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GPM lectures — an overview

m L1: introduction

Bayesian networks — motivation and definitions,

how graphs can help — conditional independence,

L2: inference

network applications in predictive tasks,

inference engine — fundamental algorithms,

L3: learning networks from data

using networks for modelling,

networks as tools for understanding of relations among variables,
m L4: extensions

time, continuous variables, unoriented graphs,

L5: simple (restricted) graph models

feasible models in expert systems,

final exam — form, questions.




Agenda

= Motivation for graphical models

general probabilistic model and its curse of dimensionality,

general probabilistic model and knowledge?
m conditional independence

definition, examples,
graph equivalent — d-separation,

graph equivalence wrt conditional independence,
m essential types of graphical probabilistic models
brief categorization,

= Bayesian networks

basic idea behind,
example — family house with a dog,

fundamental tasks and their complexity.

Notation (binary random variables):
A... random variable, a... A = True, —a... A = False, Pr(A, B) ...joint probability distribution (a table),
Pr(a,b) = Pr(A =True, B=True) ...prob of a particular event (a single item in table Pr(A, B)).




Why not a general probabilistic model?

= Ex.: 3 statements about world (people), each statement valid or invalid for a person

the world can be captured by joint probability,

m H: The person is higher then 180cm. M: The person is a man. Z: The person is a jockey.

women and men are equally frequent, men tend to be tall, a jockey is mostly a short man,

Pr(T,M,J)

m probability of a formula equals the sum of probability
of interpretations that satisfy it
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J =t Pr(t)= 0.199 + 0.001 + 0.248 + 0.002 = 0.45,
45% of population is tall,

Pr(j = —t)=1-0.001 - 0.002 = 0.997,
99.7% of population is not tall or not a jockey,

m arbitrary probabilistic operations can also be applied

. Pr(—t,j )
Pr(-t]j) = "o = $o = 0.7

70% of jockeys are not tall
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. Pr(m.j .
Pr(m|j) = PS«(j)]) - O090017 = 0.7,
70% of jockeys are men
knowing a person is a jockey, in 70% cases it is a

man as well




Why not a general probabilistic model?

= universality makes an asset of this model

identical and trivial model structure for all problems,
for a sample size its learning converges

« model learning means to estimate (joint) probabilities,

m intractable for real problems

2"" — 1 probabilities when dealing with n propositions
(for discrete variables a different base, for continuous parametric models),

infeasible for experts, the same holds for empirical settings based on data,

even if probs were known, still exponential in memory and inference time

* obvious for a joint continuous distribution function,

* - the number of observations needed grows exp with the

number of variables,

m impenetrable for real tasks

model gives no explicit about the domain,

relations among objects remain hidden in a flood of numbers.




The ways to simplify and better organize the model?

m utilize the domain knowledge:

is there any relationship between all the random variables?

the example: gender influences both height and occupation, height influences occupation.
m let us consider the graph probabilistic representation

can relations be posed in terms of graphs?
in which way to interpret graphs in probabilistic context?
still 7 probability values needed, no simplification, only reformulation,

why? edges among all the nodes, no use of

Pr(m)=.5
any joint probability can be calculated
(and thus any other probability)

Pr(t,m,j) = Pr(m) x Pr(tlm) x Pr(j|t,m) =
= 0.5 x 0.5 x 0.008 = 0.002

Pr(m,j) = Pr(t,m,j) + Pr(=t,m,j) =
= 0.002 + 0.005 = 0.007
Pr(t|m)=.5 Pr(j|m,t)=.008 ) r(m,j _
Pr(t|—m)=.4 Pr(j|m,—t)=.02 Pr(mlj) = Pp(r@)j = 00?0017 = 0.7
Pr(j|—m,t)=.005
Pr(_]l—|m,—|t)=007




(Conditional) independence

m definition: A and B are conditionally independent given C if:

Pr(A, B|C) = Pr(A|C) x Pr(B|C), VA, B,C, Pr(C) # 0
denoted as A 1l B|C' (conditional dependence ATl B|C')
(classical independence between A and B: Pr(A, B) = Pr(A) x Pr(B))

= some observations make other observations uninteresting

under assumption of conditional independence it holds:
Pr(B|C) = Pr(B|A,C) a Pr(A|C) = Pr(A|B,C),
observing C, knowledge of A becomes redundant for knowing B,

observing C, knowledge of B becomes redundant for knowing A.




