Graphical probabilistic models – learning from data

Jiří Kléma

Department of Cybernetics, FEE, CTU at Prague

http://ida.felk.cvut.cz

Outline

- **Motivation for learning from data**
	- $-$ knowledge is hard to obtain \times data of sufficient size often at hand,
- structure of training data
	- − frequency table is commonly sufficient,
	- − incomplete data make learning harder,
- **parameter learning**
	- − easier (sub)task,
	- $-$ MLE algorithm ($+$ EM for incomplete data),
	- − data quantity demonstration of requirements,

structure learning

- − more difficult task,
- − structure selection criteria? likelihood, MAP score, BIC,
- − na¨ıve approach, K2 and MCMC algorithms,
- − illustrative examples.

Learning Bayesian networks from data

format of training data?

. . .

- − sample set D contains M samples = concurrent observations of all the variables,
- $-$ FAMILY example: $d_m = \{FO_m, BP_m, LO_m, DO_m, HB_m\}, m = 1 \dots M,$
- − no missing values concerned yet for simplicity,
- frequency table (hypercube) provides sufficient statistics (representation)
	- − gives the number of samples with particular configuration (frequency over sample space),
	- -2^5 entries $N({f \circ, bp, do, lo, hb}), \ldots$, $N({¬f o, ¬bp, ¬do, ¬lo, ¬hb}),$
	- − representation close to the joint probability distribution.

$$
d_1 = \{f \circ 1, \neg bp_1, \neg lo_1, \neg lo
$$

Learning Bayesian network parameters from data

I likelihood review: 1D Gaussian mean estimation (variance assumed to be known)

Duda,Hart,Stork: Pattern Classification

a set of observations (points) candidate probabilistic models (dashed)

likelihood as a function of the mean prob of the observations given the model the mean value $\hat{\theta}$ maximizes likelihood

> log likelihood the same best value $\hat{\theta}$ easier to handle (underflow)

Learning Bayesian network parameters from data

- network structure is known, we search for CPTs in the individual nodes,
- **n** maximum likelihood estimate (MLE) of unknown parameters Θ
	- − FAMILY example

$$
L(\Theta : D) = \prod_{m=1}^{M} Pr(d_m : \Theta) = \prod_{m=1}^{M} Pr(FO_m, BP_m, LO_m, DO_m, HB_m : \Theta) =
$$

=
$$
\prod_{m=1}^{M} Pr(FO_m : \Theta) Pr(BP_m : \Theta) Pr(LO_m | FO_m : \Theta) ... Pr(HB_m | DO_m : \Theta)
$$

− for general Bayesian network

$$
L(\Theta : D) = \prod_{m=1}^{M} Pr(d_m : \Theta) = \prod_{m=1}^{M} Pr(P_{1m}, P_{2m}, \dots, P_{nm} : \Theta) =
$$

=
$$
\prod_{j=1}^{n} \prod_{m=1}^{M} Pr(P_j | parents(P_j) : \Theta_j) = \prod_{j=1}^{n} L_j(\Theta_j : D)
$$

under the assumption of independence of parameters, likelihood can be decomposed

 $-$ contribution of each network node $L_j(\Theta_j:D)$ is determined (maximized) independently.

Learning Bayesian network parameters from data

- **n** the optimization task: $\Theta_j = \argmax_{\Theta}$ $L_j(\Theta_j:D)$ is solved for each node,
- let us demonstrate for FO node, where $\Theta_{FO} = \{Pr(fo)\}$
	- $-$ let $N(fo)$ be the number of samples, where $FO_j = TRUE$
	- $-L_{FO}$ is maximized by putting its first derivative equal to 0

$$
L_{FO}(\Theta_{FO}:D) = \prod_{m=1}^{M} Pr(FO : \Theta_{FO}) = Pr(fo)^{N(fo)}(1 - Pr(fo))^{M-N(fo)}
$$

$$
\frac{\partial L_{FO}(Pr(fo):D)}{\partial Pr(fo)} = 0 \rightarrow Pr(fo) = \frac{N(fo)}{M}
$$

the generalized formula for ML parameter estimation is intuitively obvious

$$
\widehat{\theta}_{P_j|parents(P_j)} = \frac{N(P_j, parents(P_j))}{N(parents(P_j))} \approx Pr(P_j|parents(P_j))
$$

however, this estimate is imprecise/impossible for sparse/incomplete data

- − sparse data → Dirichlet priors and maximum a posteriori (MAP) probability method,
- $-$ missing data \rightarrow Monte-Carlo sampling, or

 \rightarrow EM optimization of multimodal likelihood function.

