
GUROBI OPTIMIZER
QUICK START GUIDE

Version 5.6, Copyright c© 2013, Gurobi Optimization, Inc.

Contents

1 Introduction 3

2 Software Installation Guide 4

3 How to Obtain and Install a Gurobi License 7
3.1 Setting up a token server . 11
3.2 Setting up a compute server . 14
3.3 Creating a client license . 18

4 Solving a Simple Model - The Gurobi Command Line 21

5 Interactive Shell 26

6 Attributes 38

7 C Interface 39

8 C++ Interface 47

9 Java Interface 53

10 .NET Interface (C#) 58

11 Python Interface 64
11.1 Simple Python Example . 64
11.2 Python Dictionary Example . 68
11.3 Building and running the examples . 77

12 MATLAB Interface 79

13 R Interface 83

14 Recommended Reading 87

15 Installing a Python IDE 88

16 File Overview 94

2

Introduction

Welcome to the Gurobi Optimizer Quick Start Guide! This document provides a basic introduction
to the GurobiTM Optimizer. It begins with a Software Installation Guide and information on How
to Obtain and Install a Gurobi License. It continues with an example that shows you how to create
a simple optimization model and solve it with the Gurobi Command Line. It then continues with a
discussion of the Gurobi Interactive Shell. We suggest that all users read these first four sections.

Depending on the programming language from which you intend to use the Gurobi Optimizer,
you may also wish to read the sections devoted to the Gurobi C Interface, C++ Interface, Java R©
Interface, Microsoft R© .NET Interface, Python R© Interface, MATLAB R© Interface, or R Interface.
Our Python interface will be of particular interest to those who wish to build models using higher-
level modeling constructs.

This document continues with a File Overview, which gives a quick overview of the files that
are included in the Gurobi distribution.
Additional resources

Once you are done with the Quick Start Guide, you can find additional information in a number of
places:

• If you are familiar with mathematical modeling and want to dive right into the details of how
to use Gurobi from one of our programming language APIs, you should consult the Gurobi
Reference Manual.

• If you would like a tour of the various examples we provide with Gurobi, you should consult
the Gurobi Example Tour.

• If you would like to learn more about mathematical programming or mathematical modeling,
we’ve collected a set of references in our recommended reading section.

Getting help

If you have a question that is not answered in this document, you can post it to the Gurobi
Google Group. If you have a current maintenance contract with us, you can send your question to
support@gurobi.com.

For most users, your next step is to move on to our Software Installation Guide.

3

http://www.gurobi.com/documentation/5.6/reference-manual
http://www.gurobi.com/documentation/5.6/reference-manual
http://www.gurobi.com/documentation/5.6/example-tour/
http://groups.google.com/group/gurobi
http://groups.google.com/group/gurobi

Software Installation Guide

Before using the Gurobi Optimizer, you’ll need to install it on your computer. If you haven’t
already done so, please download the installation files from our download page. Simply select your
platform (64-bit Windows, 64-bit Linux, etc.), and click on the Download button. Make a note of
the name and location of the downloaded file.

The next installation step depends on your platform. Detailed instructions for Windows, Linux,
and Mac OS follow.

Installation - Windows
To install the Gurobi optimizer on your Windows machine, double-click on the Gurobi installer that
you downloaded from our website (e.g., Gurobi-5.6.0-win32.msi for the 32-bit version of Gurobi
5.6.0). You may have selected Run when downloading the installer, in which case you’ve already
run the installer and don’t need to do it again.

By default, the installer will place the Gurobi 5.6.0 files in directory c:\gurobi560\win32 (or
c:\gurobi560\win64 for 64-bit Windows installs). The installer gives you the option to change the
installation target. We’ll refer to the installation directory as <installdir>.

Installation for all users

By default, Gurobi is installed for use by the current Windows user only. If you would like to install
Gurobi for all users, you may do so using the command line interface to the Windows Installer:
open a cmd prompt, use cd to go to the directory that contains the Gurobi installer image, and
enter the following command:

msiexec /i Gurobi-5.6.0-win32.msi allusers=1

You should normally only install the Gurobi version that is targeted to your platform (32-bit
or 64-bit Windows). You do have the option of installing both on the same machine, but note that
the Gurobi installer sets a few Windows environment variables that will point to one particular
version. This can cause some confusion, particularly when a program asks Windows to load the
Gurobi DLL. If you understand the implications, then feel free to install both.

Helpful tools

If you would like to work with compressed files from within the Gurobi Optimizer, we recommend
that you also install gzip and/or 7zip. They can be downloaded from www.gzip.org and www.7-
zip.org, respectively.

Next steps

Once installation is complete, you should see a Gurobi desktop shortcut that can be used to launch
the Gurobi Interactive Shell. You shouldn’t try to launch Gurobi quite yet. Doing so will produce
a lengthy error message indicating that you haven’t yet installed a license key.

You are now ready to proceed to the section on How to Obtain and Install a Gurobi License.

4

http://www.gurobi.com/download/gurobi-optimizer
http://www.gzip.org
http://www.7-zip.org
http://www.7-zip.org

If you would like an overview of the files included in the Gurobi distribution, you can also view
the File Overview section.

Installation - Linux
The first step in installing the Gurobi Optimizer on a Linux system is to choose a destination
directory. We recommend /opt for a shared installation, but other directories will work as well.

Once a destination directory has been chosen, the next step is to copy the Gurobi distribution to
the destination directory and extract the contents. Extraction is done with the following command:

tar xvfz gurobi5.6.0_linux64.tar.gz

This command will create a sub-directory gurobi560/linux64 that contains the complete Gurobi
distribution, and your <installdir> would be /opt/gurobi560/linux64.

The Gurobi Optimizer makes use of several executable files. In order to allow these files to be
found when needed, you will have to modify a few environment variables:

• GUROBI_HOME should point to your <installdir>.

• PATH should be extended to include <installdir>/bin.

• LD_LIBRARY_PATH should be extended to include <installdir>/lib.

Users of the bash shell would add the following lines to their .bashrc files...

export GUROBI_HOME="/opt/gurobi560/linux64"
export PATH="${PATH}:${GUROBI_HOME}/bin"
export LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:${GUROBI_HOME}/lib"

Users of the csh shell would add the following lines to their .cshrc files...

setenv GUROBI_HOME /opt/gurobi560/linux64
setenv PATH ${PATH}:${GUROBI_HOME}/bin
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${GUROBI_HOME}/lib

If LD_LIBRARY_PATH is not already set, you would use the following instead:

export LD_LIBRARY_PATH="${GUROBI_HOME}/lib"

or

setenv LD_LIBRARY_PATH ${GUROBI_HOME}/lib

These paths should be adjusted to reflect your chosen <installdir>.

Next steps

You are now ready to proceed to the section on How to Obtain and Install a Gurobi License.
If you would like an overview of the files included in the Gurobi distribution, you can also view

the File Overview section.

5

Installation - Mac OS
To install the Gurobi Optimizer on your Mac, double-click on the appropriate Gurobi installer (e.g.,
gurobi5.6.0_mac64.pkg for Gurobi 5.6.0) and follow the prompts. By default, the installer will
place the Gurobi 5.6.0 files in /Library/gurobi560/mac64.

You are now ready to proceed to the section on How to Obtain and Install a Gurobi License.
If you would like an overview of the files included in the Gurobi distribution, you can also view

the File Overview section.

6

How to Obtain and Install a Gurobi License

The Gurobi Optimizer requires a license to run. We support several different license types. Your
first step in setting up your license is to figure out what type you need (or perhaps already have).

If you are looking to use a free trial or academic license, you can create one yourself on our
website.

If you have purchased a license from us, that license should be visible through the Current tab
of the Licenses page of our website. If you see it there, your next step is to retrieve the license key.
Otherwise, contact us at license@gurobi.com.

If you are planning to use Gurobi as a client of a machine that is already set up as a Gurobi
token server or compute server, you can create a client license yourself.

If you need to set up a Gurobi token server or Gurobi compute server, your first step is to
retrieve your license key. Once you have done that, then you should consult the instructions for
setting up a token server or for setting up a compute server, as appropriate.

If you already have a license key (stored in a gurobi.lic file), you can proceed to testing the
license.

Creating a new trial or academic license
If you wish to use a free trial or academic license, you can create the license yourself. To do so, visit
either the Free Trial or the Free Academic tab on the Licenses page at our website. First accept the
license agreement, and then click on Request License. Your new license will be visible immediately,
under the Current tab. You can create as many trial or academic licenses as you like.

Your next step is to get a license key.

7

http://www.gurobi.com/download/licenses/current
http://www.gurobi.com/download/licenses/free-trial
http://www.gurobi.com/download/licenses/free-academic
http://www.gurobi.com/download/licenses/current
http://www.gurobi.com/download/licenses/current

Retrieving a license key
Once a license is visible under the Current tab, clicking on the License ID will produce a page like
the following:

The next step is to associate this license with your machine by obtaining a License Key .
To obtain a Gurobi license key for your machine, you’ll need to run the grbgetkey command

on the machine on which you would like to run the Gurobi Optimizer. Note that the machine
must be connected to the Internet in order to run this command. If you are using a free academic
license, your machine must be connected from a recognized academic domain. Note that an Internet
connection is not required once you have obtained your license key.

8

http://www.gurobi.com/download/licenses/current

The exact command to run for a specific license is indicated at the bottom of the license
page (e.g., grbgetkey 253e22f3-...). We recommend that you use copy-paste to grab the en-
tire grbgetkey command from our website. On a Windows system, you can paste the command
directly into the Windows Run box. Press the Start key and the letter R simultaneously to open
this box. On Windows Vista and Windows 7, you can also paste the command into the Search box
(available under the Start button). This is demonstrated in the Windows 7 example shown here:
Paste the command into this box and then hit Enter to run the command. On a Linux machine, you

would paste this command into a shell window. On a Mac system, you would paste the command
into a Terminal window.

The grbgetkey program passes identifying information about your machine back to our website,
and the website responds with your license key. Once this exchange has occured, grbgetkey will ask
you for the name of the directory in which to store your license key file. You should see a prompt
that looks like the following

Saving license key...

In which directory would you like to store the Gurobi license key file?
[hit Enter to store it in c:/Users/Jones]:

You can store the license file anywhere, but we recommend that you accept the default location (by
hitting Enter). You can learn more about using a non-default license file location.

