Graphical probabilistic models - inference

Jiří Kléma

Department of Computers, FEE, CTU at Prague

http://cw.felk.cvut.cz/wiki/courses/ae4m33rzn/start

Agenda

- Bayesian networks
- fundamental tasks,
- exact inference and its complexity
- straightforward enumeration
* easy to understand but inefficient - computes joint probabilities,
* descends to the level of atomic events,
- acceleration by variable elimination,
- exact \times approximate algorithms,
- rejection sampling,
- likelihood weighting,
- Gibbs sampling,

Bayesian networks - fundamental tasks

- inference - reasoning, deduction
- from observed events assumes on probability of other events,
- observations (E - a set of evidence variables, \mathbf{e} - a particular event),
- target variables (\mathbf{Q} - a set of query variables, Q - a particular query variable),
$-\operatorname{Pr}(\mathbf{Q} \mid \mathbf{e})$, resp. $\operatorname{Pr}(Q \in \mathbf{Q} \mid \mathbf{e})$ to be found,
- network is known (both graph and CPTs),
- learning network parameters from data
- network structure (graph) is given,
- "only" quantitative parameters (CPTs) to be optimized,
- learning network structure from data
- propose an optimal network structure
* which edges of the complete graph shall be employed?,
- too many arcs \rightarrow complicated model,
- too few arcs \rightarrow inaccurate model.

Probabilistic network - inference by enumeration

- Let us observe the following events:
- no barking heard,
- the door light is on.
- What is the prob of family being out?
- searching for $\operatorname{Pr}\left(f_{o} \mid l o, \neg h b\right)$.
- Will observation influence the target event?
- light on supports departure hypothesis,
- no barking suggests dog inside,
- the dog is in house when it is
* rather healthy,
* the family is at home.

Probabilistic network - inference by enumeration

- inference by enumeration

- conditional probs calculated by summing the elements of joint probability table,
- how to find the joint probabilities (the table is not given)?
- BN definition suggests:

$$
\begin{aligned}
& \operatorname{Pr}(F O, B P, D O, L O, H B)= \\
& \quad=\operatorname{Pr}(F O) \operatorname{Pr}(B P) \operatorname{Pr}(D O \mid F O, B P) \operatorname{Pr}(L O \mid F O) \operatorname{Pr}(H B \mid D O)
\end{aligned}
$$

- answer to the question?
- conditional probability definition suggests:

$$
\operatorname{Pr}(f o \mid l o, \neg h b)=\frac{\operatorname{Pr}(f o, l o, \neg h b)}{\operatorname{Pr}(l o, \neg h b)}
$$

- by joint prob marginalization we get:

$$
\begin{aligned}
& \operatorname{Pr}(f o, l o, \neg h b)=\sum_{B P, D O} \operatorname{Pr}(f o, B P, D O, l o, \neg h b) \\
& \operatorname{Pr}(f o, l o, \neg h b)=\operatorname{Pr}(f o, b p, d o, l o, \neg h b)+\operatorname{Pr}(f o, b p, \neg d o, l o, \neg h b)+ \\
& +\operatorname{Pr}(f o, \neg b p, d o, l o, \neg h b)+\operatorname{Pr}(f o, \neg b p, \neg d o, l o, \neg h b)=.15 \times .01 \times .99 \times .6 \times .3+.15 \times \\
& .01 \times .01 \times .6 \times .99+.15 \times .99 \times .9 \times .6 \times .3+.15 \times .99 \times .1 \times .6 \times .99=.033 \\
& \operatorname{Pr}(l o, \neg h b)=\operatorname{Pr}(f o, l o, \neg h b)+\operatorname{Pr}(\neg f o, l o, \neg h b)=.066
\end{aligned}
$$

Probabilistic network - inference by enumeration

- after substitution:

$$
\operatorname{Pr}(f o \mid l o, \neg h b)=\frac{\operatorname{Pr}(f o, l o, \neg h b)}{\operatorname{Pr}(l o, \neg h b)}=\frac{.033}{.066}=0.5
$$

