
Graphical probabilistic models – inference

Jǐŕı Kléma

Department of Computers,
FEE, CTU at Prague

http://cw.felk.cvut.cz/wiki/courses/ae4m33rzn/start

pAgenda

� Bayesian networks

− fundamental tasks,

� exact inference and its complexity

− straightforward enumeration

∗ easy to understand but inefficient – computes joint probabilities,

∗ descends to the level of atomic events,

− acceleration by variable elimination,

� exact × approximate algorithms,

− rejection sampling,

− likelihood weighting,

− Gibbs sampling,

� A4M33RZN

pBayesian networks – fundamental tasks

� inference – reasoning, deduction

− from observed events assumes on probability of other events,

− observations (E – a set of evidence variables, e – a particular event),

− target variables (Q – a set of query variables, Q – a particular query variable),

− Pr(Q|e), resp. Pr(Q ∈ Q|e) to be found,

− network is known (both graph and CPTs),

� learning network parameters from data

− network structure (graph) is given,

− “only” quantitative parameters (CPTs) to be optimized,

� learning network structure from data

− propose an optimal network structure

∗ which edges of the complete graph shall be employed?,

− too many arcs → complicated model,

− too few arcs → inaccurate model.

� A4M33RZN

pProbabilistic network – inference by enumeration

� Let us observe the following events:

− no barking heard,

− the door light is on.

� What is the prob of family being out?

− searching for Pr(fo|lo,¬hb).

� Will observation influence the target event?

− light on supports departure hypothesis,

− no barking suggests dog inside,

− the dog is in house when it is

∗ rather healthy,

∗ the family is at home.

� A4M33RZN

pProbabilistic network – inference by enumeration

� inference by enumeration

− conditional probs calculated by summing the elements of joint probability table,

� how to find the joint probabilities (the table is not given)?

− BN definition suggests:

Pr(FO,BP,DO,LO,HB) =

= Pr(FO)Pr(BP)Pr(DO|FO,BP)Pr(LO|FO)Pr(HB|DO)

� answer to the question?

− conditional probability definition suggests:

Pr(fo|lo,¬hb) = Pr(fo,lo,¬hb)
Pr(lo,¬hb)

− by joint prob marginalization we get:

Pr(fo, lo,¬hb) =
∑

BP,DO Pr(fo,BP,DO, lo,¬hb)
Pr(fo, lo,¬hb) = Pr(fo, bp, do, lo,¬hb) + Pr(fo, bp,¬do, lo,¬hb)+
+Pr(fo,¬bp, do, lo,¬hb)+Pr(fo,¬bp,¬do, lo,¬hb) = .15× .01× .99× .6× .3+ .15×
.01× .01× .6× .99 + .15× .99× .9× .6× .3 + .15× .99× .1× .6× .99 = .033

Pr(lo,¬hb) = Pr(fo, lo,¬hb) + Pr(¬fo, lo,¬hb) = .066

� A4M33RZN

pProbabilistic network – inference by enumeration

− after substitution:

Pr(fo|lo,¬hb) = Pr(fo,lo,¬hb)
Pr(lo,¬hb) = .033

.066 = 0.5

− posterior probability Pr(fo|lo,¬hb) is higher then the prior Pr(fo) = 0.15.

� can we assume on complexity?

− instead of 25 − 1=31 probs (either conditional or joint) 10 is needed only,

− however, joint probs are enumerated to answer the query

∗ it is easy to show that inference remains a NP-hard problem,

− to simply move summations left-to-right makes a difference, but not a principal one

∗ see the evaluation tree on the next slide,

Pr(fo, lo,¬hb) =
∑
BP,DO

Pr(fo,BP,DO, lo,¬hb) =

= Pr(fo)
∑
BP

Pr(BP)
∑
DO

Pr(DO|fo,BP)Pr(lo|fo)Pr(¬hb|DO)

− inference by enumeration is an intelligible, but unfortunately inefficient procedure,

− solution: minimize recomputations, special network types or approximate inference.

� A4M33RZN

pInference by enumeration – evaluation tree

� Complexity: time O(n2d), memory O(n)

− n . . . the number of variables, e . . . the number of evidence variables, d=n-e,

� resource of inefficiency: recomputations (Pr(lo|fo)× Pr(¬hb|DO) for each BP value)

− variable ordering makes a difference – Pr(lo|fo) shall be moved forward.

