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The need to deal with vague information in SemanticWeb languages is rising in importance

and, thus, calls for a standard way to represent such information. We may address this

issue by either extending current Semantic Web languages to cope with vagueness, or by

providing a procedure to represent such informationwithin current standard languages and

tools. In this work, we follow the latter approach, by identifying the syntactic differences

that a fuzzy ontology language has to cope with, and by proposing a concrete methodology

to represent fuzzy ontologies using OWL 2 annotation properties. We also report on some

prototypical implementations: a plug-in to edit fuzzy ontologies using OWL 2 annotations

and some parsers that translate fuzzy ontologies represented using our methodology into

the languages supported by some reasoners.
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1. Introduction

Today, there is a growing interest in the development of knowledge representation formalisms able to deal with uncertainty,

a very common requirement in real world applications. Despite the undisputed success of ontologies, classical ontology

languages are not appropriate to deal with vagueness or imprecision in the knowledge, which is inherent to most of the real

world application domains [57].

Since fuzzy set theory and fuzzy logic [60] are suitable formalisms to handle these types of knowledge. It is not surprising

that fuzzy ontologies are useful in several applications, ranging from information retrieval [14,28,49], image interpreta-

tion [17,18,26], the Semantic Web and the Internet [15,45,48], among many others [12,13,29–32,46,47,56].

Description logics (DLs for short) [1] are a family of logics for representing structured knowledge. Each logic is denoted by

using a string of capital letterswhich identify the constructors of the logic and therefore its complexity. DLs have proved to be

veryuseful asontology languages. For instance, the languageOWL2,whichhasvery recentlybecomeaW3CRecommendation

for ontology representation [16,59], is equivalent to the DL SROIQ(D).
Several fuzzy extensions of DLs can be found in the literature. For a good survey on the topic, we refer the reader to [33];

some examples of recent work in the field include [8,20,21,34–36,38,52]. In addition to the theoretical research, some fuzzy

DL reasoners have been implemented, such as fuzzyDL [7], DeLorean [4] and Fire [50]. Not surprisingly, each reasoner uses

its own fuzzy DL language for representing fuzzy ontologies and, thus, there is a need for a standard way to represent such

information.

A first possibility would be to adopt as a standard one of the fuzzy extensions of the languages OWL and OWL 2 that have

been proposed, such as [19,51,52]. However, we do not expect a fuzzy OWL extension to become aW3C proposed standard
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Table 1

Some popular fuzzy logics.

Family t-Norm α ⊗ β t-Conorm α ⊕ β Negation �α Implication α ⇒ β

Zadeh min{α, β} max{α, β} 1 − α max{1 − α, β}
Gödel min{α, β} max{α, β}

{
1, α = 0

0, α > 0

{
1, α ≤ β
β, α > β

Łukasiewicz max{α + β − 1, 0} min{α + β, 1} 1 − α min{1 − α + β, 1}
Product α · β α + β − α · β

{
1, α = 0

0, α > 0

{
1, α ≤ β
β/α, α > β

in the near future. Furthermore, we argue that current fuzzy extensions are not expressive enough, as they only provide

syntactic modifications in some of the axioms of the ontology (in the ABox).

In this work, we propose to use OWL 2 itself to represent fuzzy ontologies. More precisely, we identify the syntactic

differences that a fuzzy ontology language has to cope with, and show how to encode them using OWL 2 annotation

properties. Theuseof annotationpropertiesmakespossible (i) touse currentOWL2editors for fuzzyontology representation,

and (ii) that OWL 2 reasoners discard the fuzzy part of a fuzzy ontology, producing almost the same results as if it would not

exist (however, as we will see in Section 3, our methodology may need to introduce new concepts or roles that cannot be

directly discarded).

In order to support our methodology for fuzzy ontology representation, we have implemented a Protégé plug-in to edit

fuzzy ontologies and some parsers that translate fuzzy ontologies represented using our methodology into the languages

supported by some fuzzy DL reasoners.

The remainder of this paper is organized as follows. Section 2 includes some preliminaries that will be used in the rest of

the paper. More precisely, Section 2.1 is dedicated to fuzzy logic, Section 2.2 to our fuzzy extension of OWL 2, and Section 2.3

to the different syntaxes of OWL 2. Section 3 presents the main contribution of our work, showing how to encode it fuzzy

OWL 2 ontologies using OWL 2. Section 4 illustrates the methodology with some application problems. Section 5 discusses

the implementation status of our approach. In particular, Section 5.1 describes a plug-in to edit fuzzy ontologies, Section 5.2

describes some parsers to export fuzzy ontologies, and Section 5.3 evaluates its practical behaviour with some experiments.

Next, Section 6 compares our approach with the related work. Finally, Section 7 sets out some conclusions and ideas for

future research.

2. Preliminaries

This section recalls some background knowledge on fuzzy logic (Section 2.1), the language fuzzy OWL 2 (Section 2.2), and

the different syntaxes of OWL 2 (Section 2.3).

2.1. Fuzzy logic

Fuzzy set theory and fuzzy logic were proposed by Zadeh [60] to manage imprecise and vague knowledge. While in classical

set theory elements either belong to a set or not, in fuzzy set theory elements can belong to a set to some degree. More

formally, let X be a set of elements called the reference set. A fuzzy subset A of X is defined by a membership functionμA(x),
or simply A(x), which assigns any x ∈ X to a value in the interval of real numbers between 0 and 1. As in the classical case,

0 means no-membership and 1 full membership, but now a value between 0 and 1 represents the extent to which x can be

considered as an element of X .

Changing the usual true/false convention leads to a new type of propositions, called fuzzy propositions. Each fuzzy propo-

sition may have a degree of truth in [0, 1], denoting the compatibility of the fuzzy proposition with a given state of facts. For

example, the truth of the proposition stating than a given tomato is a ripe tomato is clearly a matter of degree.

In this article we will consider fuzzy formulae (or fuzzy axioms) of the form φ ≥ α or φ ≤β , where φ is a fuzzy propo-

sition and α, β ∈ [0, 1] [22]. This imposes that the degree of truth of φ is at least α (resp. at most β). For example,

x is a ripe tomato≥ 0.9 says that we have a rather ripe tomato (the degree of truth of x being a ripe tomato is at least 0.9).
All crisp set operations are extended to fuzzy sets. The intersection, union, complement and implication set operations are

performed by a t-norm function, a t-conorm function, a negation function and an implication function, respectively. These

operations canbegrouped in families or fuzzy logics. It iswell known that different fuzzy logics havedifferent properties [22].

There are three main fuzzy logics: Łukasiewicz, Gödel, and Product. The importance of these three fuzzy logics is due

to the fact that any continuous t-norm can be obtained as a combination of Łukasiewicz, Gödel, and Product t-norm [39].

It is also common to consider the fuzzy connectives originally considered by Zadeh (Gödel conjunction and disjunction,

Łukasiewicz negation and Kleene-Dienes implication), which is sometimes known as Zadeh fuzzy logic. Table 1 shows these

four fuzzy logics: Zadeh, Łukasiewicz, Gödel, and Product.

A (binary) fuzzy relation R over two countable classical sets X and Y is a function R : X × Y → [0, 1]. Again, all crisp
operations over relations (e.g., reflexivity, symmetry, or transitivity) are extended to the fuzzy case.
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2.2. Fuzzy OWL 2

In this section we describe the syntax of the fuzzy extension of OWL 2 that we will consider in the rest of the paper. Fuzzy

extensions of OWL 2 have a very close connection to the fuzzy DL SROIQ(D) (see for instance [52]). In this section, we will

use the more concrete and less cumbersome DL notation instead of the OWL 2 one.

In this paper we will focus on syntactic issues, but the interested reader may find in the literature the semantics, logical

properties and reasoning algorithms for Zadeh fuzzy logic [5], Gödel fuzzy logic [6], and Łukasiewicz fuzzy logic [11].

Alphabet. Fuzzy OWL 2 assumes three alphabets of symbols, for fuzzy concepts, fuzzy roles and individuals. In fuzzy OWL

2, fuzzy concepts denote fuzzy sets of individuals and fuzzy roles denote fuzzy binary relations.