- posterior probability $\operatorname{Pr}(f o \mid l o, \neg h b)$ is higher then the prior $\operatorname{Pr}\left(f_{o}\right)=0.15$.
- can we assume on complexity?
- instead of $2^{5}-1=31$ probs (either conditional or joint) 10 is needed only,
- however, joint probs are enumerated to answer the query
* it is easy to show that inference remains a NP-hard problem,
- to simply move summations left-to-right makes a difference, but not a principal one
* see the evaluation tree on the next slide,

$$
\begin{aligned}
\operatorname{Pr}(f o, l o, \neg h b) & =\sum_{B P, D O} \operatorname{Pr}(f o, B P, D O, l o, \neg h b)= \\
& =\operatorname{Pr}(f o) \sum_{B P} \operatorname{Pr}(B P) \sum_{D O} \operatorname{Pr}(D O \mid f o, B P) \operatorname{Pr}(l o \mid f o) \operatorname{Pr}(\neg h b \mid D O)
\end{aligned}
$$

- inference by enumeration is an intelligible, but unfortunately inefficient procedure,
- solution: minimize recomputations, special network types or approximate inference.

Inference by enumeration - evaluation tree

- Complexity: time $\mathcal{O}\left(n 2^{d}\right)$, memory $\mathcal{O}(n)$
$-n \ldots$ the number of variables, $e \ldots$ the number of evidence variables, $d=n-e$,
- resource of inefficiency: recomputations $(\operatorname{Pr}(l o \mid f o) \times \operatorname{Pr}(\neg h b \mid D O)$ for each BP value)
- variable ordering makes a difference $-\operatorname{Pr}(l o \mid f o)$ shall be moved forward.

Inference by enumeration - straightforward improvements

- variable elimination procedure

1. pre-computes factors to remove the inefficiency shown in the previous slide

- factors serve for recycling the earlier computed intermediate results,
- some variables are eliminated by summing them out,

$$
\begin{aligned}
& \sum_{P} f_{1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \times \sum_{P} f_{i+1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \times f_{\bar{P}} \\
& \text { assumes that } f_{1}, \ldots, f_{i} \text { do not depend on } P
\end{aligned}
$$

when multiplying factors, the pointwise product is computed $f_{1}\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}\right) \times f_{2}\left(y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right)=f\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right)$
eventual enumeration over P_{1} variable, which takes all (two) possible values $f_{\bar{P}_{1}}\left(P_{2}, \ldots, P_{k}\right)=\sum_{P_{1}} f_{1}\left(P_{1}, P_{2}, \ldots, P_{k}\right)$,

- execution efficiency is influenced by the variable ordering when computing, (finding the best order is NP-hard problem, can be optimized heuristically too),

Inference by enumeration - straightforward improvements

- variable elimination procedure

2. does not consider variables irrelevant to the query

- all the leaves that are neither query nor evidence variable,
- the rule can be applied recursively.
- example: $\operatorname{Pr}(l o \mid d o)$
- what is prob that the door light is shining if the dog is in the garden?
- we will enumerate $\operatorname{Pr}(L O, d o)$, since:

$$
\operatorname{Pr}(l o \mid d o)=\frac{\operatorname{Pr}(l o, d o)}{\operatorname{Pr}(d o)}=\frac{\operatorname{Pr}(l o, d o)}{\operatorname{Pr}(l o, d o)+\operatorname{Pr}(\neg l o, d o)}
$$

Inference by enumeration - variable elimination

- HB is irrelevant to the particular query, why?

$$
\begin{aligned}
& \sum_{H B} \operatorname{Pr}(H B \mid d o)=1 \\
& \operatorname{Pr}(L O, d o)=\sum_{F O, B P, H B} \operatorname{Pr}(F O) \operatorname{Pr}(B P) \operatorname{Pr}(d o \mid F O, B P) \operatorname{Pr}(L O \mid F O) \operatorname{Pr}(H B \mid d o)= \\
&=\sum_{F O} \operatorname{Pr}(F O) \operatorname{Pr}(L O \mid F O) \sum_{B P} \operatorname{Pr}(B P) \operatorname{Pr}(d o \mid F O, B P) \sum_{H B} \operatorname{Pr}(H B \mid d o)
\end{aligned}
$$

- after omitting the last invariant, factorization may take place

$$
\begin{aligned}
\operatorname{Pr}(L O, d o) & =\sum_{F O} \operatorname{Pr}(F O) \operatorname{Pr}(L O \mid F O) \sum_{B P} \operatorname{Pr}(B P) \operatorname{Pr}(d o \mid F O, B P)= \\
& =\sum_{F O} \operatorname{Pr}(F O) \operatorname{Pr}(L O \mid F O) f_{\overline{B P}}(d o \mid F O)=\sum_{F O} f_{\overline{B P}, d o}(F O) \operatorname{Pr}(L O \mid F O)= \\
& =f_{\overline{F O}, \overline{B P}, d o}(L O)
\end{aligned}
$$

