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pGPM lectures – an overview

� L1: introduction

− Bayesian networks – motivation and definitions,

− how graphs can help – conditional independence,

� L2: basic inference

− network applications in predictive tasks,

− inference engines – fundamental exact algorithms,

� L3: advanced inference

− inference engines – efficient exact algorithms, approximate algorithms,

� L4: learning network parameters from data

− using networks for modelling,

− networks as tools for understanding of relations among variables,

� L5: learning network structure from data, extensions

− structure elarning – basic algorithms,

− extensions – time, continuous variables, undirected graphs, applications,
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pAgenda

� Major prerequsite – probability,

� motivation for graphical models

− general probabilistic model and its curse of dimensionality,

− general probabilistic model and knowledge?

� conditional independence

− definition, examples,

− graph equivalent – d-separation,

− graph equivalence wrt conditional independence,

� essential types of graphical probabilistic models

− brief categorization,

� Bayesian networks

− basic idea behind,

− example – family house with a dog.

Notation (binary random variables):

A . . . random variable, a . . . A = True, ¬a . . . A = False, Pr(A,B) . . . joint probability distribution (a table),

Pr(a, b) = Pr(A = True,B = True) . . . prob of a particular event (a single item in table Pr(A,B)).
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pProbabilistic reasoning under uncertainty

� uncertainty

− result of partial observability and/or nondeterminism,

− sentences cannot be decided exactly,

− an agent can only have a degree of belief in them,

� probability

− the main tool for dealing with degrees of belief,

− fully specified probabilistic model

∗ world = atomic event = sample point,

− every question about a domain can be answered with the full model

∗ event = sum of atomic events

· propositions in the absence of any other information,

· unconditonal or prior probability,

∗ dealing with evidence

· conditonal or posterior probability

· this will later be called inference,

− the full joint distribution is the most common full model.
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pProbabilistic reasoning under uncertainty – example

� admission to graduate schools with respect to branch of study and gender

− real data available, the full joint model can easily be constructed,

Branch
Men Women

Applicants Admitted Applicants Admitted

Engineering 1385 865 133 90

Humanities 1205 327 1702 451

(E)ngineering (M)an (A)dmitted f(E,M,A) Pr(E,M,A)

T T T 865 19.5%

T T F 520 11.8%

T F T 90 2.0%

T F F 43 1.0%

F T T 327 7.4%

F T F 878 19.8%

F F T 451 10.2%

F F F 1251 28.3%

Total 4425 100%

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � A4M33RZN



pInference with the full joint model

� every question about the domain can be answered

− marginalization (summing out) is the only step needed to obtain prior probabilities

Pr(X) =
∑
y∈Y

Pr(X,y) (X and Y are sets of variables)

− normalization is the additional step needed to obtain conditional probabilities

∗ it either directly follows the definition of conditional probability

Pr(X|Y) =
Pr(X,Y)

Pr(Y)

∗ or it works with a normalization constant ensuring that the conditional prob sums to 1

Pr(X|Y) = αPr(X,Y)

∗ where α is set so that ∑
x∈X

Pr(x|Y) = 1

.
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pInference with the full joint model – example

� what is the probability of admission?

Pr(a) =
∑
E,M

Pr(E,M, a) = Pr(e,m, a)+Pr(e,¬m, a)+Pr(¬e,m, a)+Pr(¬e,¬m, a) = .392

� what is the probability of admission given gender?

Pr(a|m) =
Pr(a,m)

Pr(m)
=

∑
E Pr(E,m, a)∑

E,A Pr(E,m,A)
=

=
Pr(e,m, a) + Pr(¬e,m, a)

Pr(e,m, a) + Pr(e,m,¬a) + Pr(¬e,m, a) + Pr(¬e,m,¬a)
= .46

Pr(A|¬m) = αPr(A,¬m) = α[Pr(e,¬m,A) + Pr(¬e,¬m,A)] =
= α[〈.02, .01〉 + 〈.102, .283〉] = α[〈.122, .293〉] = 〈.29, .71〉

− the second term computed using α trick, α = 2.41, Pr(a|¬m) = 0.29,

� the university could be (and actually was) sued for bias against women!!!
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pPros and cons of the full joint distribution model

� universality makes an asset of this model

− identical and trivial model structure for all problems,

− for a sufficient sample size its learning converges

∗ model learning means to estimate (joint) probabilities,

� intractable for real problems

− 2n − 1 probabilities for n propositions

(for discrete variables a different base, for continuous parametric models),

− infeasible for experts nor empirical settings based on data,

− even if probs were known, still exponential in memory and inference time

∗ obvious for a joint continuous distribution function,

− curse of dimensionality

∗ the volume of the space increases so fast that the available data become sparse,

� impenetrable for real tasks

− model gives no explicit knowledge about the domain.
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pThe ways to simplify and better organize the model?