If you are installing a paid license and your computer isn’t connected to the Internet, we also
offer a manual installation process. You’ll find manual installation instructions at the bottom of
the license page (by following the link labeled click here for additional instructions).

If you are using a free academic license, grbgetkey will try to validate your academic license.

Next steps

If you are using one of our floating license types (including a single-use license), you’ll also need to
set up the token server.

9

If you are setting up a Gurobi compute server, you’ll need set up the compute server.
Once you have followed the steps above and have obtained a license key file, your next step is

to test your license.

Where to store your license key file

When you run the Gurobi Optimizer, it will look for the gurobi.lic key file in three different default
locations. It will always look in your home directory. In addition, on a Windows system, Gurobi
Optimizer 5.6.0 will also look in c:\gurobi and c:\gurobi560. On a Linux system, it will also look
in /opt/gurobi and /opt/gurobi560. On a Mac system, it will also look in /Library/gurobi and
/Library/gurobi560. Note that these default paths are absolute, so for example Gurobi will look
for the license key file in c:\gurobi, even if the software is installed in d:\gurobi560.

The grbgetkey program will suggest a location in which to store your license key file, but it
also allows you to choose an alternate location. If you accept its suggestion, there is nothing else to
do. Otherwise, please read on.

While we allow you to store your license key file in a non-default location, we’d like to strongly
recommend that you use the default location, particularly if you are settting up a token server or
a compute server. Setting up a non-default location is quite error-prone and a frequent source of
trouble.

If you would still like to use a non-default license key file location, you can do so by setting
environment variable GRB_LICENSE_FILE to point to the license key file. Important note: the en-
vironment variable should point to the license key file itself, not to the directory that contains the
file.

Setting an environment variable - Windows

On Windows systems, environment variables are created and modified through the Control Panel.
Searching for Environment Variables from the Control Panel search box will lead you to the ap-
propriate screen. You will need to add a new System variable named GRB_LICENSE_FILE, and set
it to the location of your license file (e.g., d:\gurobi\gurobi.lic). Important note: your new
environment variable must be a System variable, not a User variable.

Setting an environment variable - Linux

On Linux systems, if you choose to put the license key file in a non-default location, you should add
a line like the following to your .bashrc file:

export GRB_LICENSE_FILE=/usr/home/jones/gurobi.lic

For Linux csh shell users, you should add the following to your .cshrc file:

setenv GRB_LICENSE_FILE /usr/home/jones/gurobi.lic

You should of course set the variable to point to the actual location of your license key file.

Setting an environment variable - Mac

OnMac systems, you can set the optional GRB_LICENSE_FILE environment variable through environment.plist,
as explained in Apple’s Runtime configuration Guidelines.

10

 https://developer.apple.com/mac/library/documentation/MacOSX/Conceptual/BPRuntimeConfig/Articles/EnvironmentVars.html

Academic validation

If you are using a free academic license, grbgetkey will perform an academic validation step before
retrieving your license key. This step checks your domain name against our list of known academic
domains. If you get an error message that indicates that your hostname is not recognized as
belonging to an academic domain, you should continue reading this section...

No reverse DNS information

If grbgetkey produces a message that looks like this...

ERROR 303: hostname 234.28.234.12 (234.28.234.100) not recognized as belonging to an academic domain

...it means that your machine has no reverse DNS information. This usually happens when you are
connecting to the Internet through a DHCP server that does NAT (network address translation) or
PAT (port address translation), but does not provide DNS information for its clients. The simplest
way to resolve this issue is to ask your network administrator to add a DNS entry (a PTR record ,
to be more specific) for the DHCP device itself.

Note that there is unfortunately no way for us to validate your academic license without reverse
DNS information. You can visit this site to check DNS information for your IP address and to
obtain for more information about reverse DNS.

Not a recognized academic domain

If grbgetkey produces a message that looks like this...

ERROR 303: hostname mymachine.mydomain (234.28.234.144) not recognized as belonging to an academic domain

...it means that your domain isn’t on our academic domain list. Please make sure you are connected
to your university network. If the reported host name is a valid university address, please send the
specific error message you receive to support@gurobi.com and we’ll add your domain.

Connecting to your academic domain through a VPN will typically not present a problem for
validation, since the request will appear to originate from inside your academic domain. However,
some VPNs are configured to use split tunneling , where traffic to public internet sites is routed
through your ISP. Split tunneling introduces a major security hole into the private network, so it
is not that common. If you find that your validation request is rejected when you are connected
to your VPN, you should ask your network administrator whether the VPN can be configured to
route traffic to gurobi.com through the private network.

Some machines connect to the internet through a proxy server. Unfortunately, such configura-
tions are incompatible with our academic validation process.

3.1 Setting up a token server
Important note: most Gurobi licenses do not use the token server. You should only
follow these instructions if your gurobi.lic file contains the line TYPE=TOKEN.

If you are using a floating or single-use license, you will need to choose a machine to act as the
Gurobi token server before you can use the Gurobi Optimizer. This token server doles out tokens
to client machines. A client will request a token from the token server when it creates a Gurobi
environment, and it will return the token when it destroys that environment. For a single-use license,
the client and the token server must be the same machine. For a floating-license, the client machine

11

http://www.gurobi.com/dns

can be any machine that can reach the token server over your network (including the token server
itself). The client can run any supported operating system. Thus, for example, a Linux client can
request tokens from a Windows token server.

Your next step depends on the type of machine you will be using as your token server. Instruc-
tions for Windows and Linux token servers follow. Note that a Mac OS system cannot currently be
used as a token server.

Token server clients also require licenses, but you can generate the required license files yourself.
Consult the section on client licenses for details.

Setting up a Windows token server

On a Windows system, you can start the token service by selecting the Gurobi Token Server menu
item from the Gurobi folder of the Start menu. You should only do so after you have installed the
Gurobi license key file.

Firewalls

The next step after starting the Gurobi token server depends on your anti-virus software and
firewall settings. Most anti-virus software will immediately ask you to confirm that you are allowing
program grb_ts.exe to receive network traffic. Once you confirm this, the token server will start
serving tokens. If you don’t receive such a prompt, you will need to add grb_ts.exe to the firewall
exceptions list. You do this by selecting Allow a program through Windows firewall under the
Security area of the Control Panel (labeled Allow an app through Windows firewall in Windows 8).
You should add grb_ts.exe to the list of exceptions.

Some machines have more restrictive firewalls that may require additional action. The Gurobi
token server uses port 41954 by default. If you are unable to reach the token server after taking the
steps described so far, you should ask your network administrator for more information on how to
open the required port.

Starting and stopping the grb_ts Windows service

Once the token service has been started, you should see the grb_ts service listed in the Services tab
of the Task Manager. To start or stop the service, click on the Services button at the bottom-right
of the Services tab, and then right-click on the Gurobi Token Server item on this screen.

You can also start or stop the Gurobi Token Server service from a console window (also known as
a cmd window) that has administrator privileges. Running grb_ts -h lists command-line options.
Issuing a grb_ts -s command stops a running license service. Issuing a grb_ts -v command starts
the license service in verbose mode. Verbose mode produces a log message (in the Windows Event
Log) each time a token is checked in or out.

To upgrade from an earlier version of the Gurobi Optimizer, you will need to perform the
following steps (on the machine running the token server):

1. Stop the old token server.

2. Install the new version of the Gurobi Optimizer.

3. Upgrade your license file (or modify GRB_LICENSE_FILE to point to the new license file).

4. Start the new token server.

12

Windows services can be stubborn. If the new token server refuses to start, you may need to delete
the old one manually. To do so, type sc delete grb_ts from a cmd window that has administrator
privileges.

All output from the Gurobi Token Server goes to the Windows Event Log. You can access this
in Windows Vista or Windows 7 through the Event Viewer. Type Event in the search box under
the Start menu to launch the viewer.

Next steps

Clients of the token server also need simple license files. Your next step is to set up a client license.
Once your token server is running and you’ve set up a client license, you can move on to testing

the license.
You can test the state of the token server at any time, as well as get a list of the clients that are

currently using tokens, by typing gurobi_cl --tokens from a cmd window.

Setting up a Linux token server

On a Linux system, you will need to start the token server daemon by running program grb_ts
(with no arguments) on your token server machine. You only need to do this once — the token
server will keep running until you stop it (or until the machine is shut down). Be sure that the
license key file has been installed before running this program. Note that the token server runs as
a user process, so you do not need root privileges to start it.

Note that if you would like the token server to restart when the machine is rebooted, you should
ask your system administrator to start it from /etc/rc.local. If your Gurobi installation and
license key file are in their default locations, then adding the following should suffice:

/opt/gurobi560/linux64/bin/grb_ts

To stop a running token server, you can issue the grb_ts -s command. You can also use the ps
command to find the relevant process ID, and the Linux kill command to terminate that process.

To upgrade from an earlier version of the Gurobi Optimizer, you will need to perform the
following steps (on the machine running the token server):

1. Stop the old token server.

2. Install the new version of the Gurobi Optimizer.

3. Upgrade your license file (or modify GRB_LICENSE_FILE to point to the new license file).

4. Start the new token server.

Output from the token server goes to the system log (/var/log/syslog). You should see a
message similar to the following when you start the server:

Mar 9 12:37:21 mymachine grb[7917]: Gurobi Token Server started: Sat Mar 9 12:37:21 2013

By default, the token server only produces logging output when it starts. To obtain more detailed
logging information, start the token server with the -v switch. This will produce a log message each
time a token is checked in or out.

13

Firewalls

If you run into trouble accessing the token server, check to see if the server machine is running
firewall software (like Bastille or ipfilter) that is blocking access to some ports. The Gurobi token
server uses port number 41954 by default, so you’ll need to open access to that port on the server.
Please consult the documentation for your firewall software to determine how to do this. If there’s a
conflict on the default port, you can choose a different one by adding a PORT line to both the server
and the client license key files:

PORT=46325

You can choose any available port number.

Next steps

Clients of the token server also need simple license files. Your next step is to set up a client license.
Once your token server is running and you’ve set up a client license, you can move on to testing

the license.
You can test the state of the token server at any time, as well as get a list of the clients that are

currently using tokens, by typing gurobi_cl --tokens.

3.2 Setting up a compute server
Important note: most Gurobi licenses do not use the compute server. You should only
follow these instructions if your gurobi.lic file contains the line CSENABLED=1.