- having the last factor (a table of two elements), one can read

$$
\operatorname{Pr}(l o \mid d o)=\frac{f_{\overline{F O}, \overline{B P}, d o}(l o)}{f_{\overline{F O}, \overline{B P}, d o}(l o)+f_{\overline{F O}, \overline{B P}, d o}(\neg l o)}=\frac{0.0941}{0.0941+0.3017}=\frac{0.0941}{0.3958}=0.24
$$

Variable elimination - factor computations

- factors are enumerated from CPTs by summing out variables
- sum out BP: $C P T(D O) \& C P T(B P) \rightarrow f_{\overline{B P}}(d o \mid F O)$
- reformulate into: $C P T(F O) \& f_{\overline{B P}}(d o \mid F O) \rightarrow f_{\overline{B P}, d o}(F O)$
- sum out FO: $f_{\overline{B P}, d o}(F O) \& C P T(L O) \rightarrow f_{\overline{F O}, \overline{B P}, d o}(L O)$

Variable elimination - factor computations

Inference by enumeration - comparison of the number of operations

- let us take the last example
- namely the total number of sums and products in $\operatorname{Pr}(L O, d o)$,
- (the final $\operatorname{Pr}(l o \mid d o)$ enumeration is identical for all procedures),
- naïve enumeration, no evaluation tree
-4 products (5 vars) $\times 2^{4}$ (\# atomic events on unevidenced variables) $+2^{4}-2$ sums,
- in total 78 operations,
- using evaluation tree and a proper reordering of variables
- takes the ordering

$$
\operatorname{Pr}(L O, d o)=\sum_{F O} \operatorname{Pr}(F O) \operatorname{Pr}(L O \mid F O) \sum_{B P} \operatorname{Pr}(B P) \operatorname{Pr}(d o \mid F O, B P) \sum_{H B} \operatorname{Pr}(H B \mid d o)
$$

- in total 38 operations,
- with variable elimination on top of that
- in total 14 operations (6 in Tab1, 2 in Tab2, 6 in Tab3).

Variable elimination - efficiency in general

- Given by the network structure and the variable ordering
- exponential in the size of the largest clique in the induced graph,
- somewhere between linear and NP-hard,
- induced graph
- undirected graph, the edge exists if two variables both appear in some intermediate factor induced by the given variable ordering,

$$
H B \prec B P \prec L O \prec F O \prec D O
$$

$$
D O \prec F O \prec L O \prec H B \prec B P
$$

Variable elimination - variable ordering

- minimize the number of fill edges in induced graph
- edges introduced in the elimination step,
- NP-hard problem in general
- greedy local methods often find near-optimal solution,
- min-fill heuristic
* vertex cost is the number of edges added to the graph due to its elimination,
- always take the node that minimizes the heuristic, no backtrack.
- Step 1:

$$
\operatorname{Pr}(F O, \ldots, H B)=f_{F O}(F O) f_{B P}(B P) f_{D O}(D O, F O, B P) f_{L O}(L O, F O) f_{H B}(H B, D O)
$$

var	intermediate factor	min-fill
FO	$f_{F O}(F O) f_{D O}(D O, F O, B P) f_{L O}(L O, F O)$	3
BP	$f_{B P}(B P) f_{D O}(D O, F O, B P)$	1
DO	$f_{D O}(D O, F O, B P) f_{H B}(H B, D O)$	3
LO	$f_{L O}(L O, F O)$	0
HB	$f_{H B}(H B, D O)$	0

Semantics of factors

- Factors
- multidimensional arrays (the same as CPTs),
- often correspond to marginal or conditional probabilities,
- initialized with CPTs,
- some intermediate factors differ from any probability in the network
* eliminate X from the left network,
* the resulting factor does not agree with any prob in the left network,
* it gives a conditional prob in the right network.