Notation. To begin with, we will introduce some notation that will be used in the rest of the paper:

• C,D are (possibly complex) fuzzy concepts,
• A is an atomic fuzzy concept,
• R is a (possibly complex) abstract fuzzy role,
• RA is an atomic fuzzy role,
• S is a simple fuzzy role, 1

• T is a concrete fuzzy role,
• a, b are abstract individuals,
• v is a concrete individual,
• d is a fuzzy concrete predicate,
• n,m are natural numbers with n≥ 0,m > 0,
• mod is a fuzzy modifier,
• 
 ∈ {≥, >}, 
� ∈ {≥, >, ≤, <},
• α ∈ [0, 1].

Next, we will introduce two important elements of our logic: fuzzy modifiers and fuzzy concrete domains which have been

presented in [54].

Fuzzymodifiers.A fuzzymodifier mod is a function fmod : [0, 1] → [0, 1]which applies to a fuzzy set to change itsmember-

ship function.Wewill allowmodifiers defined in terms of linear hedges (Fig. 1e) and triangular functions (Fig. 1b). Formally:

mod → linear(c) | (M1)

triangular(a, b, c) (M2)

where in linear modifiers we assume that a = c/(c + 1), b = 1/(c + 1).

Example 1. The modifier very can be defined as linear(0.8).

Fuzzy concrete domains.A fuzzy concrete domain (also called a fuzzy datatype)D is a pair 〈�D, �D〉, where�D is a concrete

interpretation domain, and�D is a set of fuzzy concrete predicates dwith an arity n and an interpretation dI : �n
D → [0, 1],

which is an n-ary fuzzy relation over �D.

As fuzzy concrete predicates we allow the following functions defined over an interval [k1, k2] ⊆ Q: trapezoidal mem-

bership function (Fig. 1a), the triangular (Fig. 1b), the left-shoulder function (Fig. 1c) and the right-shoulder function (Fig. 1d).

Furthermore, wewill also allow fuzzymodified datatypes, obtained after the application of a fuzzymodifiermod to a fuzzy

concrete domain interpretation.

Formally:

d → left(k1, k2, a, b) | (D1)

right(k1, k2, a, b) | (D2)

triangular(k1, k2, a, b, c) | (D3)

trapezoidal(k1, k2, a, b, c, d) | (D4)

mod(d) (D5)

Note that in fuzzy modified datatypes k1 = 0, k2 = 1. Furthermore, we allow nesting of modifiers, as for example

mod(mod(d)).

1 Intuitively, simple roles cannot take part in cyclic role inclusion axioms (see [5] for a formal definition).
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Fig. 1. (a) Trapezoidal function; (b) triangular function; (c) left-shoulder function; (d) right-shoulder function; and (e) linear function.

Table 2

Syntax of fuzzy OWL 2.

Concept Syntax Axiom Syntax

(C1) A (A1) 〈a :C 
� α〉
(C2) � (A2) 〈(a, b) :R 
� α〉
(C3) ⊥ (A3) 〈(a, b) :¬R 
� α〉
(C4) C � D (A4) 〈(a, v) :T 
� α〉
(C5) C � D (A5) 〈(a, v) :¬T 
� α〉
(C6) ¬C (A6) 〈a �= b〉
(C7) ∀R.C (A7) 〈a = b〉
(C8) ∃R.C (A8) 〈C � D 
 α〉
(C9) ∀T .d (A9) C1 ≡ . . . Cm
(C10) ∃T .d (A10) dis(C1, . . . , Cm)
(C11) {α/a} (A11) disUnion(C1, . . . , Cm)
(C12) ≥m S.C (A12) 〈R1 . . . Rm � R 
 α〉
(C13) ≤n S.C (A13) 〈T1 � T2 
 α〉
(C14) ≥m T .d (A14) R1 ≡ . . . Rm
(C15) ≤n T .d) (A15) T1 ≡ . . . Tm
(C16) ∃S.Self (A16) domain(R, C)
(C17) mod(C) (A17) range(R, C)
(C18) α · C (A18) range(T, d)
(C19) (α1 · C1) + · · · + (αk · Ck) (A19) func(S)

Role Syntax (A20) func(T)
(R1) RA (A21) R ≡ R−
(R2) T (A22) trans(R)

(R3) R− (A23) dis(S1, . . . , Sm)
(R4) U (A24) dis(T1, . . . , Tm)
(R5) mod(R) (A25) ref(R)

Datatype Syntax (A26) irr(S)
(D1) left(k1, k2, a, b) (A27) sym(R)
(D2) right(k1, k2, a, b) (A28) asy(S)
(D3) triangular(k1, k2, a, b, c)
(D4) trapezoidal(k1, k2, a, b, c, d)
(D5) mod(d)

Example 2. Wemay define the fuzzy datatypeYoungAge : [0, 200] → [0, 1], denoting the degree of a person being young,

as YoungAge(x) = left(0, 200, 10, 30).

Concepts. The syntax of fuzzy concepts is shown in Table 2. Concept constructors (C1)–(C16) correspond to the concept

constructors of OWL 2. The new concepts aremodified concepts (C17), weighted concepts (C18), andweighted sum concepts

(C19). In (C19), we assume that
∑k

i=1 αi ≤ 1.

Example 3. Concept Human � ∃hasAge.YoungAge denotes the fuzzy set of young humans. very(Human �
∃hasAge.YoungAge) denotes very young humans.

Roles. The syntax of fuzzy roles is shown in Table 2. Role constructors (R1)–(R4) correspond to the role constructors of

OWL 2. (R5) corresponds to modified roles.

Fuzzy knowledge base. A fuzzy Knowledge Base (KB) or fuzzy ontology is a finite set of axioms. The axioms that are allowed

in our logic are shown in Table 2. They can be grouped into a fuzzy ABox with axioms (A1)–(A7), a fuzzy TBox with axioms

(A8)–(A11), and a fuzzy RBox with axioms (A12)–(A28). All the axioms correspond to the axioms of OWL 2.

In axioms (A8), (A12), (A13) we argue that it does not make sense to have axioms of the forms 〈τ ≤ α〉 or 〈τ < α〉
because such axioms do not have an equivalent expression in classical OWL 2.

Example 4. The fuzzy concept assertion 〈paul : Tall ≥ 0.5〉 states that Paul is tall with at least degree 0.5. The fuzzy RIA

〈isFriendOf isFriendOf � isFriendOf ≥ 0.75〉 states that the friends of my friends can also be considered as my friends

with at least degree 0.75.
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In this work, we consider fuzzy OWL 2 ontologies, and we need the syntactic restrictions of simple roles to guarantee the

decidability of the logic. We note that one could consider less expressive ontology languages where this restriction can be

removed, such as fuzzy OWL 2 EL, which is closely related to the fuzzy DL EL + + [37]. In this case, the same procedure to

represent fuzzy ontologies described in Section 3 could still be used: just let S be any fuzzy role, and not necessarily a simple

one.

2.3. OWL 2 syntaxes

In order to store and to exchange OWL 2 ontologies, concrete syntaxes are needed. For this purpose, OWL 2 provides several

different syntaxes [59]. The aim of this section is to give an overview of all of them. For the sake of concrete illustration, we

will show how to represent an annotated entity using each of the syntaxes.

The main syntax for OWL 2 is RDF/XML syntax, which defines an XML serialization for RDF triples (or RDF graphs) [2].

The basic idea is to represent the nodes and predicates of the RDF triples using XML terms. It is the only mandatory syn-

tax, which means that it must be supported by every OWL 2 tool. Thus, it is the most appropriate syntax to improve the

interoperability.

Example 5. Assume that an OWL 2 concept className is annotated via an annotation property annotationProperty with a

value annotationValue. In RDF/XML syntax, this is represented as follows:

<owl:Class rdf:about=" className">
<annotationProperty >annotationValue </ annotationProperty >

</owl:Class >

UsingXML imposes several restrictions. This hasmotivated the emergence of alternative RDF serializations, such as Turtle [3],

that makes reading and writing RDF triples easier.