Parameter learning from a small number of observations

- lill-posed problem
	- − overfitting, division by zero or zero probabilities learned,
- **regularization**
	- − introducing additional information in order to resolve an ill-posed problem,
	- − Bayesian learning makes use of prior probability

 \blacksquare MAP estimate of parameters: $\widehat{\theta}_{p_j|parents(P_j)} = \frac{N(p_j, parents(P_j)) + \alpha - 1}{N(parents(P_j)) + \alpha + \beta - 2}$ $\frac{N(p_j, part\,ents(T_j))+\alpha-1}{N(parents(P_j))+\alpha+\beta-2}.$

Parameter learning from incomplete data

- **n** missing values completely at random
	- $-$ the simplest option independent of variable states, no hidden parameters used,
- \blacksquare it is not advisable to ignore the missing values
	- − loses existing observations as well,
- \blacksquare MLE combined with **EM** algorithm:
	- 1. initialize network parameters (typically using available training data or randomly),
	- 2. $\mathsf E$ step: take the existing network and compute the missing values (inference),
	- 3. M step: modify the network parameters according to the current complete observations, use MLE,
	- 4. repeat steps 2 and 3
		- (a) for the given prior number of iterations (in this experiment 10),
		- (b) until convergence of MLE criterion (log L change between consecutive steps < 0.001).

Parameter learning from incomplete data - example

- **consider a linear connection** $A \rightarrow B \rightarrow C$,
- **E** learn network parameters, the samples shown in the table below are available,
- use the EM algorithm to learn with missing values (?).

Parameter learning from incomplete data - example

- **consider a linear connection** $A \rightarrow B \rightarrow C$,
- **E** learn network parameters, the samples shown in the table below are available,
- use the EM algorithm to learn with missing values (?).

init:
$$
Pr(a) = \frac{3}{4}
$$
, $Pr(b|a) = \frac{1}{2}$, $Pr(b|\neg a) = 1$, $Pr(c|b) = 1$, $Pr(c|\neg b) = 0$,
\nE₁: $Pr(B_4 = T) = Pr(b|a, \neg c) = \frac{Pr(a, b, \neg c)}{Pr(a, \neg c)} = \frac{3}{4} \frac{1}{2}0/(\frac{3}{4} \frac{1}{2}0 + \frac{3}{4} \frac{1}{2}1) = 0 \rightarrow$ estimated F,
\nM₁: $Pr(a) = \frac{3}{4}$, $Pr(b|a) = \frac{1}{3}$, $Pr(b|\neg a) = 1$, $Pr(c|b) = 1$, $Pr(c|\neg b) = 0$,
\nE₂: $Pr(B_4 = T) = Pr(b|a, \neg c) = \frac{Pr(a, b, \neg c)}{Pr(a, \neg c)} = \frac{3}{4} \frac{1}{3}0/(\frac{3}{4} \frac{1}{3}0 + \frac{3}{4} \frac{2}{3}1) = 0 \rightarrow$ estimated F,
\nM₂: necessarily the same result as in M₁, converged, STOP.

Parameter learning from data $-$ illustration of convergence

- 1. take existing (original) network and generate training data (a sample set)
	- **FAMILY** network, consider different M values (sample set sizes),
	- \blacksquare in which way to generate the data?
		- − no evidence, thus **forward sampling**, see inference
		- − Gibbs sampling is also possible,
- 2. randomize quantitative network parameters
	- \blacksquare the network structure is preserved,
	- the original CPTs lost,
- 3. parameter values are learned from training data
	- **complete observations maximum likelihood estimate (MLE),**
	- incomplete observations combination of MLE and EM algorithm,
- 4. compare the original and learned CPTs for different sample set sizes M
	- why is it easier to estimate $Pr(f \circ p)$ then $Pr(d \circ p)$? see graphs ...