If you have purchased one or more Gurobi compute server licenses, you’ll need to perform a few
setup steps in order to start your compute servers. Once started, client machines will be able to
offload the work of solving an optimization model onto these servers. The clients and the compute
servers can run any mix of supported operating systems. Thus, for example, multiple Linux machines
could submit jobs to a pair of compute servers, one running Windows and the other running Linux.
Any machine that can reach the compute server(s) over your network can be a client (including the
compute servers themselves).

We should note that our distributed parallel tuning feature allows any machine to be configured
as a restricted compute server . These special Gurobi compute servers don’t require a Gurobi license.
The only jobs they will accept are tuning jobs. To set up a restricted compute server, you should
follow the instructions for setting up a standard compute server, but you can ignore any step that
involves a license file.

Your next step depends on the types of machines you will be using as your compute servers.
Instructions are available for Windows, Linux, or Mac OS.

Compute server clients also require licenses, but you can generate the required license files
yourself. Consult the client license section for details.

Setting up a Windows compute server

On a Windows system, you will need to start the Compute Server service by selecting the Gurobi
Compute Server menu item from the Gurobi folder of the Start menu. You should only do so after
you have installed the Gurobi license key file.

14

Firewalls

The next step after starting the Gurobi compute server depends on your anti-virus software and
firewall settings. Most anti-virus software will immediately ask you to confirm that you are allowing
programs grb_cs.exe and grb_csw.exe to receive network traffic. Once you confirm this, the
compute server will start serving requests. If you don’t receive such a prompt, you will need to
add grb_cs.exe and grb_csw.exe to the firewall exceptions list. You do this by selecting Allow a
program through Windows firewall under the Security area of the Control Panel (labeled Allow an
app through Windows firewall in Windows 8). You should add grb_cs.exe and grb_csw.exe to the
list of exceptions.

Some machines have more restrictive firewalls that may require additional action. The Gurobi
compute server uses ports 61000-65000 by default. If you are unable to reach the compute server after
taking the steps described so far, you should ask your network administrator for more information
on how to open the required ports.

Compute server parameters

Note that a compute server has a few user-configurable parameters. You can set these by creating
a grb_cs.cnf file and placing it in the same directory as grb_cs.exe. Please consult the Gurobi
Compute Server section of the Gurobi Reference Manual for details.

Starting and stopping the grb_cs Gurobi service

Once the compute server service has been started, you should see the grb_cs service listed in the
Services tab of the Task Manager. To start or stop the service, click on the Services button at the
bottom-right of the Services tab, and then right-click on the Gurobi Compute Server item on this
screen.

You can also start or stop the Gurobi Compute Server service from a console window (also
known as a cmd window) that has administrator privileges. Running grb_cs -h lists command-
line options. Issuing a grb_cs -s command stops a running compute server. Issuing a grb_cs -v
command starts the compute server in verbose mode. Verbose mode produces a log message (in the
Windows Event Log) each time a client starts a job.

To upgrade from an earlier version of the Gurobi Optimizer, you will need to perform the
following steps (on all machines running the compute server):

1. Stop the old compute server.

2. Install the new version of the Gurobi Optimizer.

3. Upgrade your license file (or modify GRB_LICENSE_FILE to point to the new license file).

4. Start the new compute server.

Windows services can be stubborn. If the new compute server refuses to start, you may need
to delete the old one manually. To do so, type sc delete grb_cs from a cmd window that has
administrator privileges.

All output from the Gurobi Compute Server goes to the Windows Event Log. You can access
this in Windows Vista or Windows 7 through the Event Viewer. Type Event in the search box
under the Start menu to launch the viewer.

15

http://www.gurobi.com/documentation/5.6/reference-manual

Next steps

Clients of a compute server require simple license files. Your next step is to set up a client license.
Once your compute server is running and you’ve set up a client license, you can move on to

testing the license.
You can test the state of the compute server at any time, as well as get a list of both running

and queued client jobs, by typing gurobi_cl ---clients from a cmd window.

Setting up a Linux compute server

On a Linux system, you will need to start the Compute Server daemon by running program grb_cs
(with no arguments) on your compute server machine. You only need to do this once — the compute
server will keep running until you stop it (or until the machine is shut down). Be sure that the
license key file has been installed before running this program. Note that the compute server runs
as a user process, so you do not need root privileges to start it.

Note that if you would like the compute server to restart when the machine is rebooted, you
should ask your system administrator to start it from /etc/rc.local. If your Gurobi installation
and license key file are in their default locations, then adding the following should suffice:

/opt/gurobi560/linux64/bin/grb_cs

Compute server parameters

Note that a compute server has a few user-configurable parameters. You can set these by creating a
grb_cs.cnf file and placing it in the same directory as grb_cs. Please consult the Gurobi Compute
Server section of the Gurobi Reference Manual for details.

Starting and stopping the grb_cs Gurobi daemon

To stop a running compute server, you can issue the grb_cs -s command. You can also use the ps
command to find the relevant process ID, and the Linux kill command to terminate that process.

To upgrade from an earlier version of the Gurobi Optimizer, you will need to perform the
following steps (on machine running the compute server):

1. Stop the old compute server.

2. Install the new version of the Gurobi Optimizer.

3. Upgrade your license file (or modify GRB_LICENSE_FILE to point to the new license file).

4. Start the new compute server.

Output from the compute server goes to the system log (/var/log/syslog). You should see a
message similar to the following when you start the server:

Mar 9 12:37:21 mymachine grb[7917]: Gurobi Compute Server started: Sat Mar 9 12:37:21 2013

By default, the compute server only produces logging output when it starts. To obtain more detailed
logging information, start the compute server with the -v switch. This will produce a log message
each time a client starts a job.

16

http://www.gurobi.com/documentation/5.6/reference-manual

Firewalls

If you run into trouble accessing the compute server, check to see if the server machine is running
firewall software (like Bastille or ipfilter) that is blocking access to some ports. The Gurobi compute
server uses port numbers 61000-65000 by default, so you’ll need to open access to these ports on the
server. Please consult the documentation for your firewall software to determine how to do this. If
there’s a conflict on the default port, you can choose a different one by adding a PORT line to both
the server and the client license key files:

PORT=46325

You can choose any available port number.

Next steps

Clients of a compute server sometimes require simple license files. Your next step is to set up a
client license.

Once your compute server is running and you’ve set up a client license, you can move on to
testing the license.

You can test the state of the compute server at any time, as well as get a list of both running
and queued client jobs, by typing gurobi_cl ---clients.

Setting up a Mac OS compute server

On a Mac system, you will need to start the Compute Server daemon by running program grb_cs
(with no arguments) on your compute server machine. You only need to do this once — the compute
server will keep running until you stop it (or until the machine is shut down). Be sure that the
license key file has been installed before running this program. Note that the compute server runs
as a user process, so you do not need root privileges to start it.

Compute server parameters

Note that a compute server has a few user-configurable parameters. You can set these by creating a
grb_cs.cnf file and placing it in the same directory as grb_cs. Please consult the Gurobi Compute
Server section of the Gurobi Reference Manual for details.

Starting and stopping the grb_cs Gurobi daemon

To stop a running compute server, you can issue the grb_cs -s command. You can also use the
ps command to find the relevant process ID, and the Mac OS kill command to terminate that
process.

To upgrade from an earlier version of the Gurobi Optimizer, you will need to perform the
following steps (on machine running the compute server):

1. Stop the old compute server.

2. Install the new version of the Gurobi Optimizer.

3. Upgrade your license file (or modify GRB_LICENSE_FILE to point to the new license file).

4. Start the new compute server.

17

http://www.gurobi.com/documentation/5.6/reference-manual

Output from the compute server goes to the system log (/var/log/system.log). You will need
to modify /etc/syslog.conf to see these messages, since by default OS X only allows error message
in the system log. Once you have modified syslog.conf, you should see a message similar to the
following when you start the server:

Mar 9 12:37:21 mymachine grb[7917]: Gurobi Compute Server started: Sat Mar 9 12:37:21 2013

By default, the compute server only produces logging output when it starts. To obtain more detailed
logging information, start the compute server with the -v switch. This will produce a log message
each time a client starts a job.

Firewalls

If you run into trouble accessing the compute server, check to see if the server machine is running
firewall software that is blocking access to some ports. The Gurobi compute server uses port numbers
61000-65000 by default, so you’ll need to open access to these ports on the server. Please consult
the documentation for your firewall software to determine how to do this. If there’s a conflict on
the default port, you can choose a different one by adding a PORT line to both the server and the
client license key files:

PORT=46325

You can choose any available port number.

Next steps

Clients of a compute server sometimes require simple license files. Your next step is to set up a
client license.

Once your compute server is running and you’ve set up a client license, you can move on to
testing the license.

You can test the state of the compute server at any time, as well as get a list of both running
and queued client jobs, by typing gurobi_cl ---clients.

3.3 Creating a client license
As noted earlier, some types of Gurobi licenses require you to set up both a server license and client
licenses. We’ve already covered the steps involved in setting up a token server or a compute server.
This section is devoted to setting up the client side.

For both token servers and compute servers, the purpose of a client license is quite simple: it
tells the client where to find the Gurobi server(s). The details of the client licenses differ slightly,
depending on the server type...

Client for a token server

For a token server, the client gurobi.lic file should contain a line that looks like this:

TOKENSERVER=mymachine.mydomain.com

or:

TOKENSERVER=192.168.1.100

18

This line gives the name or IP address of the token server.
Note that if your client and server are both running on the same machine, you have two options.

The first is to add a TOKENSERVER=localhost line to your gurobi.lic file. The token server will
ignore this line, and the client will ignore everything but this line. Your second option is to create
a separate gurobi.lic file for the client, and to set the GRB_LICENSE_FILE environment variable to
point to this file.

Client for a compute server

You have two options for indicating that a Gurobi program will act as a client of a compute server.
If you are writing a program that calls the Gurobi C, C++, Java, .NET, or Python API’s, these
API’s provide routines that allow you to specify the names of the compute servers. If you use these
routines, then Gurobi licenses aren’t required on the client.