Example 6. Example 5 is represented in Turtle syntax as follows:

:className rdf:type owl:Class ;
:annotationProperty annotationValue .

OWL 2 has a core part or structural specification that determines its conceptual structure and is independent of any concrete

syntax. The functional-style syntax (also called abstract syntax) closely corresponds to the structural specification [41]. It is

a compact syntax that makes easier to see the structure of the ontologies.

Example 7. Example 5 is represented in functional-style syntax as follows:

AnnotationAssertion (
annotationProperty className annotationValue

)

The OWL/XML syntax defines an XML serialization for OWL 2 ontologies, mirroring the structural specification [40]. It can be

seen as a notational variant of the functional syntax, with the advantage of being easier to process using XML tools. As we

will see, this is the syntax that we have chosen to represent our examples in Section 4.

Example 8. Example 5 is represented in OWL/XML syntax as follows:

<AnnotationAssertion >
<AnnotationProperty IRI ="# annotationProperty "/>
<IRI >#className </IRI >
<Literal datatypeIRI ="& rdf;PlainLiteral">annotationValue </Literal >

</AnnotationAssertion >

Finally, the Manchester Syntax is specifically designed to be readable, so it is easily understood by humans [24]. It is also

compact and closer to DL syntax than other syntaxes.

Example 9. Example 5 is represented in Manchester syntax as follows:

Class: className
Annotations:

annotationProperty annotationValue
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3. Representation of fuzzy ontologies in OWL 2

In this sectionwewill explain amethodology to represent fuzzyOWL2ontologiesusingOWL2. The ideaof our representation

is to use an OWL 2 ontology and to extend their elements with annotation properties representing the features of the fuzzy

ontology that OWL 2 cannot directly encode. For the sake of clarity, we will use OWL/XML syntax [40]. 2

It is worth to note that only OWL 2 provides for annotations on ontologies, axioms, and entities [40]. This is not the case

of OWL DL, which just provides for annotations on ontologies and entities.

3.1. Syntactic requirements of fuzzy ontologies

To begin with, we will summarize the syntactic differences between the fuzzy and non-fuzzy ontologies. There are six cases

depending on the annotated element.

Case 1. Fuzzy modifiers do not have an equivalence in the non-fuzzy case: (M1), (M2).

Case 2. Fuzzy datatypes do not have an equivalence in the non-fuzzy case: (D1)–(D5).

Case 3. Some fuzzy concepts have syntactic differences with the non-fuzzy case (C11) or do not have an equivalence

(C17)–(C19).

Case 4. Some fuzzy roles do not have an equivalence in the non-fuzzy case: (R5).

Case 5. Some axioms require an inequality sign and a degree of truth: (A1)–(A5), (A8), (A12)–(A13).

Case 6. Ontologies can be annotated with a fuzzy logic.

3.2. Annotations

Instead of using any of the defaults annotation properties from OWL 2, we will use an annotation property fuzzyLabel.
Furthermore, for every element of the ontology there can be at-most one annotation of this type.

Every annotation will be delimited by a start tag <fuzzyOwl2> and an end tag </fuzzyOwl2>, with an attribute

fuzzyType specifying the fuzzy element being tagged. In the following, we will address the different cases in detail.

3.3. Fuzzy modifiers

According to Section 2.2, the fuzzy modifiers that we want to represent have parameters a, b, c. In this case, the value of

fuzzyType is modifier, and there is a tag Modifierwith an attribute type (possible values linear, and triangular),
and attributes a, b, c, depending on the type of the modifier.

Note that, differently from the case of fuzzy datatypes that we will discuss in Section 3.4, we do not need to define the

values xsd:minInclusive and xsd:maxInclusive as they are assumed to be 0 and 1, respectively.

Domain of the annotation. An OWL 2 datatype of the type base double xsd:double.
Syntax for the annotation.

<fuzzyOwl2 fuzzyType =" modifier">
<MODIFIER >

</fuzzyOwl2 >

<MODIFIER > :=
<Modifier type=" linear" c="<DOUBLE >" /> |
<Modifier type=" triangular" a="<DOUBLE >" b="<DOUBLE >" c="<DOUBLE >" />

<DOUBLE> denotes a rational number.

Semantical restrictions. The parsers should check that the following constraints:

• a, b, c ∈ [0, 1]
• b = 0 iff a = 1
• b = 1 iff c = 1

Example 10. In order to define the fuzzy modifier Very = linear(0.8), a datatype Very is annotated as follows:

<AnnotationAssertion >
<AnnotationProperty IRI=’#fuzzyLabel ’/>
<IRI >#very </IRI >
<Literal datatypeIRI =’&rdf;PlainLiteral ’>

<fuzzyOwl2 fuzzyType =" modifier">
<Modifier type=" linear" c="0.8" />

2 Of course, the final result depends on the syntax (for instance, in OWL 2 XML syntax the characters ≥ and ≤ of the annotations are escaped) but OWL 2

ontology editors make these issues transparent to the user.
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</fuzzyOwl2 >
</Literal >

</AnnotationAssertion >

3.4. Fuzzy datatypes

Firstly, we will consider fuzzy datatypes (D1)–(D4), and then we will consider the case (D5).

3.4.1. Fuzzy atomic datatypes

According to Section 2.2, these fuzzy datatypes have parameters k1, k2, a, b, c, d. The first four parameters are common to

all of them, c only appears in (D4), (D5); and d only appears in (D5).

Domain of the annotation. An OWL 2 datatype of the type base of the fuzzy datatype (integer xsd:integer or double

xsd:double), such that:

xsd:minInclusive ="<DOUBLE >"
xsd:maxInclusive ="<DOUBLE >"

xsd:minInclusive should take the value k1, whereas xsd:maxInclusive should take the value k2. These parameters are

optional and, if omitted, then the minimum and maximum of the attributes (a, b, c, d) is assumed, respectively.

Syntax for the annotation.

<fuzzyOwl2 fuzzyType =" datatype">
<DATATYPE >

</fuzzyOwl2 >

<DATATYPE > :=
<Datatype type=" leftshoulder" a="<DOUBLE >" b="<DOUBLE >" /> |
<Datatype type=" rightshoulder " a="<DOUBLE >" b="<DOUBLE >" /> |
<Datatype type=" triangular" a="<DOUBLE >" b="<DOUBLE >" c="<DOUBLE >" /> |
<Datatype type=" trapezoidal" a="<DOUBLE >" b="<DOUBLE >" c="<DOUBLE >" d="<DOUBLE >" />

Semantical restrictions. The parsers should check the following restrictions:

• k1 ≤ a ≤ b ≤ c ≤ d ≤ k2 is verified.

Example 11. Let us represent the fuzzy datatype YoungAge = left(0, 200, 10, 30) denoting the age of a young person.

This fuzzy datatype is represented using a datatype definition of base type xsd:integerwith range in [0, 200]:
<DatatypeDefinition >

<Datatype IRI=’#YoungAge ’/>
<DataIntersectionOf >

<DatatypeRestriction >
<Datatype abbreviatedIRI =’xsd:double ’/>
<FacetRestriction facet=’&xsd;minInclusive ’>

<Literal datatypeIRI =’&xsd;integer ’>0</Literal >
</FacetRestriction >

</DatatypeRestriction >
<DatatypeRestriction >

<Datatype abbreviatedIRI =’xsd:double ’/>
<FacetRestriction facet=’&xsd;maxInclusive ’>

<Literal datatypeIRI =’&xsd;integer ’>200</Literal >
</FacetRestriction >

</DatatypeRestriction >
</DataIntersectionOf >

</DatatypeDefinition >

Next, we add the annotation property as follows:

<AnnotationAssertion >
<AnnotationProperty IRI=’#fuzzyLabel ’/>
<IRI >#YoungAge </IRI >
<Literal datatypeIRI =’&rdf;PlainLiteral ’>

<fuzzyOwl2 fuzzyType =" datatype">
<Datatype type=" leftshoulder" a="10" b="30" />

</fuzzyOwl2 >
</Literal >

</AnnotationAssertion >
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3.4.2. Fuzzy modified datatypes

In this case, the parameters are two: the modifier, and the fuzzy datatype that is being modified.