Parameter learning from data $-$ complete observations

What is the probability that family is out?

 $- Pr(fo) = ?$

all samples can be used ...

$$
- Pr(fo) = \frac{\sum_{m=1}^{M} \delta(FO^m, fo)}{M}
$$

- What is the dog out prob given fo and bp ? $- Pr(doff0, bp) = ?$
- Gondition is met only in 1.5 $\frac{0}{00}$ of samples.

$$
- Pr(fo) = 0.15, Pr(bp) = 0.01,
$$

 $-FO$ and BP independent variables.

Parameter learning from data – incomplete observations $(50\%$ loss)

- What is the probability that family is out?
	- $Pr(fo) = ?$
- Incomplete data $=$ less information
	- − considerably longer computational time,
	- − the final estimate "a bit less exact only".
- What is the dog out prob given fo and bp ? $- Pr(dofo, bp) = ?$
- Incomplete data $=$ less information
- − comparison is inconclusive.

- **two steps sufficient to construct the network:**
	- 1. define a sort of n variables.
	- 2. gradually find subsets of variables that satisfy CI relationship $Pr(P_{j+1}|P_1,\ldots,P_j) = Pr(P_{j+1}|parents(P_{j+1}))$, parents $(P_{j+1}) \subseteq \{P_1,\ldots,P_j\}$,
- the algorithm illustrated on a simple three variable example:
	- 1. select a permutation $\pi: \pi(P_1) = 1, \pi(P_2) = 2$ a $\pi(P_3) = 3$,
	- 2. gradually build a network, add nodes one by one, CI test underlies the local decision.
- **two steps sufficient to construct the network:**
	- 1. define a sort of n variables.
	- 2. gradually find subsets of variables that satisfy CI relationship $Pr(P_{j+1}|P_1,\ldots,P_j) = Pr(P_{j+1}|parents(P_{j+1}))$, parents $(P_{j+1}) \subseteq \{P_1,\ldots,P_j\}$,
- **the algorithm illustrated on a simple three variable example:**
	- 1. select a permutation $\pi: \pi(P_1) = 1, \pi(P_2) = 2$ a $\pi(P_3) = 3$,
	- 2. gradually build a network, add nodes one by one, CI test underlies the local decision.
- **Examplemented in this easy form:**
	- − variable ordering influences the resulting network
		- $*$ improper ordering \rightarrow redundant edges up to fully connected graph,
		- ∗ however, n! distinct permutations cannot be checked,
	- − independence tests also non-trivial
		- $*$ for binary variables definitely $\mathcal{O}(2^n)$ operations per single permutation, $*$ among others, $Pr(P_n | P_1, \ldots, P_{n-1})$ needs to be enumerated.

Structure learning – naïve approach

score-based learning, maximizes an evaluation function

- − the function quantifies how well a structure matches the data,
- straightforward likelihood function selects the fully connected network
	- $-$ the more parameters, the better match with data,
	- − results in overfitting improper when comparing structures of different size,

$$
\log L(G: D) = \log \prod_{m=1}^{M} Pr(d_m: G) = -M \sum_{i=1}^{n} H(P_i | parents(P_i)^{G})
$$

evaluation function often based on Bayesian score that stems from posterior probability

$$
Pr(G|D) = \frac{Pr(D|G)Pr(G)}{Pr(D)} \rightarrow \log Pr(G|D) = \log Pr(D|G) + \log Pr(G) + c
$$

