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Agenda

= Bayesian networks
fundamental tasks,
m exact and its complexity

straightforward enumeration

* easy to understand but inefficient — computes joint probabilities,

* descends to the level of atomic events,

acceleration by variable elimination,
m exact X approximate algorithms,

rejection sampling,
likelihood weighting,
Gibbs sampling,




Bayesian networks — fundamental tasks

= inference — reasoning, deduction

from observed events assumes on probability of other events,
observations (E — a set of evidence variables, e — a particular event),

target variables (Q — a set of query variables, Q — a particular query variable),
Pr(Qle), resp. Pr(Q € Qle) to be found,
network is known (both graph and CPTs),

= learning network parameters from data

network structure (graph) is given,

“only” quantitative parameters (CPTs) to be optimized,

= learning network structure from data

propose an optimal network structure
x which edges of the complete graph shall be employed?,
too many arcs — complicated model,

too few arcs — inaccurate model.




Probabilistic network — inference by enumeration

= Let us observe the following events:

no barking heard,
the door light is on.

s What is the prob of family being out?
searching for Pr(fo|lo, —hb).
s Will observation influence the target event?

light on supports departure hypothesis,
no barking suggests dog inside,
the dog is in house when it is

x rather healthy,
x the family is at home.

Pr(fo)=.15

Pr(lo|fo)=.6
Pr(lo|~fo)=.05

Pr(hb|do)=.7
Pr(hb|—do)=.01

Pr(bp)=.01

bowel
problem

Pr(do|fo,bp)=.99
Pr(do|fo,—bp)=.9
Pr(do|—fo,bp)=.97
Pr(do|—-fo,—bp)=.3




Probabilistic network — inference by enumeration

conditional probs calculated by summing the elements of joint probability table,
= how to find the joint probabilities (the table is not given)?

BN definition suggests:
Pr(FO,BP,DO,LO,HB) =
= Pr(FO)Pr(BP)Pr(DO|FO, BP)Pr(LO|FO)Pr(HB|DO)

= answer to the question?

conditional probability definition suggests:

Pr(fo,lo,—hb
Pr(fOUO, ﬁhb) = P(7:f(l0,—\hb) !

by joint prob marginalization we get:

Pr(fo,lo,=hb) =} pppo Pr(fo, BP, DO,lo,~hb)

Pr(fo,lo,—=hb) = Pr(fo,bp,do,lo,—hb) + Pr(fo,bp, ~do,lo, —~hb)+
+Pr(fo,—bp,do,lo,~hb)+ Pr(fo,—bp, ~do,lo, =hb) = .15 x .01 X .99 X .6 X .34 .15 X
Ol X .0l x.6%x.994.15x.99%x . 9x .6 x.3+.15x.99x.1x.6x.99=.033

Pr(lo,—=hb) = Pr(fo,lo,—hb) + Pr(—fo,lo,—hb) = .066




Probabilistic network — inference by enumeration

after substitution:

Pr(fo,lo,—hb i
Pr(follo,—hb) = P(;f(lo,ﬂhb)) = 022 = 0.5

posterior probability Pr(fo|lo, —hb) is higher then the prior Pr(fo) = 0.15.

m can we assume on complexity?

instead of 2° — 1=31 probs (either conditional or joint) 10 is needed only,

however, joint probs are enumerated to answer the query

x it is easy to show that inference remains a NP-hard problem,

to simply move summations left-to-right makes a difference, but not a principal one

x see the evaluation tree on the next slide,

Pr(fo,lo,=hb) = Y  Pr(fo, BP,DO,lo,~hb) =
BP,DO
= Pr(fo) Y _Pr(BP)Y Pr(DO|fo, BP)Pr(lo| fo)Pr(~hb| DO)
BP DO
inference by enumeration is an intelligible, but unfortunately inefficient procedure,

solution: minimize recomputations, special network types or approximate inference.




Inference by enumeration — evaluation tree

Pr(do|fo, =bp)
Pr(=do|fo,bp)

Pr(=h b|'ldo) |

s Complexity: time O(n2%), memory O(n)
n ...the number of variables, e ...the number of evidence variables, d=n-¢,

= resource of inefficiency: recomputations (Pr(lo|fo) x Pr(—=hb|DO) for each BP value)

variable ordering makes a difference — Pr(lo| fo) shall be moved forward.