� A4M33RZN

pInference by enumeration – straightforward improvements

� variable elimination procedure

1. pre-computes factors to remove the inefficiency shown in the previous slide

− factors serve for recycling the earlier computed intermediate results,

− some variables are eliminated by summing them out,

∑
P f1 × · · · × fk = f1 × · · · × fi ×

∑
P fi+1 × · · · × fk = f1 × · · · × fi × fP̄ ,

assumes that f1, . . . , fi do not depend on P ,

when multiplying factors, the pointwise product is computed

f1(x1, ..., xj, y1, ..., yk)× f2(y1, ..., yk, z1, ..., zl) = f (x1, ..., xj, y1, ..., yk, z1, ..., zl)

eventual enumeration over P1 variable, which takes all (two) possible values

fP̄1(P2, ..., Pk) =
∑

P1
f1(P1, P2, ..., Pk),

− execution efficiency is influenced by the variable ordering when computing,

(finding the best order is NP-hard problem, can be optimized heuristically too),

� A4M33RZN

pInference by enumeration – straightforward improvements

� variable elimination procedure

2. does not consider variables irrelevant to the query

− all the leaves that are neither query nor evidence variable,

− the rule can be applied recursively.

� example: Pr(lo|do)

− what is prob that the door light is shining if the dog

is in the garden?

− we will enumerate Pr(LO, do), since:

Pr(lo|do) = Pr(lo,do)
Pr(do) = Pr(lo,do)

Pr(lo,do)+Pr(¬lo,do)

� A4M33RZN

pInference by enumeration – variable elimination

� HB is irrelevant to the particular query, why?∑
HB Pr(HB|do) = 1

Pr(LO, do) =
∑

FO,BP,HB

Pr(FO)Pr(BP)Pr(do|FO,BP)Pr(LO|FO)Pr(HB|do) =

=
∑
FO

Pr(FO)Pr(LO|FO)
∑
BP

Pr(BP)Pr(do|FO,BP)
∑
HB

Pr(HB|do)

� after omitting the last invariant, factorization may take place

Pr(LO, do) =
∑
FO

Pr(FO)Pr(LO|FO)
∑
BP

Pr(BP)Pr(do|FO,BP) =

=
∑
FO

Pr(FO)Pr(LO|FO)fBP (do|FO) =
∑
FO

fBP,do(FO)Pr(LO|FO) =

= fFO,BP ,do(LO)

� having the last factor (a table of two elements), one can read

Pr(lo|do) =
fFO,BP ,do(lo)

fFO,BP ,do(lo)+fFO,BP ,do(¬lo) =
0.0941

0.0941+0.3017 = 0.0941
0.3958 = 0.24

� A4M33RZN

pVariable elimination – factor computations

� factors are enumerated from CPTs by summing out variables

− sum out BP: CPT (DO) & CPT (BP)→ fBP (do|FO)
− reformulate into: CPT (FO) & fBP (do|FO)→ fBP,do(FO)

− sum out FO: fBP,do(FO) & CPT (LO)→ fFO,BP ,do(LO)

� A4M33RZN

pVariable elimination – factor computations

� A4M33RZN

pInference by enumeration – comparison of the number of operations

� let us take the last example

− namely the total number of sums and products in Pr(LO, do),

− (the final Pr(lo|do) enumeration is identical for all procedures),

� näıve enumeration, no evaluation tree

− 4 products (5 vars) ×24 (# atomic events on unevidenced variables) + 24 − 2 sums,

− in total 78 operations,

� using evaluation tree and a proper reordering of variables

− takes the ordering

Pr(LO, do) =
∑

FO Pr(FO)Pr(LO|FO)
∑

BP Pr(BP)Pr(do|FO,BP)
∑

HB Pr(HB|do)
− in total 38 operations,

� with variable elimination on top of that

− in total 14 operations (6 in Tab1, 2 in Tab2, 6 in Tab3).

� A4M33RZN

pVariable elimination – efficiency in general

� Given by the network structure and the variable ordering

− exponential in the size of the largest clique in the induced graph,

− somewhere between linear and NP-hard,

� induced graph

− undirected graph, the edge exists if two variables both appear in some intermediate factor

induced by the given variable ordering,

HB ≺ BP ≺ LO ≺ FO ≺ DO DO ≺ FO ≺ LO ≺ HB ≺ BP

� A4M33RZN

pVariable elimination – variable ordering

� minimize the number of fill edges in induced graph

− edges introduced in the elimination step,

� NP-hard problem in general

− greedy local methods often find near-optimal solution,

− min-fill heuristic

∗ vertex cost is the number of edges added to the graph due to its elimination,

− always take the node that minimizes the heuristic, no backtrack.

