

12 Modeling Error Explanation

Motivation

• When an inference engine claims inconsistency of an (ALC) theory/unsatisfiability of an (ALC) concept,
what can we do with it ?

• We can start iterating through all axioms in the theory and look, “what went wrong”.

• ... but hardly in case we have hundred thousand axioms

• A solution might be to ask the computer to localize the axioms causing the problem for us.

DNA

MUPS – example

Minimal unsatisfiability preserving subterminology (MUPS) is a minimal set of axioms responsible
for concept unsatisfiability.

Example

Consider theory K5 = ({α1, α2, α3}, ∅)

α1 : Person v ∃hasParent · (Man uWoman) u ∀hasParent · ¬Person,

α2 : Man v ¬Woman,

α3 : Man tWoman v Person.

Unsatisfiability of Person comes independently from two axiom sets (MUPSes), namely {α1, α2} and
{α1, α3}. Check it yourself !

31

MUPS
Currently two approaches exist for searching all MUPSes for given concept:

black-box methods perform many satisfiability tests using existing inference engine.

, flexible and easily reusable for another (description) logic

/ time consuming

glass-box methods all integrated into an existing reasoning (typically tableau) algorithm.

, efficient

/ hardly reusable for another (description) logic.

Glass-box methods

• For ALC there exists a complete algorithm with the following idea:

– tableau algorithm for ALC is extended in such way that it “remembers which axioms were used
during completion graph construction”.

– for each completion graph containing a clash, the axioms that were used during its construction
can be transformed into a MUPS.

• Unfortunately, complete glass-box methods do not exist for OWL-DL and OWL2-DL. The same idea
(tracking axioms used during completion graph construction) can be used also for these logics, but
only as a preprocessing reducing the set of axioms used by a black-box algorithm.

13 Black-box methods

Task formulation

• Let’s have a set of axioms X of given DL and reasoner R for given DL. We want to find MUPSes for :

1. concept unsatisfiability, ‘

2. theory (ontology) inconsistency,

3. arbitrary entailment.

• It can be shown (see [Kal06]) that w.l.o.g. we can deal only with concept unsatisfiability.

• MUPS: Let’s denote MUPS(C , Y) a minimal subset MUPS(C , Y) ⊆ Y ⊆ X causing unsatisfiability
of C .

• Diagnose: Let’s denoteDIAG(C , Y) a minimal subsetDIAG(C , Y) ⊆ Y ⊆ X, such that ifDIAG(C , Y)
is removed from Y , the concept C becomes satisfiable.

Task formulation (2)

• Let’s focus on concept C unsatisfiability. Denote

R(C , Y) =

{
true iffY 2 (C v ⊥)
false iffY |= (C v ⊥))

}
.

• There are many methods (see [dSW03]). We introduce just two of them:

– Algorithms based on CS-trees.

– Algorithm for computing a single MUPS[Kal06] + Reiter algorithm [Rei87].

32

13.1 Algorithms based on CS-trees

CS-trees

• A naive solution: test for each set of axioms from T ∪ A for K = (T ,A), whether the set causes
unsatisfiability – minimal sets of this form are MUPSes.

• Conflict-set trees (CS-trees) systematize exploration of all these subsets of T ∪ A. The main gist :

If we found a set of axioms X that do not cause unsatisfiability of C (i.e. X 2 C v ⊥), then
we know (and thus can avoid asking reasoner) that Y 2 C v ⊥ for each Y ⊆ X.

• CS-tree is a representation of the state space, where each state s has the form (D,P), where

– D is a set of axioms that necessarily has to be part of all MUPSes found while exploring the
subtree of s.

– P is a set of axioms that might be part of some MUPSes found while exploring the subtree of s.

CS-tree Exploration – Example

Example
A CS-tree for unsatisfiability of Person (abbr. Pe, not to be mixed with the set P) in K5 = {α1, α2, α3}:

Pe v ∃hP · (M uW) u ∀hP · ¬Pe︸ ︷︷ ︸
α1

, M v ¬W︸ ︷︷ ︸
α2

, M tW v Pe︸ ︷︷ ︸
α3

.

33

In gray states, the concept Person is satisfiable (R(Pe, D ∪ P) = true). States with a dotted border are
pruned by the algorithm.

CS-tree Exploration
The following algorithm is exponential in the number of tableau algorithm runs.

1 (Init) The root of the tree is an initial state s0 = (∅,K) – apriori, we don’t know any axiom being
necessarily in a MUPS (Ds0 = ∅), but potentially all axioms can be there (Ps0 = T ∪ A). Next, we
define Z = (s0) and R = ∅

2 (Depth First Search) If Z is empty, stop the exploration. Otherwise pop the first element s from Z.

3 (Test) If R(C , Ds ∪Ps) = true then no subset of Ds ∪Ps can cause unsatisfiability – we continue with
step 2.

4 (Finding an unsatisfiable set) We add Ds ∪ Ps into R and remove from R all s′ ∈ R such that
Ds ∪ Ps ⊆ s′. For Ps = α1, . . . , αN we push to Z a new state (Ds ∪ {α1, . . . , αi−1}, Ps \ {α1, . . . , αi})
– we continue with step 2.

CS-tree Exploration (2)

• Soundness : Step 4 is important – here, we cover all possibilities. It always holds that Ds ∪ Ps differs
to D′s ∪ P ′s by just one element, where s′ is a successor of s.

• Finiteness : Set Ds ∪ Ps is finite at the beginning and gets smaller with the tree depth. Furthermore,
in step 4 we generate only finite number of states.