Domain of the annotation. An OWL 2 datatype.

Syntax for the annotation.

<fuzzyOwl2 fuzzyType =" datatype">
<Datatype type=" modified" modifier ="<STRING >" base="<STRING >" />

</fuzzyOwl2 >

Semantical restrictions. The parsers should check the following restrictions:

• modifier is defined as a fuzzy modifier.
• base is defined as a fuzzy datatype.
• base has a different name than the annotated datatype.

Example 12. Let us represent the fuzzy datatype VeryYoungAge. To begin with, we assume that the fuzzy datatype very
has been created as in Example 10, and that the fuzzy datatype YoungAge has been created as in Example 11. Then, we

define a new datatype VeryYoungAge and add the following annotation:

<AnnotationAssertion >
<AnnotationProperty IRI ="# fuzzyLabel "/>
<IRI ># VeryYoungAge </IRI >
<Literal datatypeIRI ="& rdf;PlainLiteral">

<fuzzyOwl2 fuzzyType =" datatype">
<Datatype type=" modified" modifier ="very" base=" YoungAge" />

</fuzzyOwl2 >
</Literal >

</AnnotationAssertion >

3.5. Fuzzy concepts

In this case, we create a new concept D and add an annotation property describing the type of the constructor and the value

of their parameters. Now, the value of fuzzyType is concept, and there is a tag Conceptwith an attribute type, and other

attributes, depending on the concept constructor. The general rule is that recursion is not allowed, i.e., D cannot be defined

in terms of D, so D is not a valid value for these attributes.

3.5.1. Fuzzy modified concepts

Here, the value of type is modified. There are also two additional attributes: modifier (the fuzzy modifier), and base
(the name of the fuzzy concept that is being modified).

Domain of the annotation. An OWL 2 concept.

Syntax for the annotation.

<fuzzyOwl2 fuzzyType =" concept">
<MODIFIED_CONCEPT >

</fuzzyOwl2 >

<MODIFIED_CONCEPT > := <Concept type=" modified" modifier ="<STRING >"
base="<STRING >" />

Semantical restrictions. The parsers should check the following restrictions:

• modifier is defined as a fuzzy modifier.
• base has a different name than the annotated concept.

Example13. Letus representnowtheconceptvery(C).Weassumethat the fuzzymodifierhasbeencreatedas inExample10.

To that end, we create the atomic concept VeryC and add the following annotation:

<AnnotationAssertion >
<AnnotationProperty IRI=’#fuzzyLabel ’/>
<IRI >#VeryC </IRI >
<Literal datatypeIRI =’&rdf;PlainLiteral ’>

<fuzzyOwl2 fuzzyType =" concept">
<Concept type=" modified" modifier ="very" base="C" />

</fuzzyOwl2 >
</Literal >

</AnnotationAssertion >
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3.5.2. Weighted concepts

Here, the value of type is weighted. There are also two additional attributes: value (a real number in (0, 1]), and base
(the name of the fuzzy concept that is being weighted).

Domain of the annotation. An OWL 2 concept.

Syntax for the annotation.

<fuzzyOwl2 fuzzyType =" concept">
<WEIGHTED_CONCEPT >

</fuzzyOwl2 >

<WEIGHTED_CONCEPT > := <Concept type=" weighted" value="<DOUBLE >" base="<STRING >" />

Semantical restrictions. The parsers should check the following restrictions:

• value in (0, 1].
• base has a different name than the annotated concept.

Example 14. Let us represent now the concept (0.8 C). We create the atomic concept Weight0.8C and add the following

annotation:

<AnnotationAssertion >
<AnnotationProperty IRI=’#fuzzyLabel ’/>
<IRI ># Weight0 .8C</IRI >
<Literal datatypeIRI =’&rdf;PlainLiteral ’>

<fuzzyOwl2 fuzzyType =" concept">
<Concept type=" weighted" value ="0.8" base="C" />

</fuzzyOwl2 >
</Literal >

</AnnotationAssertion >

3.5.3. Weighted sum concepts

Here, the value of type is weightedSum. There are also several additional tags representing weighted concepts.

Domain of the annotation. An OWL 2 concept.

Syntax for the annotation.

<fuzzyOwl2 fuzzyType =" concept">
<Concept type=" weightedSum">

(<WEIGHTED_CONCEPT >)+
</Concept >

</fuzzyOwl2 >

Semantical restrictions. Let k be the number of weighted concepts taking part in the definition. The parsers should check

the following restrictions:

• k ≥ 2.
• ∑k

i=1 valuek ≤ 1.
• The k base concepts have a different name than the annotated concept.

Example 15. Let us represent now the concept (0.8 A + 0.2 B). We create the atomic concept Sum08Aplus02B and add

the following annotation:

<AnnotationAssertion >
<AnnotationProperty IRI=’#fuzzyLabel ’/>
<IRI ># Sum08Aplus02B </IRI >
<Literal datatypeIRI =’&rdf;PlainLiteral ’>

<fuzzyOwl2 fuzzyType =" concept">
<Concept type=" weightedSum">

<Concept type=" weighted" value ="0.8" base="A" />
<Concept type=" weighted" value ="0.2" base="B" />

</Concept >
</fuzzyOwl2 >

</Literal >
</AnnotationAssertion >
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3.5.4. Fuzzy nominals

Here, thevalueoftype isnominal. Therearealso twoadditional attributes:value (a realnumber in (0, 1]), andindividual
(the name of the individual that is being weighted).

Domain of the annotation. An OWL 2 concept.

Syntax for the annotation.

<fuzzyOwl2 fuzzyType =" concept">
<FUZZY_NOMINAL >

</fuzzyOwl2 >

<FUZZY_NOMINAL > := <Concept type=" nominal" value=<DOUBLE > individual=<STRING > />

Semantical restrictions. The parsers should check the following restrictions:

• value ∈ (0, 1].
Example 16. Let us represent now the concept {0.75/ind}. We create the atomic concept ind075 and add the following

annotation:

<AnnotationAssertion >
<AnnotationProperty IRI=’#fuzzyLabel ’/>
<IRI >#ind075 </IRI >
<Literal datatypeIRI =’&rdf;PlainLiteral ’>

<fuzzyOwl2 fuzzyType =" concept">
<Concept type=" nominal" value ="0.75" individual ="ind" />

</fuzzyOwl2 >
</Literal >

</AnnotationAssertion >

3.6. Fuzzy roles

Now, we create a new role R and to add an annotation property describing the type of the constructor and the value of their

parameters. Now, the value of fuzzyType is role, and there is a tag Role with an attribute type, and other attributes,

depending on the role constructor. Recursion is not allowed in the definitions. For the moment, we only support fuzzy

modified roles.

3.6.1. Fuzzy modified roles

Here, the value of type is modified. There are also two additional attributes: modifier (the fuzzy modifier), and base
(the name of the fuzzy role that is being modified).

Domain of the annotation. An OWL 2 (object or data) property.

Syntax for the annotation.

<fuzzyOwl2 fuzzyType ="role">
<MODIFIED_ROLE >

</fuzzyOwl2 >

<MODIFIED_ROLE > := <Role type=" modified" modifier ="<STRING >"
base="<STRING >" />

Semantical restrictions. The parsers should check the following restrictions:

• modifier is defined as a fuzzy modifier.
• base has a different name than the annotated role.