� utilize the domain knowledge (or discover it)

− relationship between the random variables?

− ex.: gender influences branch of study, it influences admission rate,

− probabilistic model is enriched with structured knowledge representation,

� graphical probabilistic representation

− relations posed in terms of directed graph

∗ connected means related (edge unconditionally, path conditionally),

− interpretation in probabilistic context?

∗ structured and simplified representation of the joint distribution,

∗ edges removed when (conditional) independence is employed,

� advantages

− fewer parameters needed, less data needed for learning, relationships obvious.
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pThe simplified graphical model – admission example

� still 7 parameters (probability values) in the complete graph

− simplification available, gender and admission conditionally independent,

− the edge Man → Admitted removed, only 5 parameters then,

� branch of study is a confounder in gender-admission relationship,

� any joint probability can be approximated by the simplified model

(and thus any other probability)

Pr(e,m, a) = Pr(m)× Pr(e|m)× Pr(a|e,m) = .585× .535× .625 = .195 the full model

Pr(e,m, a) = Pr(m)× Pr(e|m)× Pr(a|e) = .585× .535× .629 = .197 the simplified model
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p(Conditional) independence

� definition: A and B are conditionally independent (CI) given C if:

− Pr(A,B|C) = Pr(A|C)× Pr(B|C), ∀A,B,C, Pr(C) 6= 0

− denoted as A ⊥⊥ B|C (conditional dependence A>>B|C)

− (classical independence between A and B: Pr(A,B) = Pr(A)× Pr(B))

� some observations make other observations uninteresting

− under assumption of CI it holds:

Pr(B|C) = Pr(B|A,C) a Pr(A|C) = Pr(A|B,C),
− observing C, knowledge of A becomes redundant for knowing B,

− observing C, knowledge of B becomes redundant for knowing A.
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p(Conditional) independence

� Example 1:

− heart attack rate (H) grows with ice cream sales (I),

− variables H and I are dependent:

Pr(h|i) > Pr(h),

− both grow only because of temperature (T),

− when conditioned by T, H and I become indepen-

dent: Pr(H|I, T ) = Pr(H|T ).

� Example 2:

− educated grandparents (PhDg) often have educated

grandchildren (PhD):

Pr(phd|phdg) > Pr(phd)

− knowledge of the parents’ education level (PhDp)

makes grandparents unimportant:

Pr(PhD|PhDp, PhDg) = Pr(PhD|PhDp)
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p(Conditional) independence

� Example 3:

− both radiation (R) and smoking (S) can cause cancer (C)

− R and S are obviously independent variables:

Pr(R, S) = Pr(R)× Pr(S)
− concerning C, R and S become seemingly dependent!!!

Pr(r|s, c) < Pr(r|c) or Pr(r|s, 6 c) < Pr(r| 6 c)

� Summary

− Ad 1 and 2) conditional independence

the intermediate variable explains dependency between the ultimate ones,

− Ad 3) independence

the intermediate variable introduces spurious dependency.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � A4M33RZN



pConnection types

� Nomenclature

− parent p and child/son c – a directed edge from p to c,

− ancestor a and descendant d – a directed path from a to d,

� three connection types

− diverging

∗ terminal nodes dependent, dependence disappears when (surely) knowing middle node,

∗ intermediate variable (daytime) explains dependence,

∗ crime-rate ← daytime → energy consumption (and Ex. 1 – heart attacks).