� Step 1:

Pr(FO, . . . , HB) = fFO(FO)fBP (BP)fDO(DO,FO,BP)fLO(LO,FO)fHB(HB,DO)

var intermediate factor min-fill

FO fFO(FO)fDO(DO,FO,BP)fLO(LO,FO) 3

BP fBP (BP)fDO(DO,FO,BP) 1

DO fDO(DO,FO,BP)fHB(HB,DO) 3

LO fLO(LO,FO) 0

HB fHB(HB,DO) 0

� A4M33RZN

pSemantics of factors

� Factors

− multidimensional arrays (the same as CPTs),

− often correspond to marginal or conditional probabilities,

− initialized with CPTs,

− some intermediate factors differ from any probability in the network

∗ eliminate X from the left network,

∗ the resulting factor does not agree with any prob in the left network,

∗ it gives a conditional prob in the right network.

f (A,B,C) =
∑

X Pr(X)Pr(A|X)Pr(C|B,X) Pr(A,C|B)

� A4M33RZN

pApproximate inference by stochastic sampling

� a general Monte-Carlo method, samples from the joint prob distribution,

� estimates the target conditional probability (query) from a sample set,

� the joint prob distribution is not explicitly given, its factorization is available only (network),

� the most straightforward is direct forward sampling

1. topologically sort the network nodes

− for every edge it holds that parent comes before its children in the ordering,

2. instantiate variables along the topological ordering

− take Pr(Pj|parents(Pj)), randomly sample Pj,

3. repeat step 2 for all the samples (the sample size M is given a priori),

� from samples to probabilities?

− Pr(q|e) ≈ N(q,e)
N(e)

− samples that contradict evidence not used,

− forward sampling gets inefficient if Pr(e) is small,

� rejection sampling brings a slight improvement

− rejects partially generated samples as soon as they violate the evidence event e,

− sample generation may stop early.

� A4M33RZN

pRejection sampling – example

� FAMILY example, estimate Pr(fo|lo,¬hb)
1. topologically sort the network nodes

− e.g., 〈FO,BP, LO,DO,HB〉 (or 〈BP,FO,DO,HB,LO〉, etc.)

2. instantiate variables along the topological ordering

− Pr(FO)→ ¬fo, Pr(BP)→ ¬bp,

Pr(LO|¬fo)→ lo, Pr(DO|¬fo,¬bp)→ ¬do, Pr(HB|¬do)→ ¬hb
− sample agrees with the evidence e = lo ∧ ¬hb, no rejection needed,

3. generate 1000 samples, repeat step 2,

� let N(fo, lo,¬hb) is 491 (the number of samples

with the given values of three variables under con-

sideration),

� in rejection sampling N(e) necessarily equals M ,

− Pr(fo|lo,¬hb) ≈ N(q,e)
N(e) = 491

1000 = 0.491

� A4M33RZN

pLikelihood weighting

� Likelihood weighting is a sampling method that avoids necessity to reject samples

− the values of E are fixed, the rest of variables is sampled only,

− however, not all events are equally probable, samples need to be weighted,

− the weight equals to the likelihood of the event given the evidence,

� ∀ samples pm = {P1 = pm1 , . . . , Pn = pmn }, m ∈ {1, . . . ,M}
1. wm ← 1 (initialize the sample weight)

2. ∀j ∈ {1, . . . , n} (instantiate variables along the topological ordering)

− if Pj ∈ E then take pmj from e and wm ← wm × Pr(Pj|parents(Pj)),
− otherwise randomly sample pmj from Pr(Pj|parents(Pj)),

� from samples to probabilities?

− evidence holds in all samples (by definition),

− weighted averaging is applied to find Pr(Q = Pi|e)

Pr(pi|e) ≈
∑M

m=1w
mδ(pmi , pi)∑M

m=1w
m

δ(i, j) =

{
1 for i = j

0 for i 6= j

� nevertheless, samples may have very low weights

− it can also turn out inefficient in large networks with evidences occuring late in the ordering.

� A4M33RZN

pLikelihood weighting – example

� let us approximate Pr(fo|lo,¬hb) (its exact value computed earlier is 0.5),

p1 p2 p3 . . .

FO F F T

BP F F F

LO T T T
DO F T T

HB F F F

w .0495 .015 .18

FO1: Pr(fo) = .15→ ¬fo sampled

BP 1: Pr(bp) = .01→ ¬bp sampled

LO1: evidence → lo ∧ w1 = Pr(lo|¬fo) = .05

DO1: Pr(do|¬fo,¬bp) = .3→ ¬do sampled

HB1: evidence → ¬hb ∧ w1 = .05× Pr(¬hb|¬do) = .0495

FO2: Pr(fo) = .15→ ¬fo sampled

BP 2: Pr(bp) = .01→ ¬bp sampled

LO2: evidence → lo ∧ w1 = Pr(lo|¬fo) = .05

DO2: Pr(do|¬fo,¬bp) = .3→ do sampled

HB2: evidence → ¬hb ∧ w2 = .05× Pr(¬hb|do) = .015

� a very rough estimate having 3 samples only

Pr(fo|lo,¬hb) ≈ .18

.0495 + .015 + .18
= .74

� A4M33RZN

pGibbs sampling

� a Markov chain method – the next state depends purely on the current state

− state = sample, generates dependent samples!