Example 17. Let us represent now the abstract role very(R). We assume that the fuzzy modifier has been created as in

Example 10. Then, we create the atomic object property VeryR and add the following annotation:

<AnnotationAssertion >
<AnnotationProperty IRI=’#fuzzyLabel ’/>
<IRI >#VeryR </IRI >
<Literal datatypeIRI =’&rdf;PlainLiteral ’>

<fuzzyOwl2 fuzzyType ="role">
<Role type=" modified" modifier ="very" base="R" />

</fuzzyOwl2 >
</Literal >

</AnnotationAssertion >



F. Bobillo, U. Straccia / International Journal of Approximate Reasoning 52 (2011) 1073–1094 1083

3.7. Fuzzy axioms

It is possible to add a degree of truth to some axioms, i.e., (A1)–(A5), (A8), (A12)–(A13). The value of fuzzyType is axiom.
There is an optional tag Degree, with and attribute value. If omitted, we assume degree 1.

Note that in axioms (A1)–(A5) 〈τ ≤ α〉 is equivalent to 〈¬τ ≥ 1 − α〉. 3
Domain of the annotation. An OWL 2 axiom of the following types: concept assertion,role assertion, GCI, RIA. That is, the

OWL 2 versions of axioms (A1), (A1)–(A5), (A8), (A12)–(A13).

Syntax for the annotation.

<fuzzyOwl2 fuzzyType =" axiom">
<Degree value="<DOUBLE >" />

</fuzzyOwl2 >

Semantical restrictions. The parsers should check the following restrictions:

• value in (0, 1].
Example 18. The fuzzy concept assertion of Example 4, 〈paul : Tall ≥ 0.5〉, is represented by annotating the concept

assertion with the degree ≥ 0.5, which is done as follows:

<ClassAssertion >
<Class IRI=’#Tall ’/>
<NamedIndividual IRI=’#paul ’/>
<Annotation >

<AnnotationProperty IRI=’#fuzzyLabel ’/>
<Literal datatypeIRI =’&rdf;PlainLiteral ’>

<fuzzyOwl2 fuzzyType =" axiom">
<Degree value ="0.5" />

</fuzzyOwl2 >
</Literal >

</Annotation >
</ClassAssertion >

3.8. Ontologies

Wemay also annotate the ontology and specify the fuzzy logic to be considered in the semantics.

The value of fuzzyType is ontology. There is a tag FuzzyLogic, with and attribute logic, that specifies the default

fuzzy logic which is used in the semantics of the fuzzy ontology.

Domain of the annotation. An OWL 2 ontology.

Syntax for the annotation.

<fuzzyOwl2 fuzzyType =" ontology">
<FuzzyLogic logic=<FUZZY_LOGIC > />

</fuzzyOwl2 >

<FUZZY_LOGIC > := "lukasiewicz" | "zadeh"

At the moment, we only allow two fuzzy logics, Łukasiewicz and Zadeh (see Section 2.1), which are supported by fuzzyDL
or DeLorean. However, it is trivial to extend the syntax to cover alternative fuzzy logics, such as Gödel or Product.

3.9. Non-trivial extensions

In this section, we extend our previous methodology to represent fuzzy ontologies with some additional features of fuzzy

ontologies. These extensions are non-trivial and have been separated from the previousmethodology because they are likely

difficult to implement in practice.

3.9.1. Concepts that can be annotated with a fuzzy logic

It is possible to allow some concept constructors to have several versions depending on the fuzzy logic considered. For

instance,wemayhaveseveral conjunctionconcepts, suchasC1�GC2 andC1�ŁC2 denotingGödel conjunctionandŁukasiewicz

conjunction, respectively. Typically, we could specify a fuzzy logic in the concepts (C4)–(C10), (C11)–(C15). If no fuzzy logic

is specified, the default value is the fuzzy logic of the ontology, represented as explained in Section 3.8.

3 ¬τ denotes the negation of an axiom τ and is defined as follows:¬(a :C) = a :¬C ,¬((a, b) :X) = (a, b) :¬X, ¬((a, b) :¬X) = (a, b) :X , where X ∈ {R, T}.
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It is important to stress that it is only possible to add annotation properties to entities (named concepts), since OWL 2

does not allow to add annotations to anonymous concept expressions. Hence, in order to add an annotation property to an

anonymous concept expression, it is firstly mandatory to name it.

In order to represent one of these concepts, we create a new named concept, state that it is equivalent to the anonymous

fuzzy concept, and add an annotation with a value of fuzzyType being concept, and a tag FuzzyLogicwith an attribute

logic, that specifies the fuzzy logic.

Domain of the annotation. An OWL 2 concept.

Syntax for the annotation.

<fuzzyOwl2 fuzzyType =" concept">
<FuzzyLogic logic=<FUZZY_LOGIC > />

</fuzzyOwl2 >

<FUZZY_LOGIC > := "lukasiewicz" | "zadeh"

Semantical restrictions. The concept is asserted to be equivalent to exactly one concept, which has one of the following

types: (C4)–(C10), (C11)–(C15).

Example 19. In order to represent a fuzzy concept representing the set of tall or fat individuals, where the disjunction is

interpreted using Zadeh fuzzy logic (i.e., Tall �Z Fat, we use the new atomic concept TallOrFat as follows:

<EquivalentClasses >
<Class IRI ="# TallOrFat"/>

<ObjectUnionOf >
<Class IRI ="# Tall"/>
<Class IRI ="#Fat"/>

</ObjectUnionOf >
</EquivalentClasses >

<AnnotationAssertion >
<AnnotationProperty IRI=’#fuzzyLabel ’/>
<IRI >#TallOrFat </IRI >
<Literal datatypeIRI =’&rdf;PlainLiteral ’>

<fuzzyOwl2 fuzzyType =" concept">
<FuzzyLogic logic=" zadeh" />

</fuzzyOwl2 >
</Literal >

</AnnotationAssertion >

This extensionhas the advantage that theuser can combine connectives fromdifferent fuzzy logics. However,wehave several

reasons to recommend not to use this feature for the moment. Firstly, from a practical point of view, such combinations are

not clear yet from a reasoning point of view. Secondly, a new named entity is created every time these constructors are used.

This is problematic both from a modelling and from a practical point of view, as the parsing time would increase.

3.9.2. Axioms that can be annotated with a fuzzy logic

Furthermore, it is possible to allow some axioms to have several versions depending on the fuzzy logic considered. Typically,

we could specify a fuzzy logic in the axioms (A3), (A5), (A8), (A11), (A12), (A13), (A22).

Similarly as in the previous case, we add an annotation to the axiom where the value of fuzzyType is axiom, and a

tag FuzzyLogic with and attribute logic, that specifies the fuzzy logic. Note that, except in the case of axioms (A11), the

axiommay also have a tag that specifies a degree of truth, as shown in Section 3.7. Hence, the syntax to annotate axioms in

Section 3.7 can be updated as follows.

Domain of the annotation. An OWL 2 axiom.

Syntax for the annotation.

<fuzzyOwl2 fuzzyType =" axiom">
<Degree value="<DOUBLE >" /> |
<FuzzyLogic logic=<FUZZY_LOGIC > /> |
<Degree value="<DOUBLE >" />
<FuzzyLogic logic=<FUZZY_LOGIC > />

</fuzzyOwl2 >

<FUZZY_LOGIC > := "lukasiewicz" | "zadeh"

Semantical restrictions. An axiom has one of the following forms: (A3), (A5), (A8), (A11), (A12), (A13), (A22).
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Example 20. Let us show how to represent the fuzzy RIA 〈isFriendOf isFriendOf � isFriendOf ≥ 0.75〉, originally
proposed in Example 4, using Zadeh fuzzy logic:

<SubObjectPropertyOf >
<ObjectPropertyChain >

<ObjectProperty IRI ="# isFriendOf "/>
<ObjectProperty IRI ="# isFriendOf "/>

</ObjectPropertyChain >
<ObjectProperty IRI ="# isFriendOf "/>
<Annotation >

<AnnotationProperty IRI ="# fuzzyLabel "/>
<Literal datatypeIRI ="& rdf;PlainLiteral">

<fuzzyOwl2 fuzzyType =" concept">
<FuzzyLogic logic =" zadeh" />
<Degree value ="0.75" />

</fuzzyOwl2 >
</Literal >

</Annotation >
</SubObjectPropertyOf >

However, we propose not to allow this feature for the moment, because that seems the more coherent choice if we do not

allow concept with different versions depending on the fuzzy logic, and because, as in the previous case, the combination

of different axioms with semantics based on different fuzzy logics is not clear yet from a reasoning point of view.