(Conditional) independence

s Example 1:

heart attack rate (H) grows with ice cream sales (1),
variables H and | are dependent:
Pr(h|i) > Pr(h),

both grow only because of temperature (T),

when conditioned by T, H and | become indepen- w w
dent: Pr(H|I,T)= Pr(H|T). Pr(h[t) Pr(ilt)
Pr(h|—t) Pr(i|—t)

Pr(PhDg)

s Example 2:

educated grandparents (PhDg) often have educated Pr(PhDp|PhDg)
grandchildren (PhD):
Pr(phd|phdg) > Pr(phd)

knowledge of the parents’ education level (PhDp)

. Pr(PhD|PhDp)
makes grandparents unimportant:

Pr(PhD|PhDp, PhDg) = Pr(PhD|PhDp)




(Conditional) independence

s Example 3:
P Radiation

exposure

both radiation (R) and smoking (S) can cause cancer (C)
R and S are obviously independent variables:

Pr(R,S) = Pr(R) x Pr(S)

concerning C, R and S become seemingly dependent!!!
Pr(r|s,c) < Pr(r|c) or Pr(r|s, £) < Pr(r| £)

Pr(C|R,S)
;v—/
Pr(c|r,s)
Pr(c|r,—s)
Pr(c|—-rs)
Pr(c|—r,—s)

= Summary

Ad 1 and 2) conditional independence
the intermediate variable explains dependency between the ultimate ones,

Ad 3) independence
the intermediate variable introduces spurious dependency.




Connection types

= Nomenclature

parent p and child/son ¢ — a directed edge from p to c,

ancestor a and descendant d — a directed path from a to d,
= three connection types

diverging
* terminal nodes dependent, dependence disappears when (surely) knowing middle node,
* intermediate variable (daytime) explains dependence,

* crime-rate «<— daytime — energy consumption (and Ex. 1 — heart attacks).
linear (serial)

« terminal nodes dependent, dependence disappears when (surely) knowing middle node,
* intermediate variable (branch of study) explains dependence,

* Simpson's paradox: gender — branch of study — admission (and Ex. 2 — PhD),
converging
* terminal nodes indep., spurious dependence introduced with knowledge of middle node,

* temperature — ice cream sales < salesperson skills (and Ex. 3 — radiation exposure),

m analogy e.g. with partial correlations.




D-separation

m uses connections to determine conditional independence between sets of nodes

linear and diverging connection transmit information not given middle node,

converging connection transmits information given middle node or its descendant,

@ ee 9

m two node sets X and Y are d-separated by a node set Z iff

all undirected paths between arbitrary node pairs x € X and y € Y are blocked

x there is a linear or diverging node 2z € Z on the path, or

* there is a converging node w ¢ Z (none of its descendants w must not be in Z),

m d-separation is equivalent of conditional independence between X and Y given Z,

m a tool of abstraction

generalizes from 3 to multiple nodes when studying information flow through a network.




D-separation — example, car diagnosis BN [Russel: AIMA]

Battery Battery
Cory G (=) oo

s Gas, Start, Go 1. Bat, Rad|Ign s GasTl Ign, Bat, Rad|Go
s {Gas, Start, Go} and {Bat, Rad} c.ind s Gas and {Ign, Bat, Rad} are c.dependent

m sets are d-separated m sets are not d-separated
= no open path between any pair of nodes m node (Goes opens one path at least
Gas x Battery, Gas x Radio etc. (Gas connected with Ignition via Starts

all paths blocked by the middle linear node observed descendant of converging node




Graphical probabilistic models

exploit both probability theory and graph theory,

graph = qualitative part of model

nodes represent events / random variables,
edges represent dependencies between them,

conditional independence can be seen in graph.

probability = quantitative part of model

local information about node and its neighbors,

the strength of dependency, way of inference,

different graph types (directed /undirected edges, constraints), probability encoding and focus

Bayesian networks — causal and probabilistic processes,
Markov networks — images, hidden causes,
data flows — deterministic computations,

influence diagrams — decision processes.