− as it is a Monte-Carlo method as well → MCMC,

� efficient sampling method namely when some of BN variable states are known

− it again samples nonevidence variables only, the samples never rejected,

� sampling process – samples pm = {P1 = pm1 , . . . , Pn = pmn }, m ∈ {1, . . . ,M}

1. fix states of all observed variables from E (in all samples),

2. the other variables initialized in p0 randomly,

3. generate pm from pm−1 (∀Pi 6∈ E)

− pm1 ← Pr(P1|pm−1
2 , . . . , pm−1

n),

− pm2 ← Pr(P2|pm1 , pm−1
3 , . . . , pm−1

n),

− . . . ,

− pmn ← Pr(Pn|pm1 , . . . , pmn−1),

4. repeat step 3 for m ∈ {1, . . . ,M}.

� A4M33RZN

pGibbs sampling

� probs Pr(Pi|P1, . . . , Pi−1, Pi+1, . . . , Pn) = Pr(Pi|P \ Pi) not explicitly given . . .

− to enumerate them, only their BN neighborhood needs to be known

Pr(Pi|P \ Pi) ∝ Pr(Pi|parents(Pi))
∏

∀Pj ,Pi∈parents(Pj)

Pr(Pj|parents(Pj))

− the neighborhood is called Markov blanket (MB),

− MB covers the node, its parents, its children and their parents,

− MB(Pi) is the minimum set of nodes that d-separates Pi from the rest of the network.

� from samples to probabilities?

− evidence holds in all samples (by definition),

− averaging ∀m is applied to find Pr(Q|e)

Pr(pi|e) ≈
∑M

m=1 δ(p
m
i , pi)

M
δ(i, j) =

{
1 for i = j

0 for i 6= j

� A4M33RZN

pGibbs sampling – example

� let us approximate Pr(fo|lo,¬hb) (its exact value computed earlier is 0.5),

p0 p1 p2 . . .

FO T F F
BP T F F
LO T T T
DO F F F

HB F F F

p0: random init of unevidenced variables

FO1: Pr∗(fo) ∝ Pr(fo)× Pr(lo|fo)× Pr(¬do|fo, bp)
Pr∗(¬fo) ∝ Pr(¬fo)× Pr(lo|¬fo)× Pr(¬do|¬fo, bp)
Pr∗(fo) ∝ .15× .6× .01 = 9× 10−4 → ×α1

FO = .41

Pr∗(¬fo) ∝ .85× .05× .03 = 1.275× 10−3 → ×α1
FO = .59

α1
FO = 1

Pr∗(fo)+Pr∗(¬fo) = 460

BP 1: Pr∗(bp) ∝ Pr(bp)× Pr(¬do|¬fo, bp) = .01× .03 = .0003

Pr∗(¬bp) ∝ Pr(¬bp)× Pr(¬do|¬fo,¬bp) = .99× .7 = 0.693

α1
BP = 1

Pr∗(bp)+Pr∗(¬bp) = 1.44→ Pr∗(bp) = 4× 10−4

DO1: by analogy, |MB(DO)| = 5

FO2: BP value was switched, substitution is Pr(DO|FO,¬bp)
Pr∗(fo) = .21 Pr∗(¬fo) = .79

BP 2: the same probs as is sample 1

� A4M33RZN

pGibbs sampling – example

� BN Matlab Toolbox, aproximation of Pr(fo|lo,¬hb),
� gibbs sampling inf engine, three independent runs with 100 samples.

� A4M33RZN

pSummary

� independence and conditional independence remarkably simplify prob model

− still, BN inference remains generally NP-hard wrt the number of network variables,

− inference complexity grows with the number of network edges

∗ näıve Bayes model – linear complexity,

∗ general complexity estimate from the size of maximal clique of induced graph,

− inference complexity can be reduced by constraining model structure

∗ special network types (singly connected), e.g. trees – one parent only,

− inference time can be shorten when exact answer is not required

∗ approximate inference, typically (but not only) stochastic sampling.

� A4M33RZN

pRecommended reading, lecture resources

� Russell, Norvig: AI: A Modern Approach, Uncertain Knowledge and Reasoning (Part V)

− probabilistic reasoning (chapter 14 or 15, depends on the edition),

− online on Google books: http://books.google.com/books?id=8jZBksh-bUMC,

− Norvig’s videos on probabilistic inference:

∗ http://www.youtube.com/watch?v=q5DHnmHtVmc&feature=plcp,

� Koller, Friedman: Probabilistic Graphical Models: Principles and Techniques.

− book: http://pgm.stanford.edu/, chapter II, inference, variable elimination,

− coursera: https://www.coursera.org/course/pgm.

� A4M33RZN