4. Examples of fuzzy ontology representation

In this section, we will provide some examples illustrating how to use fuzzy ontologies to model the knowledge in real

application problems, and how to encode fuzzy ontologies using the methodology explained in Section 3. 4 We will focus

on just two applications of fuzzy ontologies: matchmaking problems and fuzzy multi-criteria decision making (MCDM)

problems, but we would like to mention again that there are many more [12–15,17,18,26,28–32,45–49,56].

4.1. Matchmaking

The following example is a modified version of the one in [7]. Assume that a car seller sells a sedan car. A buyer is looking for

a second hand passenger car. Both the buyer and the seller have (hard) restrictions and (soft) preferences.We have also some

backgroundknowledge about the applicationdomain. Our aim is to find the best agreement between the buyer and the seller.

Let us show now how to represent the relevant knowledge. A concept Buy collects all the buyer’s preferences together

in such a way that the higher the maximal degree of satisfiability of Buy, the more the buyer is satisfied. As an example, the

buyer has 5 preferences B1–B5.

Buy ≡ BuyerRequirements � BuyerPreferences
BuyerRequirements ≡ PassengerCar � ∃hasPrice.leq26000
B1 ≡ ¬(∃hasAlarmSystem.AlarmSystem) � ∃hasPrice.ls22300-22750
B2 ≡ (∃hasInsurance.DriverInsurance) � ∃hasInsurance.(TheftInsurance � FireInsurance)
B3 ≡ (∃hasAirConditioning.AirConditioning) � ∃HasExColor.(ExColorBlack � ExColorGray)
B4 ≡ ∃hasPrice.ls22000-24000
B5 ≡ ∃hasKMWarranty.rs15000-175000

Some preferences can be more important than others, so we use a weighted sum concept BuyerPreferences, and we add

the following annotation property to it (see Fig. 2):

<fuzzyOwl2 fuzzyType =" concept">
<Concept type=" weightedSum">

<Concept type=" weighted" value ="0.1" base="B1" />
<Concept type=" weighted" value ="0.2" base="B2" />
<Concept type=" weighted" value ="0.1" base="B3" />
<Concept type=" weighted" value ="0.2" base="B4" />
<Concept type=" weighted" value ="0.4" base="B5" />

</Concept >
</fuzzyOwl2 >

4 The full examples are available at http://www.straccia.info/software/FuzzyOWL.

http://www.straccia.info/software/FuzzyOWL
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Fig. 2. Annotation property defining concept BuyerPreferences.

leq26000, ls22300–22750, ls22000–24000, and rs15000–175000 are defined datatypes with annotation properties. For

instance, leq26000 represents values which are less or equal than 26000, and ls22000–24000 represents a left shoulder

function with parameters a = 22000, b = 24000. This latter datatype has the following annotation property (see Fig. 3):

<fuzzyOwl2 fuzzyType =" datatype">
<Datatype type=" leftshoulder" a="22000" b="24000" />

</fuzzyOwl2 >

Similarly to the buyer case, the concept Sell collects all the seller’s preferences together in such a way that the higher is the

maximal degree of satisfiability of Sell, the more the seller is satisfied.

Sell ≡ SellerRequirements � SellerPreferences

SellerRequirements ≡ SedanCar � ∃hasPrice.geq22000

S1 ≡ ¬(∃hasNavigator.NavigatorPack) � ∃hasPrice.rs225000-22750

S2 ≡ ∃hasInsurance.InsurancePlus

S3 ≡ ∃hasKMWarranty.SellerKmWarr

S4 ≡ ∃hasMWarranty.SellerMWarr

S5 ≡ ¬(∃hasExColor.ExColorBlack) � ∃hasAirConditioning.AirConditioning
SellerPreferences is represented using a weighted sum concept combining the 5 preferences of the seller (we assume that

the weights of the preferences S1–S5 are 0.3, 0.1, 0.3, 0.1, 0.2, respectively). geq22000, rs225000-22750, SellerKmWarr,
SellerMWarr are defined datatypes.

The ontology also includes some background information about the domain of vehicles, although this is not shown in

this example.

Finally, it is clear that the best agreement among the buyer and the seller is determined by the maximal degree of

satisfiability of the conjunctionBuy�Sell under Łukasiewicz fuzzy logic. So, an optimalmatch (the degree is 0.7625) would

be an agreement on a price of 22500, with 100000 kilometer warranty and 60 months warranty.
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Fig. 3. Annotation property defining fuzzy datatype ls22000–24000.

4.2. Multi-criteria decision making

The following example is a modified version of the one in [55]. Given a set of n decision alternatives and a set of m criteria

according to which the desirability of an action is judged, a MCDM consists in determining the optimal alternative a< with

the highest degree of desirability. A MCDM problem is usually expressed with a decision matrix, where each row corre-

sponds to an alternative ai, each column belongs to a criterion cj , and the score pij describes the performance of alternative

ai against criterion cj . It is possible to establish the relative importance of every criterion in the decision by assigning a

weight to it.

We assume the existence of some experts ek that define the performances and the weights. Given a criterion cj , the

expert ek defines its relative importance wk
j ∈ [0, 1] such that

∑n
j=1 w

k
j = 1. Also, ek defines the performance pkij for each

alternative ai and for each criterion cj by means of a fuzzy number, defined by means of triangular membership functions

triangular(a, b, c), which represents an approximation of the number b.

For instance, if there are 2 experts, 2 alternatives and 2 criteria, we may have the following decision matrix:

e1 c1 c2

a1 triangular(0.6, 0.7, 0.8) triangular(0.9, 0.95, 1)

a2 triangular(0.6, 0.7, 0.8) triangular(0.4, 0.5, 0.6)

e2 c1 c2

a1 triangular(0.55, 0.6, 7) triangular(0.4, 0.45, 0.5)

a2 triangular(0.35, 0.4, 0.45) triangular(0.5, 0.55, 0.6)

For this decision matrix, we may have the following weights wk
j :

c1 c2

e1 0.48 0.52

e2 0.52 0.48

Let us show now how to encode the previous knowledge. Every triangular membership function in the decision matrix is

represented using a datatypewith an annotation property indicating the parameters of the triangularmembership function.
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For every performance pkij we have a defined datatype a-ijk. For instance, the datatype a-211 contains the parameters of the

triangular function which defines the performance for the alternative 2, criterion 1, and expert 1:

<fuzzyOwl2 fuzzyType =" datatype">
<Datatype type=" triangular" a="0.6" b="0.7" c="0.8" />

</fuzzyOwl2 >

For each alternative ai, for each criterion cj , and for each expert ek , we define a concept Performance-ijk establishing the re-

lationwith the corresponding cell of the decisionmatrix. For instance,Performance-211 is defined as:Performance-211 =
∃hasScore.a-211.

For each alternative ai, and for each expert ek , we define a concept LocalValue-ik, annotated as a weighted sum concept.

For instance, LocalValue-11 is annotated as follows:

<fuzzyOwl2 fuzzyType =" concept">
<Concept type=" weightedSum">

<Concept type=" weighted" value ="0.48" base=" Performance -111" />
<Concept type=" weighted" value ="0.52" base=" Performance -121" />

</Concept >
</fuzzyOwl2 >

Foreachalternativeai,wedefineaconceptGlobalValue-i, annotatedasaweightedsumconcept. For instance,GlobalValue-1
is annotated as follows:

<fuzzyOwl2 fuzzyType =" concept">
<Concept type=" weightedSum">

<Concept type=" weighted" value ="0.5" base=" LocalValoration11 " />
<Concept type=" weighted" value ="0.5" base=" LocalValoration12 " />

</Concept >
</fuzzyOwl2 >

Finally, the best one is the alternative ai maximizing the satisfiability degree of the fuzzy concept GlobalValue-i. Following

our example, the satisfiability degree of GlobalValue-1 is 0.26, and the satisfiability degree of GlobalValue-2 is 0.32.
Consequently, the optimal alternative is a2.