Alternatively, you can set up a gurobi.lic file that points to the compute server. This option
allows you to use a compute server with nearly any program that calls Gurobi, without the need to
modify the calling program. The client gurobi.lic file should contain a line that looks like this:

COMPUTESERVER=machine1.mydomain.com,machine2.mydomain.com,machine3.mydomain.com

or like this:

COMPUTESERVER=192.168.1.100,192.168.1.101,192,168.1.102

This line provides a comma-separated list of Gurobi compute servers. If your compute servers use
a password, you should also include a line that gives the password:

PASSWORD=cspwd

If you’d like to specify a job priority, you can add a line that gives an integer priority value:

PRIORITY=7

Higher priority jobs run before lower priority jobs. Please consult the Gurobi Compute Server
section of the Gurobi Reference Manual for more information.

Note that if your client and server are both running on the same machine, you can add a
COMPUTESERVER=localhost line to your gurobi.lic file. The compute server will ignore this line,
and the client will ignore everything but this line. Another option in this situation is to create a
separate gurobi.lic file for the client, and to set the GRB_LICENSE_FILE environment variable to
point to this file.

Client license file location

We recommend that you place your client gurobi.lic file in the default location for your platform:

• Windows: c:\gurobi

• Linux: /opt/gurobi

• Mac: /Library/gurobi

19

http://www.gurobi.com/documentation/5.6/reference-manual

You can store the license file in other locations. Read this section to learn more about using a
non-default license file location,

Once your client license is in place, you can test the license. If you are unable to connect to the
server, you’ll need to make sure the server is installed and running. Please consult the instructions
for setting up a token server or setting up a compute server for more information.

Testing the license
Once you have obtained a license key for your machine, you are ready to test your license using the
Gurobi Interactive Shell. On Windows systems, double-click on the Gurobi icon on your desktop.
On Linux or Mac OS systems, type gurobi.sh in a Terminal window. The shell should produce
the following output:

Gurobi Interactive Shell, Version 5.6.0
Copyright (c) 2013, Gurobi Optimization, Inc.
Type "help()" for help

gurobi>

If you are running as a client of a Gurobi compute server, the message above will be preceded
by a message that looks like the following:

Server capacity available on myserver - running now

If you see similar output, your license is functioning correctly. You are now ready to use the
Gurobi Optimizer. The next section will show you how to solve a simple optimization model.
Possible errors

If the Gurobi shell didn’t produce the desired output, there’s a problem with your license. We’ll
list a few common errors here.

The following message...

ERROR: No Gurobi license found (user smith, host mymachine, hostid 9d3128ce)

indicates that your gurobi.lic file couldn’t be found. Read this section for more information on
where Gurobi looks for this file. Note that on Windows systems, this error is often caused by a
hidden file suffix. Make sure the name of your license file is gurobi.lic, and not gurobi.lic.txt.

The following message...

ERROR: HostID mismatch (licensed to 9d3128ce, hostid is 7de025e9)

indicates that your gurobi.lic isn’t valid for this machine. You should make sure that you are
using the right gurobi.lic file.

If you are running as a client of a Gurobi compute server, the following message...

ERROR: No response from servers

indicates that the compute server isn’t currently running. Please consult the section on setting up
a compute server.

Some Windows users have reported that they were unable to launch the Gurobi shell after
running the installer. You may need to log off and log back in again in order for the environment
variable changes made by the installer to take effect.

20

Solving a Simple Model - The Gurobi Command Line

We’ll now present a simple math programming model, show you how that model would be captured
in a file, and then show you how to use the Gurobi command-line interface to compute an optimal
solution. If you are already familiar with mathematical modeling and LP-format files, feel free to
skip to the end of this section.

The problem statement - producing coins
We begin by stating the problem to be solved. Imagine that it is the end of the calendar year at the
United States Mint. The Mint keeps an inventory of the various minerals that are used to produce
the coins that are put into circulation. Imagine that the Mint wants to use up the minerals on hand
before retooling for next year’s coins.

The Mint produces several different types of coins, each with a different composition. The table
below shows the make-up of each coin type (as reported in the US Mint coin specifications).

Penny Nickel Dime Quarter Dollar
Copper (Cu) 0.06g 3.8g 2.1g 5.2g 7.2g
Nickel (Ni) 1.2g 0.2g 0.5g 0.2g
Zinc (Zi) 2.4g 0.5g

Manganese (Mn) 0.3g

Let’s imagine that the Mint wants to use the available materials to produce coins with the
maximum total dollar value. Which coins should they produce?

The optimization model
In order to formulate this as an optimization problem, we’ll need to do three things. First, we’ll
need to define the decision variables. The goal of the optimization is to choose values for these
variables. Then we’ll define a linear objective function. This is the function we’d like to minimize
(or maximize). Finally, we’ll define the linear constraints. The Gurobi Optimizer will consider all
assignments of values to decision variables that satisfy the specified linear constraints, and return
one that optimizes the stated objective function.

The variables in this problem are quite straightforward. The solver will need to decide how many
of each coin to produce. It is convenient to give the decision variables meaningful names. In this
case, we’ll call the variables Pennies, Nickels, Dimes, Quarters, and Dollars. We’ll also introduce
variables that capture the quantities of the various minerals actually used by the solution. We’ll
call them Cu, Ni , Zi , and Mn.

Recall that the objective of our optimization problem is to maximize the total dollar value of
the coins produced. Each penny produced is worth 0.01 dollars, each nickel is worth 0.05 dollars,
etc. This gives the following linear objective:

maximize: 0.01 Pennies + 0.05 Nickels + 0.1 Dimes + 0.25 Quarters + 1 Dollars

21

http://www.usmint.gov/about_the_mint/?action=coin_specifications

The constraints of this model come from the fact that producing a coin consumes certain quan-
tities of the available minerals, and the supplies of those minerals are limited. We’ll capture these
relationships in two parts. First, we’ll create an equation for each mineral that captures the amount
of that mineral that is consumed. For copper, that equation would be:

Cu = 0.06 Pennies + 3.8 Nickels + 2.1 Dimes + 5.2 Quarters + 7.2 Dollars

The coefficients for this equation come from the earlier coin specification table: one penny uses
0.06g of copper, one nickel uses 3.8g, etc.

The model must also capture the available quantities of each mineral. If we have 1000 grams of
copper available, then the constraint would be:

Cu <= 1000

For our example, we’ll assume we have 1000 grams of copper and 50 grams of the other minerals.
There is actually one other set of constraints that must be captured in order for our model to

accurately reflect the physical realities of our problem. While a dime is worth 10 cents, half of a
dime isn’t worth 5 cents. The variables that capture the number of each coin produced must take
integer values.

The model file
The Gurobi Optimizer provides a wide variety of options for expressing an optimization model.
Typically, you would build the model using an interface to a programming languages (C, C++,
C#, Java, etc.) or using a higher-level application environment (a spreadsheet, a modeling system,
MATLAB, R, etc.). However, to keep our example as simple as possible, we’re going to read the
model from an LP format file. The LP format was designed to be human readable, and as such it
is well suited for our needs.

The LP format is mostly self-explanatory. Here is our model:

Maximize
.01 Pennies + .05 Nickels + .1 Dimes + .25 Quarters + 1 Dollars

Subject To
Copper: .06 Pennies + 3.8 Nickels + 2.1 Dimes + 5.2 Quarters + 7.2 Dollars -

Cu = 0
Nickel: 1.2 Nickels + .2 Dimes + .5 Quarters + .2 Dollars -

Ni = 0
Zinc: 2.4 Pennies + .5 Dollars - Zi = 0
Manganese: .3 Dollars - Mn = 0

Bounds
Cu <= 1000
Ni <= 50
Zi <= 50
Mn <= 50

Integers
Pennies Nickels Dimes Quarters Dollars

End

22

You’ll find this model in file coins.lp in the <installdir>/examples/data directory of your
Gurobi distribution. Specifically, assuming you’ve installed Gurobi 5.6.0 in the recommended loca-
tion, you’ll find the file here:

• Windows (64-bit): c:\gurobi560\win64\examples\data\coins.lp

• Linux: /opt/gurobi560/linux64/examples/data/coins.lp

• Mac OS: /Library/gurobi560/mac64/examples/data/coins.lp

Feel free to open the file in a text editor. However, before you consider making any modifications
to this file or creating your own, we should point out a few rules about LP format files. One relates
to the ordering of the various sections. Our example contains an objective section (Maximize...),
a constraint section (Subject To...), a variable bound section (Bounds...), and an integrality
section (Integers...). The sections must come in that order. The complete list of section types,
and the associated ordering rules, can be found in the file format section of the Gurobi Reference
Manual.

The second rule is that tokens must be separated by either a space or a newline. Thus, for
example, the term:

+ .1 Dimes

must include a space or newline between + and .1, and another between .1 and Dimes.
The third important rule is that variables always appear on the left-hand side of a constraint.

The right-hand side is always a constant. Thus, our constraint:

Cu = .06 Pennies + 3.8 Nickels + 2.1 Dimes + 5.2 Quarters + 7.2 Dollars

...becomes...

.06 Pennies + 3.8 Nickels + 2.1 Dimes + 5.2 Quarters + 7.2 Dollars - Cu = 0

Another important property of LP files is that variables have default bounds. Unless stated
otherwise, a variable has a zero lower bound and an infinite upper bound. Thus, Cu <= 1000 really
means 0 <= Cu <= 1000. Similarly, any variable not mentioned in the Bounds section may take
any non-negative value.

As we mentioned earlier, full details on the LP file format are provided in the file format section
of the Gurobi Reference Manual.

Solving the model using the Gurobi command-line interface
The final step in solving our optimization problem is to pass the model to the Gurobi Optimizer.
We’ll use the Gurobi command-line interface here. As we’ve mentioned, our command-line interface
is typically the simplest of our interfaces to use when solving a model stored in a file.

To use the command-line interface, you’ll first need to bring up a window that allows you to
run command-line programs. On a Linux or Mac system, you can use a Terminal window. On a
Windows system, you’ll need to bring up a console window (also known as a cmd window). To
open a console window, press the Start and R keys on your keyboard simultaneously, and then
type cmd into the Run window that pops up. Alternatively, you can type cmd into the Search box

23

http://www.gurobi.com/documentation/5.6/reference-manual
http://www.gurobi.com/documentation/5.6/reference-manual
http://www.gurobi.com/documentation/5.6/reference-manual

that appears in the bottom-left after clicking on the Windows Start button. (Note that the Gurobi
Interactive Shell, which was used earlier to test your license, does not directly accept command-line
program input, so it is not an appropriate choice for this section).