13.2 Algorithm based on Reiter’s Algorithm

Another Approach – Reiter’s Algorithm
There is an alternative to CS-trees:

1. Find a single (arbitrary) MUPS (singleMUPS in the next slides).

2. “remove the source of unsatisfiability provided by MUPS” (Reiter’s algorithm in the next slides) from
the set of axioms go explore the remaining axioms in the same manner.

13.3 Algorithm based on Reiter’s Algorithm

Finding a single MUPS(C , Y) – example

Example

The run of singleMUPS(Person,K5) introduced next.
1.PHASE :

K5 = {α1, α2, α3} R(Person, {α1}) = true
S = {α1}

1.PHASE :
K5 = {α1, α2, α3} R(Person, {α1, α2}) = false
S = {α1, α2}

1.PHASE :
K5 = {α1, α2, α3} R(Person, {α1, α2}) = false
S = {α1, α2}

2.PHASE :
S = {α1, α2} R(Person, {α1, α2} − {α1}) = true
K = {α1}

1.PHASE :
K5 = {α1, α2, α3} R(Person, {α1, α2}) = false
S = {α1, α2}

2.PHASE :
S = {α1, α2} R(Person, {α1, α2} − {α2}) = true
K = {α1, α2}

34

singleMUPS(C , Y) – finding a single MUPS
The following algorithm is polynomial in the number of tableau algorithm applications – the computa-

tional complexity stems from the complexity of tableau algorithm itself.

1 (Initialization) Denote S = ∅, K = ∅

2 (Finding superset of MUPS) While R(C , S) = false, then S = S ∪ {α} for some α ∈ Y \ S.

3 (Pruning found set) For each α ∈ S\K evaluate R(C , S\{α}). If the result is false, then K = K∪{α}.
The resulting K is itself a MUPS.

Finding all MUPSes – Reiter Algorithm, example

Example (continued)

The algorithm ends up with two MUPSes {α1, α2} a {α1, α3}. “For free” we got diagnoses {α1} a
{α2, α3}.

Finding all MUPSes – Reiter Algorithm

• Reiter algorithm runs singleMUPS(C , Y) multiple times to construct so called “Hitting Set Tree”,
nodes of which are pairs (Ki,Mi), whereKi lacks some axioms comparing toK andMi = singleMUPS(C ,Ki),
or Mi = “SAT ′′, if C is satisfiable w.r.t. Ki.

• Paths from the root to leaves build up diagnoses (i.e. minimal sets of axioms, each of which removed
from K causes satisfiability of C).

• Number of singleMUPS(C , Y) calls is at most exponential w.r.t. the initial axioms count. Why ?

Finding all MUPSes – Reiter Algorithm (2)

1 (Initialization) Find a single MUPS for C in K, and construct the root s0 = (K, singleMUPS(C ,K))
of the hitting set tree. Next, set Z = (s0).

2 (Depth First Search) If Z is empty, STOP.

3 (Test) Otherwise pop an element from Z and denote it as si = (Ki,Mi). If Mi = “SAT ′′, then go to
step 2.

4 (Decomposition) For each α ∈Mi insert into Z a new node (Ki \ {α}, singleMUPS(Ki \ {α},C)). Go
to step 2.

35

Modeling Error Explanation – Summary

• finding MUPSes is the most common way for explaining modeling errors.

• black-box vs. glass box methods. Other methods involve e.g. incremental methods [dSW03].

• the goal is to find MUPSes (and diagnoses) – what to do in order to solve a modeling problem (unsat-
isfiability,inconsistency).

• above mentioned methods are quite universal – they can be used for many other problems that are not
related with description logics.

References

References

[MvL13] * Vladimı́r Mař́ık, Olga Štěpánková, and Jǐŕı Lažanský. Umělá inteligence 6 [in czech], Chapters
2-4. Academia, 2013.

[BCM+03] * Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter Patel-
Schneider, editors. The Description Logic Handbook, Theory, Implementation and Applications,
Chapters 2-4. Cambridge, 2003.

[BCM+03] * Enrico Franconi. Course on Description Logics. http://www.inf.unibz.it/ franconi/dl/course/,
cit. 22.9.2013.

[Sow00] John F. Sowa. Knowledge Representation: Logical, Philosophical and Computational Founda-
tions. Brooks/Cole, 2000.

[MvL93] Vladimı́r Mař́ık, Olga Štěpánková, and Jǐŕı Lažanský. Umělá inteligence 1. Academia, 1993.

[Rei87] Raymond Reiter. A Theory of Diagnosis from First Principles. Artificial Intelligence, 32(1):57–96,
April 1987.

[dSW03] Maria Garcia de la Banda, Peter J. Stuckey, and Jeremy Wazny. Finding All Minimal Unsatis-
fiable Subsets. In Proceedings of PPDP’03, 2003.

[Kal06] Aditya Kalyanpur. Debugging and Repair of OWL Ontologies. PhD thesis, University of Mary-
land, 2006.

36

	Course Information
	Towards Description Logics
	Logics
	Semantic Networks and Frames
	Towards Description Logics
	ALC Language
	Inference Problems
	Inference Algorithms
	Tableau Algorithm for ALC

	From ALC to OWL(2)-DL
	Conjunctive Queries
	Evaluation of Conjunctive Queries in ALC
	Modeling Error Explanation
	Black-box methods
	Algorithms based on CS-trees
	Algorithm based on Reiter's Algorithm
	Algorithm based on Reiter's Algorithm