$f(A, B, C)=\sum_{X} \operatorname{Pr}(X) \operatorname{Pr}(A \mid X) \operatorname{Pr}(C \mid B, X)$

Approximate inference by stochastic sampling

- a general Monte-Carlo method, samples from the joint prob distribution,
- estimates the target conditional probability (query) from a sample set,
- the joint prob distribution is not explicitly given, its factorization is available only (network),
- the most straightforward is direct forward sampling

1. topologically sort the network nodes

- for every edge it holds that parent comes before its children in the ordering,

2. instantiate variables along the topological ordering

- take $\operatorname{Pr}\left(P_{j} \mid\right.$ parents $\left.\left(P_{j}\right)\right)$, randomly sample P_{j},

3. repeat step 2 for all the samples (the sample size M is given a priori),

- from samples to probabilities?
$-\operatorname{Pr}(q \mid \mathbf{e}) \approx \frac{N(q, \mathbf{e})}{N(\mathbf{e})}$
- samples that contradict evidence not used,
- forward sampling gets inefficient if $\operatorname{Pr}(\mathbf{e})$ is small,
- rejection sampling brings a slight improvement
- rejects partially generated samples as soon as they violate the evidence event \mathbf{e},
- sample generation may stop early.

Rejection sampling - example

- FAMILY example, estimate $\operatorname{Pr}(f o \mid l o, \neg h b)$

1. topologically sort the network nodes

- e.g., $\langle F O, B P, L O, D O, H B\rangle$ (or $\langle B P, F O, D O, H B, L O\rangle$, etc.)

2. instantiate variables along the topological ordering
$-\operatorname{Pr}(F O) \rightarrow \neg f o, \operatorname{Pr}(B P) \rightarrow \neg b p$, $\operatorname{Pr}(L O \mid \neg f o) \rightarrow l o, \operatorname{Pr}(D O \mid \neg f o, \neg b p) \rightarrow \neg d o, \operatorname{Pr}(H B \mid \neg d o) \rightarrow \neg h b$

- sample agrees with the evidence $\mathbf{e}=l o \wedge \neg h b$, no rejection needed,

3. generate 1000 samples, repeat step 2 ,

- let $N(f o, l o, \neg h b)$ is 491 (the number of samples with the given values of three variables under consideration),
- in rejection sampling $N(\mathbf{e})$ necessarily equals M,
$-\operatorname{Pr}(f o \mid l o, \neg h b) \approx \frac{N(q, \mathbf{e})}{N(\mathbf{e})}=\frac{491}{1000}=0.491$

Likelihood weighting

- Likelihood weighting is a sampling method that avoids necessity to reject samples
- the values of \mathbf{E} are fixed, the rest of variables is sampled only,
- however, not all events are equally probable, samples need to be weighted,
- the weight equals to the likelihood of the event given the evidence,
- \forall samples $p^{m}=\left\{P_{1}=p_{1}^{m}, \ldots, P_{n}=p_{n}^{m}\right\}, m \in\{1, \ldots, M\}$

1. $w^{m} \leftarrow 1$ (initialize the sample weight)
2. $\forall j \in\{1, \ldots, n\}$ (instantiate variables along the topological ordering)

- if $P_{j} \in \mathbf{E}$ then take p_{j}^{m} from \mathbf{e} and $w^{m} \leftarrow w^{m} \times \operatorname{Pr}\left(P_{j} \mid \operatorname{parents}\left(P_{j}\right)\right)$,
- otherwise randomly sample p_{j}^{m} from $\operatorname{Pr}\left(P_{j} \mid \operatorname{parents}\left(P_{j}\right)\right)$,
- from samples to probabilities?
- evidence holds in all samples (by definition),
- weighted averaging is applied to find $\operatorname{Pr}\left(Q=P_{i} \mid \mathbf{e}\right)$

$$
\operatorname{Pr}\left(p_{i} \mid \mathbf{e}\right) \approx \frac{\sum_{m=1}^{M} w^{m} \delta\left(p_{i}^{m}, p_{i}\right)}{\sum_{m=1}^{M} w^{m}} \delta(i, j)=\left\{\begin{array}{l}
1 \text { for } i=j \\
0 \text { for } i \neq j
\end{array}\right.
$$

- nevertheless, samples may have very low weights
- it can also turn out inefficient in large networks with evidences occuring late in the ordering.