Inference by enumeration — straightforward improvements

0 procedure

1. pre-computes to remove the inefficiency shown in the previous slide

factors serve for recycling the earlier computed intermediate results,

some variables are eliminated by summing them out,

YphixoooXfi=fxo X fixd pfipt XX fio=fix o X fi X fp,

assumes that f1,..., f; do not depend on P,

when multiplying factors, the pointwise product is computed

fl(xla ey Ly Y, 7yk) X f2(y17 vy Yky 215 "'7Zl> — f(xla ey Ly Yly ooy Yy 21,4 "'7Zl)

eventual enumeration over P variable, which takes all (two) possible values

fo(Poy ooy ) = S p fi(Pr, Py, oy PY),

execution efficiency is influenced by the variable ordering when computing,

(finding the best order is NP-hard problem, can be optimized heuristically too),




Inference by enumeration — straightforward improvements

0 procedure

2. does not consider variables irrelevant to the query

all the leaves that are neither query nor evidence variable,

the rule can be applied recursively.

bowel
problem

s example: Pr(lo|do)

what is prob that the door light is shining if the dog
is in the garden?

we will enumerate Pr(LO, do), since:

__ Pr(lo,do) __ Pr(lo,do)
P?"(l0|d0) " Pr(do) ~— Pr(lo,do)+Pr(—lo,do)




Inference by enumeration — variable elimination

s HB is irrelevant to the particular query, why?

Y yp Pr(HB|do) =1

Pr(LO,do)= Y Pr(FO)Pr(BP)Pr(do|FO, BP)Pr(LO|FO)Pr(HB|do) =

FO,BP,HB
= Pr(FO)Pr(LO|FO)) _ Pr(BP)Pr(do|FO,BP)Y _ Pr(HB|do)
FO BP HB
= after omitting the last invariant, may take place

Pr(LO,do) =Y Pr(FO)Pr(LO|FO) Y Pr(BP)Pr(do|FO, BP) =

FO BP

=Y Pr(FO)Pr(LO|FO) fgp(do|FO) =  fgp 4,(FO)Pr(LO|FO) =
FO FO

— fm,ﬁ,dO(LO)

= having the last factor (a table of two elements), one can read

170.5P.40(10) 0.0941 0.0941
Pr(lo|do) = Fro gm0 e p o (10) — 00041408007 — 03058 — U-24




Variable elimination — factor computations

= factors are enumerated from CPTs by summing out variables

sum out BP: CPT(DO) & CPT(BP) — fzp(do|FO)
reformulate into: CPT(FO) & fgp(do|FO) — f5p 4,(FO)
sum out FO: f5p ;,(FO) & CPT(LO) = f755p.4,(LO)

o) @ () (2) (o) (@a) () ()

X @




Variable elimination — factor computations

BP | Pr(BP)

T | 001 x
F | 099
FO| Pr(FO)

T| 015 x
F | 085

FO| 15p.4,(FO)
T | 01351

F | 02607

FO BP |Pr(do|FO,BP)
T T 0.99 FO| fgp(do| FO)
T F 0.9 — T |0.9009=0.99x0.01+0.9x0.99
F T 0.97 F | 0.3067=0.97x0.01+0.990.3
F F 0.3
FO fﬁ(dﬂf:‘ﬁj) FO fw da(FO)
T 0.9009 = T |0.1351=0.15%0.9009
F 0.3067 F | 0.2607=0.85x0.3067
LO FO |Pr(LO|FO)
T T 0.6 LO| fro 5.0 LO)
x T F 0.05 — T |0.0941=0.1351x0.6+0.2607 % 0.05
F T 0.4 F | 0.3017=0.1351x0.4+0.2607 x0.95
F F 0.95

HE HE B N EEEEBEBEEBERERECOOO0OOCOODOOOoOOoOOoODOOODbODO
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Inference by enumeration — comparison of the number of operations

let us take the last example

namely the total number of sums and products in Pr(LO, do),

(the final Pr(lo|do) enumeration is identical for all procedures),

m naive enumeration, no evaluation tree

4 products (5 vars) x2! (# atomic events on unevidenced variables) + 2! — 2 sums,

in total 78 operations,

using evaluation tree and a proper reordering of variables

takes the ordering
Pr(LO,do) =) po Pr(FO)Pr(LO|FO) > zp Pr(BP)Pr(do|FO,BP)) 5 Pr(HB|do)
in total 38 operations,

with variable elimination on top of that

in total 14 operations (6 in Tabl, 2 in Tab2, 6 in Tab3).




Variable elimination — efficiency in general

= Given by the network structure and the variable ordering

exponential in the size of the largest clique in the graph,

somewhere between linear and NP-hard,

= induced graph

undirected graph, the edge exists if two variables both appear in some intermediate factor
induced by the given variable ordering,

HB < BP < LO < FO < DO DO <FO<LO<HB < BP




Variable elimination — variable ordering

= minimize the number of in induced graph
edges introduced in the elimination step,
s NP-hard problem in general

greedy local methods often find near-optimal solution,
min-fill heuristic
* vertex cost is the number of edges added to the graph due to its elimination,

always take the node that minimizes the heuristic, no backtrack.