5. Implementation

This section discusses the implementation of our approach. Section 5.1 describes a Protégé plug-in that assist users in the

fuzzy ontology development process. Section 5.2 describes some parsers that translate fuzzy ontologies represented in

OWL 2 into the languages supported by some fuzzy DL reasoners. Finally, Section 5.3 discusses our experimental evaluation

studying the feasibility of our approach.

5.1. Editing fuzzy ontologies

Our representation of fuzzy ontologies suggests a methodology for fuzzy ontology development. First, we can build the core

part of the ontology by using any ontology editor supporting OWL 2, such as Protégé 4.15 [25,42]. This allows reasoningwith

this part using standard ontology reasoners. Then, we can add the fuzzy part of the ontology by using annotation properties.

Representing the fuzzy information using OWL 2 annotations can also be done with an OWL 2 ontology editor. However,

typing the annotations is a tedious and error-prone task, so we have developed a Protégé plug-in that make the syntax of

the annotations transparent to the users.

The FuzzyOWL2plug-in is publicly available on theweb. 6 Once installed, a new tab FuzzyOWL enables to use the plug-in.

The plug-in has a menu with the available options (Fig. 4), which correspond to the possibilities described in Section 3. The

user can choose to define fuzzy elements in the ontology (fuzzy datatypes, fuzzy modified concepts, weighted concepts,

weighted sum concepts, fuzzy nominals, fuzzymodifiers, fuzzymodified roles, fuzzy axioms, and fuzzymodified datatypes),

and he/she can specify the fuzzy logic used in the ontology.

Fig. 5 illustrates how the plug-in works by showing how to create a new fuzzy datatype. The user specifies the name of

the datatype, and the type of the membership function. Then, the plug-in asks for the necessary parameters according to

the type. A picture is displayed to help the user recall themeaning of the parameters. Then, after some basic error checkings,

the new datatype is created and can be used in the ontology.

Furthermore, the plug-in is integrated with fuzzyDL 7 reasoner [7] and makes it possible to submit queries to it. For the

moment, such queries must be expressed using the particular syntax supported by fuzzyDL. This allows using the reasoner

without exiting Protégé, translating the annotated OWL 2 ontology into fuzzyDL syntax (as described in Section 5.2), and

calling fuzzyDL.

5 http://protege.stanford.edu/.
6 http://www.straccia.info/software/FuzzyOWL/.
7 http://www.straccia.info/software/fuzzyDL/fuzzyDL.html.

http://protege.stanford.edu/
http://www.straccia.info/software/FuzzyOWL/
http://www.straccia.info/software/fuzzyDL/fuzzyDL.html
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Fig. 4. Menu options of the plug-in.

Fig. 5. Creation of a fuzzy datatype with the plug-in.

5.2. Exporting fuzzy ontologies

Once the fuzzy ontology has been created, it has to be translated into the language supported by some fuzzy DL reasoner, so

that we can reason with it. For this purpose, we have developed a template code for a parser translating from OWL 2 with

annotations of type fuzzyLabel into the language supported by some fuzzy DL reasoner.
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Table 3

Fragments of fuzzy OWL 2 supported by fuzzyDL and DeLorean.

Concept fuzzyDL DeLorean Axiom fuzzyDL DeLorean

(C1) Yes Yes (A1) Yes Yes

(C2) Yes Yes (A2) Yes Yes

(C3) Yes Yes (A3) No Yes

(C4) Yes Yes (A4) Yes Yes

(C5) Yes Yes (A5) Yes Yes

(C6) Yes Yes (A6) No Yes

(C7) Yes Yes (A7) No Yes

(C8) Yes Yes (A8) Yes Yes

(C9) Yes Yes (A9) Yes Yes

(C10) Yes Yes (A10) Yes Yes

(C11) No Yes (A11) Yes Yes

(C12) No Yes (A12) Partial Yes

(C13) No Yes (A13) Yes Yes

(C14) No Yes (A14) Yes Yes

(C15) No Yes (A15) Yes Yes

(C16) Yes Yes (A16) Yes Yes

(C17) Yes Yes (A17) Yes Yes

(C18) Yes No (A18) Yes Yes

(C19) Yes No (A19) Yes Yes

Role fuzzyDL DeLorean
(A20) Yes Yes

(R1) Yes Yes (A21) Yes Yes

(R2) Yes Yes (A22) Yes Yes

(R3) Yes Yes (A23) No Yes

(R4) No Yes (A24) No Yes

(R5) No No (A25) Yes Yes

Datatype fuzzyDL DeLorean
(A26) No Yes

(D1) Yes Yes (A27) Yes Yes

(D2) Yes Yes (A28) No Yes

(D3) Yes Yes

(D4) Yes Yes

(D5) Yes No

This general parser can be adapted to any particular fuzzy DL reasoner. As illustrative purposes, we have adapted it to the

languages supported by the fuzzy DL reasoners fuzzyDL [7] and DeLorean 8 [4]. The template and the parsers can be freely

obtained from the web pages of fuzzyDL and DeLorean. It is important to point out that similar parsers for other fuzzy

DL reasoners can be obtained without difficulties. These three parsers (the general parsers and the two specific parsers) are

publicly available in the sameweb page as the Protégé plug-in. The parsers are based onOWL API 3 9 [23]. OWL API 3 is a high

level Application Programming Interface for working with OWL 2 ontologies. It is becoming a de-facto standard and many

SW tools already support it. OWL API allows iterating over the elements of the ontology in a transparent way. Whenever an

element is supported by the fuzzy DL reasoner, it is mapped into its internal representation of a fuzzy ontology. The output

of the process is a fuzzy ontology: it can be printed in the standard output or saved in a text file.

A full reasoning algorithm for the logic presented in Section 2.2 is not known yet. Consequently, the parsers only cover

the fragments of fuzzy OWL 2 currently supported by these reasoners. Table 3 summarizes the fragments of fuzzy OWL 2

supported by fuzzyDL and DeLorean. 10

Table 3 should not be intended as a comparison of the two reasoners. Even if fuzzyDL is based of fuzzy OWL Lite instead

of fuzzy OWL 2, there are many features that are not available in other fuzzy DL reasoners.

5.3. Experimental evaluation

Firstly, we considered two small ontologies: the matchmaking ontology (Section 4.1) and the multi-criteria ontology (Sec-

tion 4.2). As we will see, the results show that in the case of small ontologies (where not every element is fuzzy), there is no

additional overhead for the annotations. It is important to stress that, due to the limited precision of measuring the running

time, we have repeated the experiments 10 times and then we have computed the average result.

The matchmaking ontology has 10 annotations: 8 fuzzy datatypes (out of 14 datatypes) and 2 fuzzy concepts (out of 108

concepts). We got that the parsing time of the original matchmaking ontology is 221.8 ms, whereas the parsing time of the

annotated matchmaking ontology is 219.2 ms.

The multi-criteria ontology has 13 annotations: 8 fuzzy datatypes (out of 11 datatypes) and 6 fuzzy concepts (out of

21 concepts). Now, the parsing time of the original multi-criteria ontology is 217.3 ms, whereas the parsing time of the

annotated multi-criteria ontology is 217.2 ms. The parsing time of the original ontology should not be greater than the

8 http://webdiis.unizar.es/∼fbobillo/delorean.
9 http://owlapi.sourceforge.net.

10 fuzzyDL partially supports axioms (A12) because it restricts to the casem = 1.

http://owlapi.sourceforge.net
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time of the original ontology, but this results is due to the differences obtained in the different executions, and it should be

interpreted as showing that there is no additional overhead for the annotations.

Then, we considered a larger ontology: Galen. 11 Among other elements, Galen ontology contains 23141 concepts, 25563

SubClassOf axioms, and958SubObjectPropertyOf axioms.WeextendedSubClassOf axiomsandSubObjectPropertyOf axioms

with a degree of truth 0.95. Furthermore, we defined some concepts as fuzzy. On the one hand, we did some experiments

defining concepts as weighted concepts (WCs). On the other hand, we carried out another experiments defining concepts

as weighted sum concepts (WSs) composed of 5 concepts. This latter experiment considersWSs because they require larger

annotations than any other fuzzy concept.