The name of the Gurobi command-line tool is gurobi_cl. To invoke it, we simply need to type
gurobi_cl, followed by the name of the model file. For example, if our example is stored in file
c:\gurobi560\win64\examples\data\coins.lp, you would type the following command into your
command-line window...

> gurobi_cl c:\gurobi560\win64\examples\data\coins.lp

This command should produce the following output...

Read LP format model from file c:\gurobi560\win64\examples\data\coins.lp
Reading time = 0.00 seconds
(null): 4 rows, 9 columns, 16 nonzeros
Optimize a model with 4 rows, 9 columns and 16 nonzeros
Presolve removed 1 rows and 5 columns
Presolve time: 0.00s
Presolved: 3 rows, 4 columns, 9 nonzeros
Variable types: 0 continuous, 4 integer (0 binary)
Found heuristic solution: objective 26.1000000
Found heuristic solution: objective 113.3000000

Root relaxation: objective 1.134615e+02, 4 iterations, 0.00 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 113.46154 0 1 113.30000 113.46154 0.14% - 0s
0 0 113.45952 0 1 113.30000 113.45952 0.14% - 0s

H 0 0 113.4500000 113.45952 0.01% - 0s

Explored 0 nodes (5 simplex iterations) in 0.00 seconds
Thread count was 2 (of 2 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.134500000000e+02, best bound 1.134500000000e+02, gap 0.0%

Details on the format of the Gurobi log file can be found in the Gurobi Reference Manual. For
now, you can simply note that the optimal objective value is 113.45. Recall that the objective is
denoted in dollars. We can therefore conclude that by a proper choice of production plan, the Mint
can produce $113.45 worth of coins using the available minerals. Moreover, because this value is
optimal, we know that it is not possible to produce coins with value greater than $113.45!

It would clearly be useful to know the exact number of each coin produced by this optimal plan.
The gurobi_cl command allows you to set Gurobi parameters through command-line arguments.
One particularly useful parameter for the purposes of this example is ResultFile, which instructs
the Gurobi Optimizer to write a file once optimization is complete. The type of the file is encoded
in the suffix. If we request a .sol file...

24

http://www.gurobi.com/documentation/5.6/reference-manual

> gurobi_cl ResultFile=coins.sol coins.lp

...then the command produces a file that contains solution values for the variables in the model...

Objective value = 113.45
Pennies 0
Nickels 0
Dimes 2
Quarters 53
Dollars 100
Cu 999.8
Ni 46.9
Zi 50
Mn 30

In the optimal solution, we’ll produce 100 dollar coins, 53 quarters, and 2 dimes.
If we wanted to explore the parameters of the model (for example, to consider how the optimal

solution changes with different quantities of available minerals), we could of course use a text editor
to modify the input file. However, it is typically better to do such tests within a more powerful
system. We’ll now describe the Gurobi Interactive Shell, which provides an environment for creating,
modifying, and experimenting with optimization models.

25

Interactive Shell

The Gurobi interactive shell allows you to perform hands-on interaction and experimentation with
optimization models. You can read models from files, perform complete or partial optimization runs
on them, change parameters, modify the models, reoptimize, and so on. The Gurobi shell is actually
a set of extensions to the Python shell. Python is a rich and flexible programming language, and
any capabilities that are available from Python are also available from the Gurobi shell. We’ll touch
on these capabilities here, but we encourage you to explore the help system and experiment with
the interface in order to gain a better understanding of what is possible.

One big advantage of working within Python is that the Python language is popular and well
supported. One aspect of this support is the breadth of powerful Python Integrated Development
Environments (IDEs) that are available, most of which can be downloaded for free from the internet.
This document includes instructions for setting up Gurobi for use within the PyScripter IDE for
Windows. In our opinion, PyScripter strikes a nice balance between power and simplicity. If you are
a Windows user and would prefer to use a graphical environment over a more command-line driven
environment, we suggest that you install PyScripter now. You can also consult the PyScripter
instructions for pointers to other IDE options that might be of interest if you are on a different
platform or would like to try a different Windows Python IDE.

Before diving into the details of the Gurobi interactive shell, we should remind you that Gurobi
also provides a lightweight command line interface. If you just need to do a quick test on a model
stored in a file, you will probably find that that interface is better suited to simple tasks than the
interactive shell.

Important note for AIX users: due to limited Python support on AIX, our AIX port does
not include the Interactive Shell or the Python interface. You can use the command line, or the C,
C++, or Java interfaces.

We will now work through a few simple examples of how the Gurobi shell might be used, in
order to give you a quick introduction to its capabilities. More thorough documentation on this and
other interfaces is available in the Gurobi Reference Manual.

Reading and optimizing a model
There are several ways to access the Gurobi Interactive Shell from Windows:

• Double-click on the Gurobi desktop shortcut.

• Select the Gurobi Interactive Shell from the Start Menu.

• Open a DOS command shell and type gurobi.bat.

From Linux or Mac OS, you can simply type gurobi.sh from the command prompt. If you’ve
installed a Python IDE, the shell will also be available from that environment.

Once the optimizer has started, you are ready to load and optimize a model. We’ll consider
model coins.lp from <installdir>/examples/data...

26

http://python.org
http://www.gurobi.com/documentation/5.6/reference-manual

> gurobi.bat (or gurobi.sh for Linux or Mac OS)

Gurobi Interactive Shell, Version 5.6.0
Copyright (c) 2013, Gurobi Optimization, Inc.
Type "help()" for help

gurobi> m = read(’c:/gurobi560/win64/examples/data/coins.lp’)
Read LP format model from file c:/gurobi560/win64/examples/data/coins.lp
Reading time = 0.00 seconds
(null): 4 rows, 9 columns, 16 nonzeros
gurobi> m.optimize()
Optimize a model with 4 rows, 9 columns and 16 nonzeros
Presolve removed 1 rows and 5 columns
Presolve time: 0.00s
Presolved: 3 rows, 4 columns, 9 nonzeros
Variable types: 0 continuous, 4 integer (0 binary)
Found heuristic solution: objective 26.1000000
Found heuristic solution: objective 113.3000000

Root relaxation: objective 1.134615e+02, 4 iterations, 0.00 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 113.46154 0 1 113.30000 113.46154 0.14% - 0s
0 0 113.45952 0 1 113.30000 113.45952 0.14% - 0s

H 0 0 113.4500000 113.45952 0.01% - 0s

Explored 0 nodes (5 simplex iterations) in 0.00 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.134500000000e+02, best bound 1.134500000000e+02, gap 0.0%

The read() command reads a model from a file and returns a Model object. In the example, that
object is placed into variable m. There is no need to declare variables in the Python language; you
simply assign a value to a variable.

Note that read() accepts wildcard characters, so you could also have said:

gurobi> m = read(’c:/gurobi560/win64/*/*/coin*’)

Note also that Gurobi commands that read or write files will also function correctly with com-
pressed files. If gzip, bzip2, or 7zip are installed on your machine and available in your default
path, then you simply need to add the appropriate suffix (.gz, .bz2, .zip, or .7z) to the file name
to read or write compressed versions.

27

The next statement in the example, m.optimize(), invokes the optimize method on the Model
object (you can obtain a list of all methods on Model objects by typing help(Model) or help(m)).
The Gurobi optimization engine finds an optimal solution with objective 113.45.

Inspecting the solution
Once a model has been solved, you can inspect the values of the model variables in the optimal
solution with the printAttr() method on the Model object:

gurobi> m.printAttr(’X’)
Variable X

Dimes 2

Quarters 53
Dollars 100

Cu 999.8
Ni 46.9
Zi 50
Mn 30

This routine prints all non-zero values of the specified attribute X. Attributes play a major role in
the Gurobi optimizer. We’ll discuss them in more detail shortly.

You can also inspect the results of the optimization at a finer grain by retrieving a list of all
the variables in the model using the getVars() method on the Model object (m.getVars() in our
example):

gurobi> v = m.getVars()
gurobi> print len(v)
9

The first command assigns the list of all Var objects in model m to variable v. The Python len()
command gives the length of the array (our example model coins has 9 variables). You can then
query various attributes of the individual variables in the list. For example, to obtain the variable
name and solution value for the first variable in list v, you would issue the following command:

gurobi> print v[0].varName, v[0].x
Pennies 0.0

You can type help(Var) or help(v[0]) to get a list of all methods on a Var object. You can type
help(GRB.Attr) to get a list of all attributes.

Simple model modification
We will now demonstrate a simple model modification. Imagine that you only want to consider
solutions where you make at least 10 pennies (i.e., where the Pennies variable has a lower bound
of 10.0). This is done by setting the lb attribute on the appropriate variable (the first variable in
the list v in our example)...

28

gurobi> v = m.getVars()
gurobi> v[0].lb = 10

The Gurobi optimizer keeps track of the state of the model, so it knows that the currently loaded
solution is not necessarily optimal for the modified model. When you invoke the optimize() method
again, it performs a new optimization on the modified model...

gurobi> m.optimize()
Optimize a model with 4 rows, 9 columns and 16 nonzeros
Presolve removed 2 rows and 5 columns
Presolve time: 0.00s
Presolved: 2 rows, 4 columns, 5 nonzeros

MIP start did not produce a feasible solution

Variable types: 0 continuous, 4 integer (0 binary)
Found heuristic solution: objective 25.9500000

Root relaxation: objective 7.190000e+01, 2 iterations, 0.00 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

* 0 0 0 71.9000000 71.90000 0.0% - 0s

Explored 0 nodes (2 simplex iterations) in 0.00 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 7.190000000000e+01, best bound 7.190000000000e+01, gap 0.0%

The result shows that, if you force the solution to include at least 10 pennies, the maximum
possible objective value for the model decreases from 113.45 to 71.9. A simple check confirms that
the new lower bound is respected:

gurobi> print v[0].x
10.0

Simple experimentation with a more difficult model
Let us now consider a more difficult model, glass4.mps. Again, we read the model and begin the
optimization:

gurobi> m = read(’c:/gurobi560/win64/examples/data/glass4’)
Read MPS format model from file c:/gurobi560/win64/examples/data/glass4.mps
Reading time = 0.00 seconds
glass4: 396 Rows, 322 Columns, 1815 NonZeros
gurobi> m.optimize()

29

Optimize a model with 396 Rows, 322 Columns and 1815 NonZeros
Presolve removed 4 rows and 5 columns
Presolve time: 0.00s
Presolved: 392 Rows, 317 Columns, 1815 Nonzeros
Found heuristic solution: objective 3.691696e+09