Bayesian networks

= Bayesian or Bayes or belief or causal networks (BNs, CNs),

s What is a Bayesian network?

directed acyclic graph — DAG,

nodes represent random variables (typically discrete), ° °

edges represent direct dependence, /

nodes annotated by probabilities (tables, distributions) ° °
« node probability is conditioned by conjunction of all its

parent nodes,
* Pr(Pj1|Py,. .., Pj) = Pr(Pj|parents(Pjy1))

* root nodes annotated by prior distributions,
x internal nodes conditioned by their parent variables,

* other (potential) dependencies are ignored,
= Network interpretation?

concised representation of probability distribution given conditional independence relations,

qualitative constituent = graph,

quantitative constituent = a set of conditional probability tables (CPTs).




Bayesian networks

sacrifice accuracy and completeness — focus on fundamental relationships,

reduce complexity of representation and subsequent inference,

full probability model

can be deduced by the gradual decomposition (factorization):

Pr(P, Py, ...,P,) = Pr(P) x Pr(P,...,P,|P) =
= Pr(P)) X Pr(P|P) X Pr(Ps,..., PP, P) ==

= PT(Pl) X PT(PQ’Pl) X PT(P3‘P1,P2) X oo X PT(PH‘Pl,.. .

BNs simplify the model:
Pr(P,...,P,) = Pr(Prodice(Py)) X - -+ x Pr(P,|rodice(P,))

ie. the other (possible) dependencies are ignored,

ultimate case is inference assuming variable independence

P’I“(Pl,PQ,...,Pn):PT(Pl)XP?“(PQ)X'--XPT(Pn)

uses marginal probs only — linear complexity in the number of variables,

used e.g. in classification.




Naive Bayes classifier

m a special case of Bayesian network

based on purely diagnostic reasoning,
assumes conditional independence among features P;,..., P given the diagnosis D,

the target variable is determined in advance.

Pr(P,,...,P|D) x Pr(D)
Pr(P,..., P
Pr(P,,...,P|D) = Pr(P||D) x Pr(P|D) x - - - x Pr(P;|D)

Pr(D|P,,...,P,) =




Markov equivalence classes

m DAG classes that define identical conditional independence relationships
represent identical joint distribution,
n class is made by directed acyclic graphs which

have the identical skeleton

* fully match when edge directions removed,

contain the same set of immoralities

* immorality = 3 node subgraph such that: X — Z and Y — Z, no XY arc,

* ie. the graphs have the same sets of uncoupled parents (without an edge between them),

= when learning from data, graphs from a single class are indistinguishable,

= example: 2 distinct equivalence classes (first P, Il P3| Py, second Py 1L P5|0),

P, P, P, P
P, P; P P; P P P, P;

0 amoralit 1 amoralita




Markov equivalence classes

m let us consider all 25 directed acyclic graphs with 3 nodes
R /" \ *\.
® o ./. o L ® o
P, Ps |

--------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------

......................................................................................

______________________________________________________________________________________

A HE B B EEEEEEEEREEEREERE0O0OOOODOGODO A4M33RZN



Markov equivalence classes

= they make 11 Markov equivalence classes altogether

""""""""""""""""""""""""""""""""""""""""""""""""

-------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------

____________________________________________________________________________________

___________________________________________________________________________________

______________________________________________________________________________________
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Characteristics of qualitative model

simplification Pr(Pj1|P, ..., Pj) = Pr(Pji|rodice(Pj+1)) complies with reality,

each network node is c.ind of its ancestor given its parents,

there are no redundant edges,
actual c.independence relations described by the minimum number of edges,
extra edges do not violate correctness,

but slow down computations and make the model difficult to read,

edge directions agree with actual cause-effect relationships,

m consequences

graphs lying in the same Markov equivalence class have the same correctness and efficiency,

complete DAG is always correct, however it is very likely inefficient.




Characteristics of qualitative model — example

s The Surprise Candy Company makes candy in two flavors: 70% are strawberry flavor and
30% are anchovy flavor. Each new piece of candy starts out with a round shape; as it moves
along the production line, a machine randomly selects a certain percentage to be trimmed
into a square; then, each piece is wrapped in a wrapper whose color is chosen randomly to be
red or brown. 80% of the strawberry candies are round and 80% have a red wrapper, while
90% of the anchovy candies are square and 90% have a brown wrapper. All candies are sold
individually in sealed, identical, black boxes.