− unlike MLE, it integrates over all parametrizations of given structure

$$
Pr(D|G) = \int Pr(D|G,\Theta_G) \times Pr(\Theta_G|G) d\Theta
$$

− MLE concerns solely the best parametrization

$$
L(G:D)=Pr(D|G,\widehat{\Theta_G})
$$

- **Bayesian Information Criterion (BIC)**
	- − represents another frequent evaluation function,
	- $-$ a heuristic criterion, easier to compute than the Bayesian one,
	- $-$ a MDL principle analogy the best model is both compact and accurate,
	- $-$ let us have: q_i \ldots the number of unique instantiations of P_i parents, $r_i \,$. . . the number of distinct P_i values,
	- $-$ then, a network has: $K = \sum_{i=1}^n q_i (r_i-1)$ independent parameters,

$$
BIC = -\frac{K}{2}\log_2 M + \log_2 L(G:D) = -\frac{K}{2}\log_2 M - M\sum_{i=1}^n H(P_i|parents(P_i)^G)
$$

- $-$ first addend: network complexity penalty $(K \uparrow BIC \downarrow)$,
- − second addend: network likelihood

(mutual information between nodes and their parents $\uparrow H(\vert) \downarrow$ BIC \uparrow),

pConditional entropy

- **n** information entropy $H(X)$
	- − a measure of the uncertainty in a random variable,
	- − the average number of bits per value needed to encode it,

$$
-H(X) = -\sum_{x \in X} Pr(x) \log_2 Pr(x)
$$

- conditional (information) entropy $H(Y|X)$
	- $-$ ucertainty in a random variable Y given that the value of random variable X is known,

$$
- X \perp \!\!\! \perp Y \Rightarrow H(Y|X) = H(Y)
$$

$$
- H(Y|X) = \sum_{x \in X} Pr(x)H(Y|x) = -\sum_{x \in X} Pr(x) \sum_{y \in Y} Pr(y|x) \log_2 Pr(y|x)
$$

- **how to enumerate conditional entropy?**
	- N_{ij} ... the number of samples, where $parents(P_i)$ take the j-th instantiation of values,
	- N_{ijk} ...the number of samples, where P_i takes the k-th value and $parents (P_i)$ the j-th instantiation of values,

$$
H(P_i|parents(P_i)^G) = -\sum_{j=1}^{q_i} \sum_{k=1}^{r_i} \frac{N_{ij} N_{ijk}}{M} \log_2 \frac{N_{ijk}}{N_{ij}} = -\sum_{j=1}^{q_i} \sum_{k=1}^{r_i} \frac{N_{ijk}}{M} \log_2 \frac{N_{ijk}}{N_{ij}}
$$

- \blacksquare however, no evaluation function can be applied to all 2^{n^2} candidate graphs,
- heuristics and metaheuristics known for difficult tasks need to be employed
	- − metaheuristic example local search
		- ∗ it starts with a given network (empty, expert's, random),
		- ∗ it construct all the "near" networks, evaluates them and goes to the best of them,
		- ∗ it repeats the previous step if the local change increases score, otherwise it stops,
	- − auxiliary heuristics examples
		- ∗ definition of "near" network,
		- ∗ how to avoid getting stuck in local minima or on plateaux
			- · random restarts, simulated annealing, TABU search.

Structure learning $-$ K2 algorithm

Gooper and Herskovitz (1992) , it approaches the naïve approach mentioned above,

advantage

- $-$ complexity is $\mathcal{O}(m, u^2, n^2, r)$, $u \leq n \rightarrow \mathcal{O}(m, n^4, r)$
	- $* m$... the number of samples, n ... the number of variables,
	- $* r$... max number of distinct variable values, u ... max number of parents,

disadvantages

- $-$ topological sort of network variables π must be given/known,
- − greedy search results in locally optimal solution.
- it expresses the prob $Pr(G, D)$ as the following function

$$
g(P_i, parents(P_i)) = \prod_{j=1}^{q_i} \frac{(r_i - 1)!}{(N_{ij} + r_i - 1)!} \prod_{k=1}^{r_i} N_{ijk}!
$$

- $-q_i \ldots$ number of unique instantiations of $parents(P_i)$, $r_i \ldots$ number of distinct P_i values,
- N_{ij} ... number of samples, where $parents(P_i)$ take j-th instantiation of values,
- N_{ijk} ... number of samples, where P_i takes k-th value and $parents(P_i)$ j-th instantiation of values,
- $-\frac{1}{2}$ separable criterion it can be computed node by node.