Likelihood weighting - example

- let us approximate $\operatorname{Pr}(f o \mid l o, \neg h b)$ (its exact value computed earlier is 0.5),

	p^{1}	p^{2}	p^{3}	$\begin{aligned} & F O^{1} \\ & B P^{1} \\ & L O^{1} \end{aligned}$	$\begin{aligned} & \operatorname{Pr}(f o)=.15 \rightarrow \neg f o \text { sampled } \\ & \operatorname{Pr}(b p)=.01 \rightarrow \neg b p \text { sampled } \\ & \text { evidence } \rightarrow l o \wedge w^{1}=\operatorname{Pr}(l o \mid \neg f o)=.05 \end{aligned}$
FO	F	F	T	$D O^{1}$:	$\operatorname{Pr}(d o \mid \neg f o, \neg b p)=.3 \rightarrow \neg d o$ sampled
BP	F	F	F	$H B^{1}$:	evidence $\rightarrow \neg h b \wedge w^{1}=.05 \times \operatorname{Pr}(\neg h b \mid \neg d o)=.0495$
LO	T	T	T		
DO	F	T	T	$F O^{2}$:	$\operatorname{Pr}(\mathrm{fo})=.15 \rightarrow \neg$ fo sampled
HB	F	F	F	$B P^{2}$:	$\operatorname{Pr}(b p)=.01 \rightarrow \neg b p$ sampled
w	. 0495	. 015	. 18	$\begin{aligned} & L O^{2} \\ & D O^{2} \\ & H B^{2} \end{aligned}$	$\begin{aligned} & \text { evidence } \rightarrow l o \wedge w^{1}=\operatorname{Pr}(l o \mid \neg f o)=.05 \\ & \operatorname{Pr}(d o \mid \neg f o, \neg b p)=.3 \rightarrow d o \text { sampled } \\ & \text { evidence } \rightarrow \neg h b \wedge w^{2}=.05 \times \operatorname{Pr}(\neg h b \mid d o)=.015 \end{aligned}$

- a very rough estimate having 3 samples only

$$
\operatorname{Pr}(f o \mid l o, \neg h b) \approx \frac{.18}{.0495+.015+.18}=.74
$$

Gibbs sampling

- a Markov chain method - the next state depends purely on the current state
- state $=$ sample, generates dependent samples!
- as it is a Monte-Carlo method as well \rightarrow MCMC,
- efficient sampling method namely when some of BN variable states are known
- it again samples nonevidence variables only, the samples never rejected,
- sampling process - samples $p^{m}=\left\{P_{1}=p_{1}^{m}, \ldots, P_{n}=p_{n}^{m}\right\}, m \in\{1, \ldots, M\}$

1. fix states of all observed variables from \mathbf{E} (in all samples),
2. the other variables initialized in p^{0} randomly,
3. generate p^{m} from $p^{m-1}\left(\forall P_{i} \notin E\right)$
$-p_{1}^{m} \leftarrow \operatorname{Pr}\left(P_{1} \mid p_{2}^{m-1}, \ldots, p_{n}^{m-1}\right)$,
$-p_{2}^{m} \leftarrow \operatorname{Pr}\left(P_{2} \mid p_{1}^{m}, p_{3}^{m-1}, \ldots, p_{n}^{m-1}\right)$,
-...,
$-p_{n}^{m} \leftarrow \operatorname{Pr}\left(P_{n} \mid p_{1}^{m}, \ldots, p_{n-1}^{m}\right)$,
4. repeat step 3 for $m \in\{1, \ldots, M\}$.

Gibbs sampling

- probs $\operatorname{Pr}\left(P_{i} \mid P_{1}, \ldots, P_{i-1}, P_{i+1}, \ldots, P_{n}\right)=\operatorname{Pr}\left(P_{i} \mid P \backslash P_{i}\right)$ not explicitly given...
- to enumerate them, only their BN neighborhood needs to be known

$$
\operatorname{Pr}\left(P_{i} \mid P \backslash P_{i}\right) \propto \operatorname{Pr}\left(P_{i} \mid \operatorname{parents}\left(P_{i}\right)\right) \prod_{\forall P_{j}, P_{i} \in \operatorname{parents}\left(P_{j}\right)} \operatorname{Pr}\left(P_{j} \mid \operatorname{parents}\left(P_{j}\right)\right)
$$