= Step 1:
Pr(FO,...,HB) = fro(FO)fpp(BP)fpo(DO,FO,BP)fro(LO, FO)fgp(HB, DO)

var intermediate factor min-fill

FO  fro(FO)foo(DO, FO, BP) f1o(LO, FO) 3

BP fzp(BP)fpo(DO,FO,BP) 1
DO fpo(DO,FO,BP)fyz(HB, DO) 3
LO fro(LO, FO) 0
HB fys(HB,DO) 0




Semantics of factors

m Factors

multidimensional arrays (the same as CPTs),

often correspond to marginal or conditional probabilities,

initialized with CPTs,

some intermediate factors differ from any probability in the network

x eliminate X from the left network,
* the resulting factor does not agree with any prob in the left network,
x it gives a conditional prob in the right network.

f(A,B,C) =X Pr(X)Pr(A|X)Pr(C|B, X) r(A, C|B)




Approximate inference by stochastic sampling

a general method, samples from the joint prob distribution,

estimates the target conditional probability (query) from a sample set,

the joint prob distribution is not explicitly given, its factorization is available only (network),

the most straightforward is direct

1. topologically sort the network nodes

for every edge it holds that parent comes before its children in the ordering,
2. instantiate variables along the topological ordering

take Pr(P;|parents(P;)), randomly sample P},

3. repeat step 2 for all the samples (the sample size M is given a priori),

from samples to probabilities?

N(q.e
Pr(qle) ~ N(EI(;))

samples that contradict evidence not used,

forward sampling gets inefficient if Pr(e) is small,
0 brings a slight improvement

rejects partially generated samples as soon as they violate the evidence event e,

sample generation may stop early.




Rejection sampling — example

s FAMILY example, estimate Pr(fol|lo, —hb)

1. topologically sort the network nodes

eg., (FO,BP,LO,DO,HB) (or (BP,FO,DO,HB, LO), etc.)

2. instantiate variables along the topological ordering

Pr(FO) — —fo, Pr(BP) — —bp,

Pr(LO|=fo) — lo, Pr(DO|=fo,—bp) — —do, Pr(H B|—~do) — —hb
sample agrees with the evidence e = [o A —hb, no rejection needed,

3. generate 1000 samples, repeat step 2,

s let N(fo,lo,—hb) is 491 (the number of samples
with the given values of three variables under con-

sideration),
= in rejection sampling N(e) necessarily equals M,

Pr(follo,=hb) = %((JS) = -0 = 0.491

Pr(fo)=.15

Pr(bp)=.01
bowel
problem

Pr(do|fo,bp)=.99
Pr(do|fo,—bp)=.9

Pr(do|—fo,bp)=.97
Pr(do|—-fo,—-bp)=.3

Pr(lo|fo)=.6
Pr(lo|—fo)=.05

Pr(hb|do)=.7
Pr(hb|—do)=.01




Likelihood weighting

0 is a sampling method that avoids necessity to reject samples

the values of E are fixed, the rest of variables is sampled only,
however, not all events are equally probable, samples need to be weighted,

the weight equals to the likelihood of the event given the evidence,
s Vsamples p" = {P,=p}",...,P,=p"}, me{l,... M}
1. w™ <« 1 (initialize the sample weight)
2.Vj € {1,...,n} (instantiate variables along the topological ordering)
if P; € E then take p" from e and w™ <= w™ x Pr(Pj|parents(F;)),
otherwise randomly sample p7* from Pr(P;|parents(F;)),

= from samples to probabilities?

evidence holds in all samples (by definition),
weighted averaging is applied to find Pr(Q = Pile)
S WSl pi) 1 for i=j
) ~ 0(i, j) = L
Zn]‘le wm 0 for i+ j

m nevertheless, samples may have very low weights

Pr(pile

it can also turn out inefficient in large networks with evidences occuring late in the ordering.