Table 4 summarizes the results of our experimental evaluation using Galen ontology. Table 4c shows the influence of the

percentage of annotations (%) in the parsing time (PT) and in the translation time (TT) into fuzzyDL syntax. The parsing time

and the translation time are shown for both WSs and WCs concepts.

The influence of the numbers of annotated elements in the parsing time is illustrated in Table 4a. We can see that there

is an approximately linear growing of the parsing time with respect to the number of elements annotated. A fuzzy ontology

with a 40% of annotated elements would take 1more second to be parsed than the original Galen ontology. Furthermore, we

can see that in general there are no important differences between WCs and WSs, which means that the types of the fuzzy

concepts are not significative.

The influence of the numbers of annotated elements in the translation time is illustrated in Table 4b. Again, there is

an approximately linear growing of the running time with respect to the number of elements annotated, and there are no

significant differences because of the type of the fuzzy concepts.

A translation into DeLorean has not been considered because that reasoner does not support WCs nor WSs, but there

should not be important differences as the source codes of the parsers are very similar, with little differences due to the

syntax of every language.

6. Related work

This is, to the best of our knowledge, the first effort towards fuzzy ontology representation using OWL 2, although there

have been some previous attempts to represent different forms of uncertainty in ontology languages.

Some fuzzy extensions of ontology languages have been presented, more precisely OWL [19,52] and OWL 2 [51]. These

languages introduce a new syntax, and thus are not within OWL 2, so current ontology editors cannot be used, as it happens

under our approach. Furthermore, they areweaker from an expressive point of view since they only allow a fuzzy ABox. That

is, they are restricted to our case 5 (see Section 3.1), but only for axioms (A1)–(A3). For the sake of concrete illustration, the

concept assertion in Example 4 would be represented in [52] as follows:

<Tall rdf:about="paul" owlx:ineqType =">=" owlx:degree ="0.7" />

Fuzzy extensions of ontology query languages have also been proposed. Notably, f-SPARQL [43] is a fuzzy extension of

the query language SPARQL [44]. The authors propose the use of specially formatted SPARQL comments to specify the

additional information required in the fuzzy case, namely the query type, thresholds, and the functions used in the seman-

tics.

A closer approach to ours is [27],which usesOWLannotation properties to addprobabilistic constraints, but it is restricted

to our case 5, but only for axioms (A1) and (A8).

A pattern for uncertainty representation in ontologies has also been presented in [58]. However, it is restricted to our

case 5, but only for axioms (A1). Furthermore, it relies in OWL Full, for which the reasoning tasks are undecidable.

Another approach is [9]. Here, annotation properties are not used, but concepts, roles and axioms are represented as

individuals. For instance, the concept assertion in Example 4 would be represented using the following axioms (in abstract

syntax):

(ClassAssertion paul Individual)
(ClassAssertion tall Concept)
(ClassAssertion ax1 ConceptAssertion)
(ObjectPropertyAssertion ax1 isComposedOfAbstractIndividual paul)
(ObjectPropertyAssertion ax1 isComposedOfAbstractConcept tall)

However, this representation has many problems:

• Representing concepts, roles and axioms as individuals causes (meta) logical problems.
• Instead of reusing current ontology editors, the method requires a completely different and user-unfriendly way of

modelling, e.g., a concept conjunction is not represented using intersectionOf, but using a specific encoding us-

ing a individual (representing the concept) related with two individuals (each of them representing one of the

conjuncts).
• It is not an efficient representation, since the ontology grows exponentially with the size of the ontology.

11 www.co-ode.org/galen/full-galen.owl.

../../../../../Research/Articoli/Submitted/Accepted/IJAR11.Bobillo.FuzzyOWL2/www.co-ode.org/galen/full-galen.owl
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Table 4

Results of the experimental evaluation.

(c) Influence of the percentage of annotations in the parsing time and in the translation time into fuzzyDL syntax
% Concepts GCIs RIAs PT WCs PT WSs TT WCs TT WSs

0 0 0 0 4364.1 4363.9 5731.7 5726.1
10 2385 2604 88 4420.3 4382.5 5932.8 5812.6
20 4590 5151 177 4773.6 4692 6746.8 6443.9
30 6990 7675 276 5166.8 5025.2 7465.5 7059.4
40 9312 10152 383 5481.4 5320.3 8173.5 7648.1
50 11588 12760 462 5884.5 5603.4 8925.2 8295.4
60 13888 15260 569 6131.6 5889 9928.1 8875

70 16216 17764 672 6785.7 6193.9 10690.5 9521.6
80 18475 20363 785 7418.6 6509.4 11403.1 10402.8
90 20805 22906 875 7809.2 7418.8 12451.7 11303.3
100 23141 25563 958 8201.6 7813.8 13228.3 11962.6

Our approach should not be confusedwith a series ofworks that describe, given a fuzzy ontology, how to obtain an equivalent

OWL 2 ontology (see for example [5,6,11,51,53]). In these works it is possible to reason using a crisp DL reasoner instead

of a fuzzy DL reasoner. We instead provide a specific format to represent fuzzy ontologies which can be easily managed by

current OWL editors and understood by humans.

TheW3CUncertaintyReasoning for theWorldWideWeb IncubatorGroup (URW3-XG)definedanontologyof uncertainty,

a vocabularywhich canbeused to annotatedifferentpiecesof informationwithdifferent typesof uncertainty (e.g. vagueness,

randomnessor incompleteness), thenatureof theuncertainty, etc. [57]. Butunlikeourapproach, it canonlybeused to identify

some kind of uncertainty, and not to represent and manage uncertain pieces of information.
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7. Conclusions and future work

In this article we have dealt with the problem of fuzzy ontology representation. Instead of proposing a fuzzy extension of

an ontology language as a candidate to become a standard for fuzzy ontologies, which is not foreseeable in the next years,

we have proposed a framework represent fuzzy ontologies using current languages and resources.

To begin with, we have claimed that the current fuzzy extensions of ontology languages are not expressive enough, and

have identified the syntactical differences that a fuzzy ontology language has to cope with, grouping them into 5 different

cases. Our work considers a very general fuzzy extension of the language OWL 2, which is not simply restricted to a fuzzy

ABox, but contains many other differences with respect to OWL 2, such as fuzzy datatypes, fuzzy modifiers or weighted

sum concepts. However, our approach is extensible and can easily be augmented to support, e.g., alternative fuzzy logics,

modifier functions and fuzzy datatypes.

Then, we have provided a representation using the current standard language OWL 2, by using annotation properties.

A similar approach cannot be represented in OWL DL as it does not support rich enough annotation capabilities. This way,

we can use OWL 2 editors to develop fuzzy ontologies. Furthermore, non-fuzzy reasoners applied over such a fuzzy OWL

ontology can discard the fuzzy part, i.e., the annotations, producing the same results as if they would not exist.

This work suggests a methodology for fuzzy ontology development. First, we can build the core part of the ontology by

using any ontology editor supporting OWL 2. This allows reasoning with this part using standard ontology reasoners. Then,

we can add the fuzzy part of the ontology by using annotation properties. This can also be done directly with an OWL 2

ontology editor. To this end, we have developed a graphical interface (a Protégé plug-in) making the encoding of annotation

properties transparent to the user.

We have also developed some parsers translating from OWL 2 with annotations into the languages supported by some

fuzzy DL reasoners. Firstly, we develop a general parser that can be adapted to any fuzzy DL reasoner. Then, as illustrative

purposes, we adapted it to the languages supported by the fuzzy DL reasoners fuzzyDL and DeLorean. Similar parsers for

other fuzzy DL reasoners could be easily obtained. Our empirical evaluation shows that our approach is feasible.

In future work, we would like to develop similar parsers for other fuzzy DL reasoners, such as Fire, and to improve our

plug-in with new features.
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