D G G G
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Russell, Norvig: Artificial Intelligence: A Modern Approach.




Characteristics of qualitative model — example

= The Surprise Candy Company makes candy in two flavors: 70% are strawberry flavor and
30% are anchovy flavor. Each new piece of candy starts out with a round shape; as it moves
along the production line, a machine randomly selects a certain percentage to be trimmed
into a square; then, each piece is wrapped in a wrapper whose color is chosen randomly to be
red or brown. 80% of the strawberry candies are round and 80% have a red wrapper, while
90% of the anchovy candies are square and 90% have a brown wrapper. All candies are sold
individually in sealed, identical, black boxes.

o) Gopd Eor
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incorrect correct, inefficient correct, efficient, causal

s Wrap 1L Shape|@ = no independ. relationship, s Wrap 1L Shape|Flavor

= contradicts reality. m thus no unrealistic one. m complies with reality.




Probability networks — example FAMILY

= Family house and events in it: Pr(fo)=.15 Pr(bp)=.01
bowel

family sometimes goes out, problem

door light can be on or off,
family owns a dog, rarely ill,

dog can stay In or out, Pr(do|fo,bp)=.99
Pr(do|fo,—-bp)=.9
Pr(do|—-fo,bp)=.97
Pr(do|—-fo,—bp)=.3

dog can bark.

= Relationships between events:
Pr(lo|fo)=.6
often switching the light on when leaving, Pr(lo|-fo)=.05

dog is rather out when leaving,

Pr(hb|do)=.7

dog is out when ill (bowel problem), Pr(hb|-do)=.01

dog is barking when out,

dog can hardly be heard when in.

©Charniak: Bayesian Networks withou Tears.




D-separation — examples

CECEBONONEONO

/)

og © g og

« LO AL HB|FO « LOTTBP|HB
s LOTTHB|© = observed FO blocks path = observed HB opens path
= open path from LO to HB, & LO and HB c. independent, = LO and BP c. dependent,
m LO and HB not d-separated, u it also holds m it also holds
= LO and HB are dependent. LO 1l HB|DO LO 1L BP|©

LOTTHB|BP LOTT BP|DO




Bayesian networks — fundamental tasks

m inference — reasoning, deduction

from observed events assumes on probability of other events,
observations (E — evidence variables),

target variables (Q — query variables),

Pr(Q|E), resp. Pr(q € Q|F) to be found,

network is known (both graph and CPTs),

= learning network parameters from data

network structure (graph) is given,

“only” quantitative parameters (CPTs) to be optimized,

= learning network structure from data

propose an optimal network structure
« which edges of the complete graph shall be employed?,
too many arcs — complicated model,

too few arcs — inaccurate model.




Summary

m probability

a rigorous tool for uncertainty modeling,
each event is described by the joint probability distribution,
queries answered by enumeration of atomic events

* (summing, sometimes with final division),
= needs to be simplified in non-trivial domains

reason: curse of dimensionality,
solution: independence and conditional independence

tool: GPM = graph (quality) + conditional probability tables/functions (quantity).




Recommended reading, lecture resources

Russell, Norvig: Al: A Modern Approach, Uncertain Knowledge and Reasoning (Part V)

zejména neurditost (kap. 14) a probabilistic usuzovani (kap. 15),

online on Google books: http://books.google.com /books?id=8jZBksh-bUMC,

Charniak: Bayesian Networks without Tears

http://ntu.csie.org/~ piaip/docs/BayesianNetworksWithout Tears. pdf,
Murphy: A Brief Introduction to Graphical Models and Bayesian Networks.

http://www.cs.ubc.ca/~murphyk/Bayes/bayes.html,
Mooney: CS 391L: Machine Learning: Bayesian Learning: Beyond Naive Bayes.

http://www.cs.utexas.edu/~mooney/cs391L /slides/bayes?2.pdf,

Bishop: Pattern Recognition and Machine Learning.

Chapter 8: Graphical models,
http:/ /research.microsoft.com /%7Ecmbishop/PRML /Bishop-PRML-sample.pdf.