Likelihood weighting — example

s let us approximate Pr(fo|lo,—hb) (its exact value computed earlier is 0.5),

FO

BP!:

P! 2 3 LO

FO DO

BP H B
LO| T T T

DO FO?:

HB| F F F BP?

w |.0495 015 .18 LO*:

DO?:

H B?:

Pr(fo) = .15 — = fo sampled

Pr(bp) = .01 — —bp sampled

evidence — lo A w! = Pr(lo|—fo) = .05
Pr(do|—fo,—bp) = .3 — —do sampled

evidence — —hb A w! = .05 x Pr(—hb|—~do) = .0495

Pr(fo) = .15 — = fo sampled

Pr(bp) = .01 — —bp sampled

evidence — lo A w! = Pr(lo|—fo) = .05
Pr(do|-fo,—-bp) = .3 — do sampled

evidence — —hb A w? = .05 x Pr(—hb|do) = .015

m a very rough estimate having 3 samples only

Pr(fol|lo,—hbd)

N 18 B
0495 + 015+ .18

74




Gibbs sampling

ma method — the next state depends purely on the current state

state = sample, generates dependent samples!

asitis a method as well — MCMC,
m efficient sampling method namely when some of BN variable states are known

it again samples nonevidence variables only, the samples never rejected,

s sampling process — samples p™ = {P, =p!",..., P, =p'}, me{l,..., M}
1. fix states of all observed variables from E (in all samples),
2. the other variables initialized in p” randomly,
3. generate p™ from p™ 1 (VP, & E)
pit < Pr(Pipy ™. oon Y,
Py <= Pr(Balp?, py =", .Y,

py = Pr(Pupl’, ..oy,
4. repeat step 3 form € {1,..., M}.




Gibbs sampling

s probs Pr(P;|Py,...,Pi_1,Pi1,...,P,) = Pr(BP,|P\ P,) not explicitly given ...
to enumerate them, only their BN neighborhood needs to be known
Pr(P;|P\ P) « Pr(P;|parents(P;)) H Pr(Pj|parents(F;))
¥ P;,Peparents(P;)
the neighborhood is called (MB),
M B covers the node, its parents, its children and their parents,

M B(P,) is the minimum set of nodes that d-separates P, from the rest of the network.

= from samples to probabilities?

averaging Vm is applied to find Pr(Q|e)

evidence holds in all samples (by definition), )/

M

Dm0 i) o [ 1 fori=
)~ M 206, ) = 0 for i+ j

Pr(p;le




Gibbs sampling — example

s let us approximate Pr(fo|lo,—hb) (its exact value computed earlier is 0.5),

p’:  random init of unevidenced variables
FOY Pr*(fo) o< Pr(fo) x Pr(lo|fo) x Pr(—do|fo,bp)
Pr*(=fo) o< Pr(—fo) x Pr(lo|=fo) x Pr(—do|-fo,bp)
01 Pr*(fo) oc .15 x .6 X .01 =9 x 107 = xap, = .41

= pT P b Pr(—fo) o< .85 x .05 x .03 = 1.275 x 1073 — xak, = .59
BP | T ko = P pere) = 460
wolTTT BPY: Pr*(bp) < Pr(bp) x Pr(—do|—fo,bp) = .01 x .03 = .0003
DO | E Pr*(=bp) o< Pr(—bp) x Pr(—do|—fo,—bp) = .99 x .7 = 0.693
HBIE F F Upp = prgiprcey) = 144 — Pri(bp) = 4 x 107

DO by analogy, |MB(DO)| =5

FO? BP value was switched, substitution is Pr(DO|FO, —bp)
Pr*(fo) = .21 Pr*(—fo) =.79
BP?: the same probs as is sample 1




Gibbs sampling — example

= BN Matlab Toolbox, aproximation of Pr(fo|lo, =hb),

m gibbs_sampling_inf_engine, three independent runs with 100 samples.
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Summary

= independence and conditional independence remarkably simplify prob model

still, BN inference remains generally wrt the number of network variables,
inference complexity grows with the number of network edges

* naive Bayes model — linear complexity,

* general complexity estimate from the size of maximal clique of induced graph,
inference complexity can be reduced by constraining model structure

* special network types (singly connected), e.g. trees — one parent only,
inference time can be shorten when exact answer is not required

* approximate inference, typically (but not only) stochastic sampling.

—

* polytrees only

exact approximate
junction belief variable rejection  likelihood Gibbs

tree  propagation* reversal elimination sampling  weighting sampling




Recommended reading, lecture resources

= Russell, Norvig: Al: A Modern Approach, Uncertain Knowledge and Reasoning (Part V)

probabilistic reasoning (chapter 14 or 15, depends on the edition),
online on Google books: http://books.google.com /books?id=8jZBksh-bUMC,
Norvig's videos on probabilistic inference:

* http://www.youtube.com /watch?v=q5DHnmHtVmc&feature=plcp,
m Koller, Friedman: Probabilistic Graphical Models: Principles and Techniques.

book: http://pgm.stanford.edu/, chapter Il, inference, variable elimination,

coursera: https://www.coursera.org/course/pgm.