− linear (serial)

∗ terminal nodes dependent, dependence disappears when (surely) knowing middle node,

∗ intermediate variable (branch of study) explains dependence,

∗ Simpson’s paradox: gender → branch of study → admission (and Ex. 2 – PhD),

− converging

∗ terminal nodes indep., spurious dependence introduced with knowledge of middle node,

∗ temperature → ice cream sales ← salesperson skills (and Ex. 3 – radiation exposure),

� analogy e.g. with partial correlations.
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pD-separation

� uses connections to determine CI between sets of nodes

− linear and diverging connection transmit information not given middle node,

− converging connection transmits information given middle node or its descendant,

� two node sets X and Y are d-separated by a node set Z iff

− all undirected paths between arbitrary node pairs x ∈ X and y ∈ Y are blocked

∗ there is a linear or diverging node z ∈ Z on the path, or

∗ there is a converging node w /∈ Z (none of its descendants w must not be in Z),

� d-separation is equivalent of CI between X and Y given Z,

� a tool of abstraction

− generalizes from 3 to multiple nodes when studying information flow through a network.
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pD-separation – example, car diagnosis BN [Russel: AIMA]

� Gas, Start, Go ⊥⊥ Bat,Rad|Ign

� {Gas, Start, Go} and {Bat,Rad} c.ind

� sets are d-separated

� no open path between any pair of nodes

− Gas x Battery, Gas x Radio etc.

− all paths blocked by the middle linear node

� Gas>>Ign,Bat, Rad|Go

� Gas and {Ign,Bat, Rad} are c.dependent

� sets are not d-separated

� node Goes opens one path at least

− Gas connected with Ignition via Starts

− observed descendant of converging node
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pGraphical probabilistic models

� exploit both probability theory and graph theory,

� graph = qualitative part of model

− nodes represent events / random variables,

− edges represent dependencies between them,

− CI can be seen in graph.

� probability = quantitative part of model

− local information about node and its neighbors,

− the strength of dependency, way of inference,

� different graph types (directed/undirected edges, constraints), probability encoding and focus

− Bayesian networks – causal and probabilistic processes,

− Markov networks – images, hidden causes,

− data flows – deterministic computations,

− influence diagrams – decision processes.
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pBayesian networks

� Bayesian or Bayes or belief or causal networks (BNs, CNs),

� What is a Bayesian network?

− directed acyclic graph – DAG,

− nodes represent random variables (typically discrete),

− edges represent direct dependence,

− nodes annotated by probabilities (tables, distributions)

∗ node conditioned by conjunction of all its parents,

∗ Pr(Pj+1|P1, . . . , Pj) = Pr(Pj+1|parents(Pj+1))

∗ root nodes annotated by prior distributions,

∗ internal nodes conditioned by their parent variables,

∗ other (potential) dependencies ignored,

� Network interpretation?

− concised representation of probability distribution given CI relations,

− qualitative constituent = graph,

− quantitative constituent = a set of conditional probability tables (CPTs).
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pBayesian networks

� sacrifice accuracy and completeness – focus on fundamental relationships,

� reduce complexity of representation and subsequent inference,

� full probability model

− can be deduced by the gradual decomposition (factorization):

Pr(P1, P2, . . . , Pn) = Pr(P1)× Pr(P2, . . . , Pn|P1) =

= Pr(P1)× Pr(P2|P1)× Pr(P3, . . . , Pn|P1, P2) = · · · =
= Pr(P1)× Pr(P2|P1)× Pr(P3|P1, P2)× · · · × Pr(Pn|P1, . . . , Pn−1)

� BNs simplify the model:

− Pr(P1, . . . , Pn) = Pr(P1|parents(P1))× · · · × Pr(Pn|parents(Pn))
− i.e., the other (possible) dependencies are ignored.
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pBayesian networks – semantics

� the previous BN definition implies certain CI relationships

− each node is CI of its other predecessors in the node ordering, given its parents,

� the numeric definition matches the topological meaning of d-separation

− each node is d-separated from its non-descendants given its parents.
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pUltimate Bayesian networks

� näıve inference assuming

− A) variable independence, then empty graph, no edges,

∗ no relationship among variables, they are completely independent,

∗ Pr(P1, P2, . . . , Pn) = Pr(P1)× Pr(P2)× · · · × Pr(Pn)
∗ uses marginal probs only – linear complexity in the number of variables,

− B) CI of variables, n− 1 of edges only,

∗ used in classification, see the next slide,

� complete graph assuming direct dependence of all variables

− the same size/complexity as the full joint distribution model,

− no assumptions, no simplification,

− the direction of edges and consequent topological sort of variables selects one of the possible

joint probability factorizations,

� reasonable models lie in between

− sparse enough to be efficient,

− complex enough to capture the true dependencies.
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pNäıve Bayes classifier

� a special case of Bayesian network

− based on purely diagnostic reasoning,

− assumes CI variables P1,. . . , Pk given the diagnosis D,

− the target variable is determined in advance.