Root relaxation: objective 8.000024e+08, 72 iterations, 0.00 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 8.0000e+08 0 72 3.6917e+09 8.0000e+08 78.3% - 0s
0 0 8.0000e+08 0 72 3.6917e+09 8.0000e+08 78.3% - 0s
0 0 8.0000e+08 0 72 3.6917e+09 8.0000e+08 78.3% - 0s
0 0 8.0000e+08 0 72 3.6917e+09 8.0000e+08 78.3% - 0s
0 2 8.0000e+08 0 72 3.6917e+09 8.0000e+08 78.3% - 0s

H 769 732 2.800024e+09 8.0000e+08 71.4% 5.2 0s
H 834 781 2.666693e+09 8.0000e+08 70.0% 5.3 0s
H 1091 984 2.475023e+09 8.0000e+08 67.7% 5.1 0s
H 1092 986 2.400020e+09 8.0000e+08 66.7% 5.1 0s
H 1092 984 2.380021e+09 8.0000e+08 66.4% 5.1 0s
H 1095 988 2.350020e+09 8.0000e+08 66.0% 5.1 0s
* 1845 1543 94 2.316685e+09 8.0000e+08 65.5% 4.9 0s
* 2131 1627 126 2.150018e+09 8.0000e+08 62.8% 4.8 0s
H 2244 1580 2.100019e+09 8.0000e+08 61.9% 4.8 0s
H 2248 1341 1.900018e+09 8.0000e+08 57.9% 5.0 0s
H 3345 1816 1.900018e+09 8.0000e+08 57.9% 4.1 0s
H 3346 1744 1.900017e+09 8.0000e+08 57.9% 4.1 0s
H15979 10383 1.900017e+09 8.0000e+08 57.9% 2.5 1s
H19540 13051 1.900016e+09 8.0000e+08 57.9% 2.4 1s
*21124 13489 101 1.866683e+09 8.0000e+08 57.1% 2.4 1s
*23011 14690 100 1.850015e+09 8.0000e+08 56.8% 2.3 1s
*25630 15679 143 1.800016e+09 8.0000e+08 55.6% 2.3 1s
*28365 15421 113 1.700015e+09 8.0000e+08 52.9% 2.3 1s
H29910 16333 1.700014e+09 8.0000e+08 52.9% 2.3 1s
*30582 16765 124 1.700014e+09 8.0000e+08 52.9% 2.3 1s
*33238 16251 92 1.677794e+09 8.0000e+08 52.3% 2.3 1s
*37319 18258 85 1.633349e+09 8.0000e+08 51.0% 2.2 1s
H40623 19584 1.600015e+09 8.0000e+08 50.0% 2.3 2s
81781 42951 1.1000e+09 49 51 1.6000e+09 8.0001e+08 50.0% 2.2 5s
199990 100088 1.6000e+09 82 28 1.6000e+09 8.0001e+08 50.0% 2.3 10s

*242810 116891 97 1.600015e+09 8.2001e+08 48.8% 2.3 11s
*243703 116786 95 1.600014e+09 8.2001e+08 48.8% 2.3 11s

Interrupt request received

30

Explored 255558 nodes (588336 simplex iterations) in 12.36 seconds
Thread count was 8 (of 8 available processors)

Solve interrupted
Best objective 1.6000142000e+09, best bound 8.5000490000e+08, gap 46.8752%

It quickly becomes apparent that this model is quite a bit more difficult than the earlier coins
model. The optimal solution is actually 1,200,000,000, but finding that solution takes a while.
After letting the model run for 10 seconds, we interrupt the run (by hitting CTRL-C, which produces
the Interrupt request received message) and consider our options. Typing m.optimize() would
resume the run from the point at which it was interrupted.

Changing parameters
Rather than continuing optimization on a difficult model like glass4, it is sometimes useful to try
different parameter settings. When the lower bound moves slowly, as it does on this model, one
potentially useful parameter is MIPFocus, which adjusts the high-level MIP solution strategy. Let
us now set this parameter to value 1, which changes the focus of the MIP search to finding good
feasible solutions. There are two ways to change the parameter value. You can either use method
m.setParam():

gurobi> m.setParam(’MIPFocus’, 1)
Changed value of parameter MIPFocus to 1

Prev: 0 Min: 0 Max: 3 Default: 0

...or you can use the m.params class...

gurobi> m.params.MIPFocus = 1
Changed value of parameter MIPFocus to 1

Prev: 0 Min: 0 Max: 3 Default: 0

Once the parameter has been changed, we call m.reset() to reset the optimization on our model and
then m.optimize() to start a new optimization run:

gurobi> m.reset()
gurobi> m.optimize()
Optimize a model with 396 Rows, 322 Columns and 1815 NonZeros
Presolve removed 4 rows and 5 columns
Presolve time: 0.00s
Presolved: 392 Rows, 317 Columns, 1815 Nonzeros
Found heuristic solution: objective 3.691696e+09

Root relaxation: objective 8.000024e+08, 72 iterations, 0.00 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

31

0 0 8.0000e+08 0 72 3.6917e+09 8.0000e+08 78.3% - 0s
0 0 8.0000e+08 0 72 3.6917e+09 8.0000e+08 78.3% - 0s
0 0 8.0000e+08 0 72 3.6917e+09 8.0000e+08 78.3% - 0s
0 0 8.0000e+08 0 73 3.6917e+09 8.0000e+08 78.3% - 0s

H 0 0 3.075022e+09 8.0000e+08 74.0% - 0s
H 0 0 3.020023e+09 8.0000e+08 73.5% - 0s

0 0 8.0000e+08 0 76 3.0200e+09 8.0000e+08 73.5% - 0s
0 0 8.0000e+08 0 75 3.0200e+09 8.0000e+08 73.5% - 0s

H 0 0 2.550024e+09 8.0000e+08 68.6% - 0s
H 0 2 2.175020e+09 8.0000e+08 63.2% - 0s

0 2 8.0000e+08 0 75 2.1750e+09 8.0000e+08 63.2% - 0s
H 95 98 2.150020e+09 8.0000e+08 62.8% 4.6 0s
H 96 98 2.120018e+09 8.0000e+08 62.3% 4.6 0s
H 101 103 2.116687e+09 8.0000e+08 62.2% 4.5 0s
H 110 103 2.100017e+09 8.0000e+08 61.9% 4.3 0s
H 352 325 2.000018e+09 8.0000e+08 60.0% 4.2 0s
H 406 375 1.991686e+09 8.0000e+08 59.8% 4.0 0s
H 1074 888 1.981836e+09 8.0000e+08 59.6% 3.5 0s
H 1078 889 1.966686e+09 8.0000e+08 59.3% 3.5 0s
H 1107 878 1.900018e+09 8.0000e+08 57.9% 3.5 0s
H 1696 1125 1.800017e+09 8.0000e+08 55.6% 3.4 0s
H 1845 1146 1.800017e+09 8.0000e+08 55.6% 4.2 1s
H 1863 1087 1.733350e+09 8.0000e+08 53.8% 4.3 1s
H 2353 1273 1.733350e+09 8.0000e+08 53.8% 4.3 1s
H 2517 1299 1.700016e+09 8.0000e+08 52.9% 4.3 1s
H 2598 1248 1.666682e+09 8.0000e+08 52.0% 4.3 1s
H 2733 1252 1.633349e+09 8.0000e+08 51.0% 4.2 1s
14259 7927 1.5000e+09 85 28 1.6333e+09 8.0000e+08 51.0% 3.5 5s
24846 14278 1.1000e+09 49 55 1.6333e+09 8.0001e+08 51.0% 3.5 10s

H25035 13985 1.600016e+09 8.0001e+08 50.0% 3.5 10s
H25066 14020 1.600016e+09 8.0001e+08 50.0% 3.5 10s
H25072 13532 1.583350e+09 8.0001e+08 49.5% 3.5 10s
H26218 14083 1.575016e+09 8.0001e+08 49.2% 3.5 10s
H26326 14118 1.566682e+09 8.0001e+08 48.9% 3.5 10s
H26577 13650 1.525016e+09 8.0001e+08 47.5% 3.5 10s

Interrupt request received

Cutting planes:
Gomory: 6
Implied bound: 26
MIR: 60

Explored 30546 nodes (107810 simplex iterations) in 11.81 seconds
Thread count was 8 (of 8 available processors)

32

Solve interrupted
Best objective 1.5250155750e+09, best bound 8.0000520000e+08, gap 47.5412%

Results are consistent with our expectations. We find a better solution sooner by shifting the
focus towards finding feasible solutions (objective value 1.525e9 versus 1.6e9).

The setParam() method is designed to be quite flexible and forgiving. It accepts wildcards as
arguments, and it ignores character case. Thus, the following commands are all equivalent:

gurobi> m.setParam(’NODELIMIT’, 100)
gurobi> m.setParam(’NodeLimit’, 100)
gurobi> m.setParam(’Node*’, 100)
gurobi> m.setParam(’N???Limit, 100)

You can use wildcards to get a list of matching parameters:

gurobi> m.setParam(’*Cuts’, 2)
Matching parameters: [’Cuts’, ’CliqueCuts’, ’CoverCuts’, ’FlowCoverCuts’,
’FlowPathCuts’, ’GUBCoverCuts’, ’ImpliedCuts’, ’MIPSepCuts’, ’MIRCuts’, ’ModKCuts’,
’NetworkCuts’, ’SubMIPCuts’, ’ZeroHalfCuts’]

Note that Model.Params is a bit less forgiving than setParam(). In particular, wildcards are
not allowed with this approach. You don’t have to worry about capitalization of parameter names
in either approach, though, so m.params.Heuristics and m.params.heuristics are equivalent.

The full set of available parameters can be browsed using the paramHelp() command. You can
obtain further information on a specific parameter (e.g., MIPGap) by typing paramHelp(’MIPGap’).

Parameter tuning tool
When confronted with the task of choosing parameter values that might lead to better performance
on a model, the long list of Gurobi parameters may seem intimidating. To simplify the process,
we include a simple automated parameter tuning tool. From the interactive shell, the command is
tune:

gurobi> m = read(’misc07’)
gurobi> m.tune()

The tool tries a number of different parameter settings, and eventually outputs the best ones that
it finds. For example:

Tested 12 parameter sets in 47.77s

Baseline parameter set: runtime 2.39s

Improved parameter set 1 (runtime 1.72s):

RINS 0

33

In this case, it found that setting the RINS parameter to 0 for model misc07 reduced the runtime
from 2.39s to 1.72s.