Structure learning $-$ K2 algorithm

algorithm K2 (π, u, D) :

for i=1:n % follow the topological sort of variables π

parents(P_{π_i})= \emptyset % in the beginning, the set of parents is always empty G_{old} =g(P_{π_i} ,parents(P_{π_i})) % initialize the node value while $|\texttt{parents}(P_{\pi_i})| \leq$ \texttt{u} % the number of parents must not exceed \texttt{u}

$$
j^* = \underset{j=1...i-1, P_{\pi_j} \notin parents(P_{\pi_i})}{\arg \max} g(P_{\pi_i}, parents(P_{\pi_i}) \cup P_{\pi_j})
$$

% $P_{\pi_i^*}$ $_{j}^{*}$ is the parent maximizing the value of g % the parent must have a lower topological index $-$ by definition % omit the candidates already belonging to the set of parents G_{new} =g(P_{π_i} ,parents (P_{π_i}) \cup $P_{\pi_j^*}$ $_j^*$) if $G_{new} > G_{old}$ then $G_{old} = G_{new}$ $\texttt{parents}(P_{\pi_i})\texttt{=parents}(P_{\pi_i} \; \cup P_{\pi_j^*})$ $_j^*$ else

STOP % the node value cannot be further improved, stop its processing

let us have binary variables P_1 , P_2 , P_3 , let $\pi = \{1,2,3\}$ and D is given in the table

numinor improvements

- − apply K2 and K2Reverse and take the better solution
	- ∗ K2Reverse starts with the fully connected graph and greedily deletes edges,
	- ∗ solves the particular problem shown above, but not a general solution,
- − randomly restart the algorithm (various node orderings and initial graphs).

Structure learning – MCMC approach

- **MCMC** = Markov chain Monte-Carlo (for meaning see Gibbs sampling),
- **a** applies **Metropolis-Hastings** (MH) algorithm to search the candidate graph/network space
	- 1. take an initial graph G
		- − user-defined/informed, random, empty with no edges,
	- 2. evaluate the graph $P(G)$
		- − use samples, apply criteria such as BIC or Bayesian,
	- 3. generate a "neighbor" S of the given graph G
		- − insert/remove an edge, change edge direction,
		- − check the graph acyclicity constraint,
		- $-$ prob of transition from G to S is function of $Q(G, S)$,
	- 4. evaluate the neighbor graph $P(S)$,
	- 5. accept or reject the transition to S
		- $−$ generate α from U(0,1) (uniform distribution),
		- $-$ if $\alpha < \frac{P(S)Q(G,S)}{P(G)Q(S,G)}$ then accept the transition $G \rightarrow S,$
	- 6. repeat steps 3–5 until convergence or the given number of iterations.

Structure learning – MCMC approach

- **graph frequency helps to assume on graph posterior probability**
	- $-$ a sequence beginning is ignored for random inits,
- **the sequence of graphs can be used both for**
	- − point estimation e.g., only the network with the highest score is concerned (MAP),
	- − Bayesian estimation − all the networks concerned and weighted by their score,
- **n** convergence (frequency proportional to the real score)
	- − theoretically converges in polynomial time wrt size of graph space,
	- − practically difficult for domains with more than 10 variables.

pStructure learning – 3DAG example

- nitialization:
	- − a 3-node trial network taken,
	- − 16 samples generated,
	- − the network "forgotten",
- **Example 1** learning: (complete search, 11 graphs),
	- − score a member of each Markov equivalence class
		- ∗ complete search through a set of 11 graphs/classes,
	- − apply 3 distinct criteria to identify the best model ∗ max likelihood, Bayesian MAP and BIC.

pStructure learning – 3DAG example

 G_1 gradually evaluated by three criteria:

 $-$ likelihood: ML parameters first $Pr(p_1) = Pr(p_2) = \frac{9}{16}$, $Pr(p_3) = \frac{1}{8}$

$$
\ln L(G_1 : D) = \sum_{m=1}^{16} Pr(d_m : G_1) =
$$

= $2 \ln \left(\frac{7}{16} \frac{9}{16} \frac{1}{8} \right) + 3 \ln \left(\frac{9}{16} \frac{9}{16} \frac{7}{8} \right) + 10 \ln \left(\frac{9}{16} \frac{7}{16} \frac{7}{8} \right) + \ln \left(\frac{7}{16} \frac{7}{16} \frac{7}{8} \right) = -27.96$

− the identical likelihood value can also be reached through conditional entropy

$$
\ln L(G_1 : D) = -M \sum_{i=1}^{3} H(P_i | parents(P_i)^{G_1}) =
$$

=
$$
-16 \left[-2 \left(\frac{9}{16} \ln \frac{9}{16} + \frac{7}{16} \ln \frac{7}{16} \right) - \left(\frac{1}{8} \ln \frac{1}{8} + \frac{7}{8} \ln \frac{7}{8} \right) \right] = -27.96
$$

pStructure learning – 3DAG example

 G_1 gradually evaluated by three criteria:

− BIC – subtract the complexity penalty from the value of network likelihood

$$
BIC(G_1: D) = -\frac{K}{2}\ln M + \ln L(G_1: D) = -\frac{3}{2}\ln 16 - 27.96 = -32.12
$$

− Bayesian score

$$
\ln Pr(D|G_1) = \ln \prod_{i=1}^{3} g(P_i, parents(P_i)^{G_1}) = \sum_{i=1}^{3} \sum_{j=1}^{q_i} \sum_{k=1}^{r_i} \ln \frac{(r_i - 1)!}{(N_{ij} + r_i - 1)!} N_{ijk}! =
$$

= 2(-\ln 17! + \ln 9! + \ln 7!) - \ln 17! + \ln 2! + \ln 14! = -31.98

Natural logarithm is applied to match Matlab BN Toolbox.

Logarithm base change does not change ordering of model evaluations.

- none of three criteria identified the correct graph class
	- − MLE overfits the sample set as expected,
	- − BIC and MAP suffer from insufficient data (a too small sample set).

Summary

Estimation of (quantitative) BN parameters

- − relatively easy for large and complete data
	- ∗ ML and MAP estimates agree,
	- ∗ MAP preferable when a prior distribution exists,
- − gets more difficult with small or incomplete sample sets
	- $*$ prior knowledge resp. iterative EM refinement (parameters \leftrightarrow observations),
- **BN** structure discovery as score-based learning
	- − several scores to evaluate how well a structure matches the data
		- $*$ likelihood, resp. log likelihood (two ways to compute available) \rightarrow bad idea, overfits,
		- ∗ Bayesian score, BIC based on likelihood,
		- ∗ other options among others local CI tests,
	- − the space of candidate structures is huge
		- ∗ the space cannot be exhaustively searched, i.e., the scores computed for all candidates,
		- ∗ consequently, even the na¨ıve approach cannot be considered,
		- $*$ K2 a greedy, locally optimal search,
		- ∗ MCMC a stochastic search similar to simulated annealing.
- **Murphy: A Brief Introduction to Graphical Models and Bayesian Networks.**
	- − a practical overview from the author of BN toolbox,
	- − http://www.cs.ubc.ca/~murphyk/Bayes/bayes.html#learn,
- Friedman, Koller: Learning Bayesian Networks from Data.
	- − Neural Information Processing Systems conference tutorial, a presentation,
	- − http://www.cs.huji.ac.il/~nirf/Nips01-Tutorial/,
- **Cooper, Herskovits: A Bayesian Method for the Induction of P. Networks from Data.**
	- $-$ theory $+$ K2 algorithm,
	- − www.genetics.ucla.edu/labs/sabatti/Stat180/bayesNet.pdf,
- **Heckerman: A Tutorial on Learning With Bayesian Networks.**
	- − a theoretical paper, "easy to read"
	- − research.microsoft.com/apps/pubs/default.aspx?id=69588,
- **Buntine: Operations for Learning with Graphical Models.**
	- − a general, complete and extensive description,
	- − http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.696&rep=rep1&type=pdf.