Pr(D|P1, . . . , Pk) =
Pr(P1, . . . , Pk|D)× Pr(D)

Pr(P1, . . . , Pk)

Pr(P1, . . . , Pk|D) = Pr(P1|D)× Pr(P2|D)× · · · × Pr(Pk|D)
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pMarkov equivalence classes

� DAG classes that define identical CI relationships

− represent identical joint distribution,

� Markov equivalence class is made by directed acyclic graphs which

− have the identical skeleton

∗ fully match when edge directions removed,

− contain the same set of immoralities

∗ immorality = 3 node subgraph such that: X → Z and Y → Z, no XY arc,

∗ ie. the same sets of uncoupled parents (without an edge between them),

� indistinguishable graphs when learning from data,

� example: 2 distinct equivalence classes (first P2 ⊥⊥ P3|P1, second P2 ⊥⊥ P3|∅),
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pMarkov equivalence classes

� let us consider all 25 directed acyclic graphs with 3 labeled nodes
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pMarkov equivalence classes

� they make 11 Markov equivalence classes altogether
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pCharacteristics of qualitative model

� correctness

− simplification Pr(Pj+1|P1, . . . , Pj) = Pr(Pj+1|rodice(Pj+1)) complies with reality,

− each network node is CI of its ancestor given its parents,

� efficiency

− there are no redundant edges,

− actual CI relations described by the minimum number of edges,

∗ extra edges do not violate correctness,

∗ but slow down computations and make the model difficult to read,

� causality

− edge directions agree with actual cause-effect relationships,

� consequences

− graphs from the same Markov equivalence class have the same correctness and efficiency,

− complete DAG always correct, but very likely inefficient.
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pCharacteristics of qualitative model – example

� The Surprise Candy Company makes candy in two flavors: 70% are strawberry flavor and

30% are anchovy flavor. Each new piece of candy starts out with a round shape; as it moves

along the production line, a machine randomly selects a certain percentage to be trimmed

into a square; then, each piece is wrapped in a wrapper whose color is chosen randomly to be

red or brown. 80% of the strawberry candies are round and 80% have a red wrapper, while

90% of the anchovy candies are square and 90% have a brown wrapper. All candies are sold

individually in sealed, identical, black boxes.

Russell, Norvig: Artificial Intelligence: A Modern Approach.
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pCharacteristics of qualitative model – example

� The Surprise Candy Company makes candy in two flavors: 70% are strawberry flavor and

30% are anchovy flavor. Each new piece of candy starts out with a round shape; as it moves

along the production line, a machine randomly selects a certain percentage to be trimmed

into a square; then, each piece is wrapped in a wrapper whose color is chosen randomly to be

red or brown. 80% of the strawberry candies are round and 80% have a red wrapper, while

90% of the anchovy candies are square and 90% have a brown wrapper. All candies are sold

individually in sealed, identical, black boxes.

� Wrap ⊥⊥ Shape|�

� contradicts reality.

� no independ. relationship,

� thus no unrealistic one.

� Wrap ⊥⊥ Shape|Flavor

� complies with reality.
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pSummary

� probability

− a rigorous tool for uncertainty modeling,

− each atomic event is described by the joint probability distribution,

− queries answered by enumeration of atomic events

∗ (summing, sometimes with final division),

� needs to be simplified in non-trivial domains

− reason: curse of dimensionality,

− solution: independence and conditional independence

− tool: GPM = graph (quality) + conditional probability tables/functions (quantity).
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pRecommended reading, lecture resources

� Russell, Norvig: AI: A Modern Approach, Uncertain Knowledge and Reasoning (Part V)

− namely uncertainty (chap. 14) and probabilistic reasoning (chap. 15),

− online on Google books: http://books.google.com/books?id=8jZBksh-bUMC,

� Charniak: Bayesian Networks without Tears

− http://ntu.csie.org/~piaip/docs/BayesianNetworksWithoutTears.pdf,

� Murphy: A Brief Introduction to Graphical Models and Bayesian Networks.

− http://www.cs.ubc.ca/~murphyk/Bayes/bayes.html,

� Mooney: CS 391L: Machine Learning: Bayesian Learning: Beyond Naive Bayes.

− http://www.cs.utexas.edu/~mooney/cs391L/slides/bayes2.pdf,

� Bishop: Pattern Recognition and Machine Learning.

− Chapter 8: Graphical models,

− http://research.microsoft.com/%7Ecmbishop/PRML/Bishop-PRML-sample.pdf.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � A4M33RZN