Note that tuning is meant to give general suggestions for parameters that might help perfor-
mance. You should make sure that the results it gives on one model are helpful on the full range of
models you plan to solve. You may sometimes find that performance problems can’t be fixed with
parameter changes alone, particulary if your model has severe numerical issues.

Tuning is also available as a standalone program. From a command prompt, you can type:

> grbtune c:\gurobi560\win64\examples\data\p0033

Please consult the Automated Tuning Tool section of the Gurobi Reference Manual for more infor-
mation.

Using a gurobi.env file
When you want to change the values of Gurobi parameters, you actually have several options
available for doing so. We’ve already discussed parameter changes through the command-line tool
(e.g., gurobi_cl Threads=1 coins.lp), and through interactive shell commands
(e.g., m.setParam(’Threads’, 1)). Each of our language APIs also provides methods for setting
parameters. The other option we’d like to mention now is the gurobi.env file.

Whenever the Gurobi library starts, it will look for file gurobi.env in the current working
directory, and will apply any parameter changes contained therein. This is true whether the Gurobi
library is invoked from the command-line, from the interactive shell, or from any of the Gurobi
APIs. Parameter settings are stored one per line in this file, with the parameter name first, followed
by at least one space, followed by the desired value. Lines beginning with the # sign are comments
and are ignored. To give an example, the following (Linux) commands:

echo "Threads 1" > gurobi.env
gurobi_cl coins.lp

would read the new value of the Threads parameter from file gurobi.env and then optimize model
coins.lp using one thread. Note that if the same parameter is changed in both gurobi.env and in
your program (or through the Gurobi command-line), the value from gurobi.env will be ignored.

The distribution includes a sample gurobi.env file (in the bin directory). The sample includes
every parameter, with the default value for each, but with all settings commented out.

Working with multiple models
The Gurobi shell allows you to work with multiple models simultaneously. For example...

gurobi> a = read(’c:/gurobi560/win64/examples/data/p0033’)
Read MPS format model from file c:/gurobi560/win64/examples/data/p0033.mps
Reading time = 0.00 seconds
P0033: 16 Rows, 33 Columns, 98 NonZeros.
gurobi> b = read(’c:/gurobi560/win64/examples/data/stein9’)
Read MPS format model from file c:/gurobi560/win64/examples/data/stein9.mps
Reading time = 0.00 seconds
STEIN9: 13 Rows, 9 Columns, 45 NonZeros.

34

http://www.gurobi.com/documentation/5.6/reference-manual

The models() command gives a list of all active models.

gurobi> models()
Currently loaded models:
a : <gurobi.Model MIP instance P0033: 16 constrs, 33 vars>
b : <gurobi.Model MIP instance STEIN9: 13 constrs, 9 vars>

Note that parameters can be set for a particular model with the Model.setParam() method or
the Model.Params class, or they can be changed for all models in the Gurobi shell by using the
global setParam() method.

Help
The interactive shell includes an extensive help facility. To access it, simply type help() at the
prompt. As previously mentioned, help is available for all of the important objects in the inter-
face. For example, as explained in the help facility, you can type help(Model), help(Var), or
help(Constr). You can also obtain detailed help on any of the available methods on these ob-
jects. For example, help(Model.setParam) gives help on setting model parameters. You can also
use a variable, or a method on a variable, to ask for help. For example, if variable m contains a
Model object, then help(m) is equivalent to help(Model), and help(m.setParam) is equivalent to
help(Model.setParam).

Interface customization
The Gurobi interactive shell lives within a full featured scripting language. This allows you to
perform a wide range of customizations to suit your particular needs. Creating custom functions
requires some knowledge of the Python language, but you can achieve a lot by using a very limited
set of language features.

Let us consider a simple example. Imagine that you store your models in a certain directory on
your disk. Rather than having to type the full path whenever you read a model, you can create
your own custom read method:

gurobi> def myread(filename):
....... return read(’/home/john/models/’+filename)

Note that the indentation of the second line is required.
Defining this function allows you to do the following:

gurobi> m = myread(’stein9’)
Read MPS format model from file /home/john/models/stein9.mps

If you don’t want to type this function in each time you start the Gurobi shell, you can store it
in a file. The file would look like the following:

from gurobipy import *

def myread(filename):
return read(’/home/john/models/’+filename)

35

The from gurobipy import * line is required in order to allow you to use the read method from
the Gurobi shell in your custom function. The name of your customization file must end with a .py
suffix. If the file is named custom.py, you would then type:

gurobi> from custom import *

in order to import this function. One file can contain as many custom functions as you’d like (see
custom.py in <installdir>/examples/python for an example). If you wish to make site-wide
customizations, you can also customize the gurobi.py file that is included in <installdir>/lib.

Customization through callbacks
Another type of customization we’d like to touch on briefly can be achieved through Gurobi call-
backs. Callbacks allow you to track the progress of the optimization process. For the sake of
our example, let’s say you want the MIP optimizer to run for 10 seconds before quitting, but you
don’t want it to terminate before it finds a feasible solution. The following callback method would
implement this condition:

from gurobipy import *

def mycallback(model, where):
if where == GRB.Callback.MIP:

time = model.cbGet(GRB.Callback.RUNTIME)
best = model.cbGet(GRB.Callback.MIP_OBJBST)
if time > 10 and best < GRB.INFINITY:

model.terminate()

Once you import this function (from custom import *), you can then say m.optimize(mycallback)
to obtain the desired termination behavior. Alternatively, you could define your own custom opti-
mize method that always invokes the callback:

def myopt(model):
model.optimize(mycallback)

This would allow you to say myopt(m).
You can pass arbitrary data into your callback through the model object. For example, if you set

m._mydata = 1 before calling optimize(), you can query m._mydata inside your callback function.
Note that the names of user data fields must begin with an underscore.

This callback example is included in <installdir>/examples/python/custom.py.
Type from custom import * to import the callback and the myopt() function.

You can type help(GRB.Callback) for more information on callbacks. You can also refer to the
Callback class documentation in the Gurobi Reference Manual.

The Gurobi Python Interface for Python Users
While the Gurobi installation includes everything you need to use Gurobi from within Python, we
understand that some users would prefer to use Gurobi from within their own Python environment.

36

http://www.gurobi.com/documentation/5.6/reference-manual

Doing so requires you to install the gurobipy module. The steps for doing this depend on your plat-
form. On Windows, you can double-click on the pysetup program in the Gurobi <installdir>/bin
directory. This program will prompt you for the location of your Python installation; it handles all
of the details of the installation. On Linux or Mac OS, you will need to open a terminal window,
change your current directory to the Gurobi <installdir> (the directory that contains the file
setup.py), and issue the following command:

python setup.py install

Unless you are using your own private Python installation, you will need to run this command as
super-user. Once gurobipy is successfully installed, you can type import gurobipy or from gurobipy import *
from your Python shell and access all of the Gurobi classes and methods.

Note that for this installation to succeed, your Python environment must be compatible with
the Gurobi Python module. You should only install 32-bit Gurobi libraries into a 32-bit Python
shell (similarly for 64-bit versions). In addition, your Python version must be compatible. With
this release, gurobipy can be used with Python 2.7 or 3.2 on Windows and Linux, and with Python
2.7 on Mac OS.

37

Attributes

As mentioned in the previous section, most of the information associated with a Gurobi model is
stored in a set of attributes. Some attributes are associated with the variables of the model, some
with the constraints of the model, and some with the model itself. After you optimize a model, for
example, the solution is stored in the X variable attribute. Attributes that are computed by the
Gurobi optimizer (such as the solution attribute) cannot be modified directly by the user, while
those that represent input data (such as the LB attribute which stores variable lower bounds) can.

Each of the Gurobi language interfaces contains routines for querying or modifying attribute
values. To retrieve or modify the value of a particular attribute, you simply pass the name of the
attribute to the appropriate query or modification routine. In the C interface, for example, you’d
make the following call to query the current solution value on variable 1:

double x1;
error = GRBgetdblattrelement(model, GRB_DBL_ATTR_X, 1, &x1);

This routine returns a single element from an array-valued attribute containing double-precision
data. Routines are provided to query and modify scalar-valued and array-valued attributes of type
int, double, char, or char *.

In the object oriented interfaces, you query or modify attribute values through the appropriate
objects. For example, if variable v is a Gurobi variable object (a GRBVar), then the following calls
would be used to modify the lower bound on v:

C++: v.set(GRB_DoubleAttr_LB, 0.0);
Java: v.set(GRB.DoubleAttr.LB, 0.0);
C#: v.Set(GRB.DoubleAttr.LB, 0.0);
Python: v.lb = 0.0

The exact syntax for querying or modifying an attribute varies slightly from one language to another,
but the basic approach remains consistent: you call the appropriate query or modification method
using the name of the desired attribute as an argument.

The full list of Gurobi attributes can be found in the Attributes section of the Gurobi Reference
Manual.

38

http://www.gurobi.com/documentation/5.6/reference-manual
http://www.gurobi.com/documentation/5.6/reference-manual

C Interface

This section will work through a simple C example in order to illustrate the use of the Gurobi
C interface. The example builds a simple Mixed Integer Programming model, optimizes it, and
outputs the optimal objective value. This section assumes that you are already familiar with the
C programming language. If not, a variety of books are available for learning the language (for
example, The C Programming Language, by Kernighan and Ritchie).

Our example optimizes the following model:

maximize x + y + 2 z
subject to x + 2 y + 3 z ≤ 4

x + y ≥ 1
x, y, z binary

Example mip1_c.c
This is the complete source code for our example (also available as
<installdir>/examples/c/mip1_c.c)...