- the neighborhood is called Markov blanket (MB),
- $M B$ covers the node, its parents, its children and their parents,
- $M B\left(P_{i}\right)$ is the minimum set of nodes that d-separates P_{i} from the rest of the network.
- from samples to probabilities?
- evidence holds in all samples (by definition),
- averaging $\forall m$ is applied to find $\operatorname{Pr}(Q \mid \mathbf{e})$

$$
\operatorname{Pr}\left(p_{i} \mid \mathbf{e}\right) \approx \frac{\sum_{m=1}^{M} \delta\left(p_{i}^{m}, p_{i}\right)}{M} \delta(i, j)=\left\{\begin{array}{lll}
1 & \text { for } i=j \\
0 & \text { for } i \neq j
\end{array}\right.
$$

Gibbs sampling - example

■ let us approximate $\operatorname{Pr}(f o \mid l o, \neg h b)$ (its exact value computed earlier is 0.5),
p^{0} : random init of unevidenced variables

	p^{0}	p^{1}	p^{2}	\ldots
FO	T	F	F	
BP	T	F	F	
LO	T	\mathbf{T}	\mathbf{T}	
DO	F	F	F	
HB	F	F	F	

$F O^{1}: \quad \operatorname{Pr}^{*}(f o) \propto \operatorname{Pr}(f o) \times \operatorname{Pr}(l o \mid f o) \times \operatorname{Pr}(\neg d o \mid f o, b p)$
$\operatorname{Pr}^{*}(\neg f o) \propto \operatorname{Pr}(\neg f o) \times \operatorname{Pr}(l o \mid \neg f o) \times \operatorname{Pr}(\neg d o \mid \neg f o, b p)$
$\operatorname{Pr}^{*}(f o) \propto .15 \times .6 \times .01=9 \times 10^{-4} \rightarrow \times \alpha_{F O}^{1}=.41$
$\operatorname{Pr}^{*}(\neg f o) \propto .85 \times .05 \times .03=1.275 \times 10^{-3} \rightarrow \times \alpha_{F O}^{1}=.59$
$\alpha_{F O}^{1}=\frac{1}{P r^{*}(f o)+P r^{*}(\neg f o)}=460$
$B P^{1}: \operatorname{Pr}^{*}(b p) \propto \operatorname{Pr}(b p) \times \operatorname{Pr}(\neg d o \mid \neg f o, b p)=.01 \times .03=.0003$
$\operatorname{Pr}^{*}(\neg b p) \propto \operatorname{Pr}(\neg b p) \times \operatorname{Pr}(\neg d o \mid \neg f o, \neg b p)=.99 \times .7=0.693$
$\alpha_{B P}^{1}=\frac{1}{P r^{*}(b p)+P r^{*}(\neg b p)}=1.44 \rightarrow P r^{*}(b p)=4 \times 10^{-4}$
$D O^{1}$: by analogy, $|M B(D O)|=5$
$F O^{2}$: BP value was switched, substitution is $\operatorname{Pr}(D O \mid F O, \neg b p)$
$\operatorname{Pr}^{*}(f o)=.21 \operatorname{Pr}^{*}(\neg f o)=.79$
$B P^{2}$: the same probs as is sample 1

Gibbs sampling - example

- BN Matlab Toolbox, aproximation of $\operatorname{Pr}(f o \mid l o, \neg h b)$,
- gibbs_sampling_inf_engine, three independent runs with 100 samples.

Summary

- independence and conditional independence remarkably simplify prob model
- still, BN inference remains generally NP-hard wrt the number of network variables,
- inference complexity grows with the number of network edges
* naïve Bayes model - linear complexity,
* general complexity estimate from the size of maximal clique of induced graph,
- inference complexity can be reduced by constraining model structure
* special network types (singly connected), e.g. trees - one parent only,
- inference time can be shorten when exact answer is not required
* approximate inference, typically (but not only) stochastic sampling.

Recommended reading, lecture resources

- Russell, Norvig: AI: A Modern Approach, Uncertain Knowledge and Reasoning (Part V)
- probabilistic reasoning (chapter 14 or 15 , depends on the edition),
- online on Google books: http://books.google.com/books?id=8jZBksh-bUMC,
- Norvig's videos on probabilistic inference:
* http://www.youtube.com/watch?v=q5DHnmHtVmc\&feature=plcp,
- Koller, Friedman: Probabilistic Graphical Models: Principles and Techniques.
- book: http://pgm.stanford.edu/, chapter II, inference, variable elimination,
- coursera: https://www.coursera.org/course/pgm.