#include <stdlib.h>
#include <stdio.h>
#include "gurobi_c.h"

int
main(int argc,

char *argv[])
{

GRBenv *env = NULL;
GRBmodel *model = NULL;
int error = 0;
double sol[3];
int ind[3];
double val[3];
double obj[3];
char vtype[3];
int optimstatus;
double objval;
int zero = 0;

/* Create environment */

error = GRBloadenv(&env, "mip1.log");

39

if (error || env == NULL) {
fprintf(stderr, "Error: could not create environment\n");
exit(1);

}

/* Create an empty model */

error = GRBnewmodel(env, &model, "mip1", 0, NULL, NULL, NULL, NULL, NULL);
if (error) goto QUIT;

/* Add variables */

obj[0] = 1; obj[1] = 1; obj[2] = 2;
vtype[0] = GRB_BINARY; vtype[1] = GRB_BINARY; vtype[2] = GRB_BINARY;
error = GRBaddvars(model, 3, 0, NULL, NULL, NULL, obj, NULL, NULL, vtype,

NULL);
if (error) goto QUIT;

/* Change objective sense to maximization */

error = GRBsetintattr(model, GRB_INT_ATTR_MODELSENSE, GRB_MAXIMIZE);
if (error) goto QUIT;

/* Integrate new variables */

error = GRBupdatemodel(model);
if (error) goto QUIT;

/* First constraint: x + 2 y + 3 z <= 4 */

ind[0] = 0; ind[1] = 1; ind[2] = 2;
val[0] = 1; val[1] = 2; val[2] = 3;

error = GRBaddconstr(model, 3, ind, val, GRB_LESS_EQUAL, 4.0, NULL);
if (error) goto QUIT;

/* Second constraint: x + y >= 1 */

ind[0] = 0; ind[1] = 1;
val[0] = 1; val[1] = 1;

error = GRBaddconstr(model, 2, ind, val, GRB_GREATER_EQUAL, 1.0, NULL);
if (error) goto QUIT;

40

/* Optimize model */

error = GRBoptimize(model);
if (error) goto QUIT;

/* Write model to ’mip1.lp’ */

error = GRBwrite(model, "mip1.lp");
if (error) goto QUIT;

/* Capture solution information */

error = GRBgetintattr(model, GRB_INT_ATTR_STATUS, &optimstatus);
if (error) goto QUIT;

error = GRBgetdblattr(model, GRB_DBL_ATTR_OBJVAL, &objval);
if (error) goto QUIT;

error = GRBgetdblattrarray(model, GRB_DBL_ATTR_X, 0, 3, sol);
if (error) goto QUIT;

printf("\nOptimization complete\n");
if (optimstatus == GRB_OPTIMAL) {

printf("Optimal objective: %.4e\n", objval);

printf(" x=%.0f, y=%.0f, z=%.0f\n", sol[0], sol[1], sol[2]);
} else if (optimstatus == GRB_INF_OR_UNBD) {

printf("Model is infeasible or unbounded\n");
} else {

printf("Optimization was stopped early\n");
}

QUIT:

/* Error reporting */

if (error) {
printf("ERROR: %s\n", GRBgeterrormsg(env));
exit(1);

}

/* Free model */

GRBfreemodel(model);

41

/* Free environment */

GRBfreeenv(env);

return 0;
}

Example details
Let us now walk through the example, line by line, to understand how it achieves the desired result
of optimizing the indicated model.

The example begins by including a few include files. Gurobi C applications should always start
by including gurobi_c.h, along with the standard C include files (stdlib.h and stdio.h).

Creating the environment
After declaring the necessary program variables, the example continues by creating an environment:

error = GRBloadenv(&env, "mip1.log");
if (error || env == NULL) {

fprintf(stderr, "Error: could not create environment\n");
exit(1);

}

Later attempts to create optimization models will always require an environment, so environment
creation should always be the first step when using the Gurobi optimizer. The second argument to
GRBloadenv() provides the name of the Gurobi log file. If the argument is an empty string or NULL,
no log file will be written.

Note that environment creation may fail, so you should check the return value of the call.

Creating the model
Once an environment has been created, the next step is to create a model. A Gurobi model
holds a single optimization problem. It consists of a set of variables, a set of constraints, and the
associated attributes (variable bounds, objective coefficients, variable integrality types, constraint
senses, constraint right-hand side values, etc.). The first step towards building a model that contains
all of this information is to create an empty model object:

/* Create an empty model */
error = GRBnewmodel(env, &model, "mip1", 0, NULL, NULL, NULL, NULL, NULL);
if (error) goto QUIT;

The first argument to GRBnewmodel() is the previously created environment. The second is a
pointer to the location where the pointer to the new model should be stored. The third is the name
of the model. The fourth is the number of variables to initially add to the model. Since we’re

42

creating an empty model, the number of initial variables is 0. The remaining arguments would
describe the initial variables (lower bounds, upper bounds, variable types, etc.), had they been
present.

Adding variables to the model

Once we create a Gurobi model, we can start adding variables and constraints to it. In our example,
we’ll begin by adding variables:

/* Add variables */
obj[0] = 1; obj[1] = 1; obj[2] = 2;
vtype[0] = GRB_BINARY; vtype[1] = GRB_BINARY; vtype[2] = GRB_BINARY;
error = GRBaddvars(model, 3, 0, NULL, NULL, NULL, obj, NULL, NULL, vtype,

NULL);

The first argument to GRBaddvars() is the model to which the variables are being added. The
second is the number of added variables (3 in our example).

Arguments three through six describe the constraint matrix coefficients associated with the new
variables. The third argument gives the number of non-zero constraint matrix entries associated
with the new variables, and the next three arguments give details on these non-zeros. In our
example, we’ll be adding these non-zeros when we add the constraints. Thus, the non-zero count
here is zero, and the following three arguments are all NULL.

The seventh argument to GRBaddvars() is the linear objective coefficient for each new variable.
Since our example aims to maximize the objective, and by default Gurobi will minimize the objective,
we’ll need to change the objective sense. This is done in the next statement. Note we could have
multiplied the objective coefficients by -1 instead (since maximizing c′x is equivalent to minimizing
−c′x).

The next two arguments specify the lower and upper bounds of the variables, respectively. The
NULL values indicate that these variables should take their default values (0.0 and 1.0 for binary
variables).

The tenth argument specifies the types of the variables. In this example, the variables are all
binary (GRB_BINARY).

The final argument gives the names of the variables. In this case, we allow the variable names
to take their default values (X0, X1, and X2).

Changing the objective sense

As we just noted, the default sense for the objective function is minimization. Since our example
aims to maximize the objective, we need to modify the ModelSense attribute:

/* Change objective sense to maximization */

error = GRBsetintattr(model, GRB_INT_ATTR_MODELSENSE, GRB_MAXIMIZE);
if (error) goto QUIT;

43

Updating the model - lazy modification
Model modifications in the Gurobi optimizer are done in a lazy fashion, meaning that the effects of
the modifications are not seen immediately. This approach makes it easier to perform a sequence
of model modifications, since the model doesn’t change while it is being modified. However, lazy
modifications do require you to manually integrate model changes when needed. This is done with
the following routine:

/* Integrate new variables */
error = GRBupdatemodel(model);
if (error) goto QUIT;

In our example, the model would contain zero variables immediately before the call to GRBupdate-
model(), and three immediately after. Later attempts to add constraints to the model without first
making this call would fail, since the model would contain no variables.

Adding constraints to the model
Once the new variables are integrated into the model, the next step is to add our two constraints.
Constraints are added through the GRBaddconstr() routine. To add a constraint, you must specify
several pieces of information, including the non-zero values associated with the constraint, the
constraint sense, the right-hand side value, and the constraint name. These are all specified as
arguments to GRBaddconstr():

/* First constraint: x + 2 y + 3 z <= 4 */

ind[0] = 0; ind[1] = 1; ind[2] = 2;
val[0] = 1; val[1] = 2; val[2] = 3;

error = GRBaddconstr(model, 3, ind, val, GRB_LESS_EQUAL, 4.0, NULL);
if (error) goto QUIT;

The first argument of GRBaddconstr() is the model to which the constraint is being added. The
second is the total number of non-zero coefficients associated with the new constraint. The next
two arguments describe the non-zeros in the new constraint. Constraint coefficients are specified
using a list of index-value pairs, one for each non-zero value. In our example, the first constraint to
be added is x+2y+3z ≤ 4. We have chosen to make x the first variable in our constraint matrix, y
the second, and z the third (note that this choice is arbitrary). Given our variable ordering choice,
the index-value pairs that are required for our first constraint are (0, 1.0), (1, 2.0), and (2, 3.0).
These pairs are placed in the ind and val arrays.

The fifth argument to GRBaddconstr() provides the sense of the new constraint. Possible values
are GRB_LESS_EQUAL, GRB_GREATER_EQUAL, or GRB_EQUAL. The sixth argument gives the right-hand
side value. The final argument gives the name of the constraint (we allow the constraint to take its
default name here by specifying NULL for the argument).

The second constraint is added in a similar fashion:

/* Second constraint: x + y >= 1 */

44

ind[0] = 0; ind[1] = 1;
val[0] = 1; val[1] = 1;

error = GRBaddconstr(model, 2, ind, val, GRB_GREATER_EQUAL, 1.0, NULL);
if (error) goto QUIT;

Note that routine GRBaddconstrs() would allow you to add both constraints in a single call. The
arguments for this routine are much more complex, though, without providing any significant ad-
vantages, so we recommend that you add one constraint at a time.

Optimizing the model
Now that the model has been built, the next step is to optimize it:

error = GRBoptimize(model);
if (error) goto QUIT;

This routine performs the optimization and populates several internal model attributes, including
the status of the optimization, the solution, etc. Once the function returns, we can query the values
of these attributes. In particular, we can query the status of the optimization process by retrieving
the value of the Status attribute...

error = GRBgetintattr(model, GRB_INT_ATTR_STATUS, &optimstatus);
if (error) goto QUIT;

The optimization status has many possible values. An optimal solution to the model may have been
found, or the model have been determined to be infeasible or unbounded, or the solution process
may have been interrupted. A list of possible statuses can be found in the Gurobi Reference Manual.
For our example, we know that the model is feasible, and we haven’t modified any parameters that
might cause the optimization to stop early (e.g., a time limit), so the status will be GRB_OPTIMAL.

Another important model attribute is the value of the objective function for the computed
solution. This is accessed through this call:

error = GRBgetdoubleattr(model, GRB_DBL_ATTR_OBJVAL, &objval);
if (error) goto QUIT;

Note that this call would return a non-zero error result if no solution was found for this model.
Once we know that the model was solved, we can extract the X attribute of the model, which

contains the value for each variable in the computed solution:

error = GRBgetdoublearrayattr(model, GRB_DBL_ATTR_X, 0, 3, x);
if (error) goto QUIT;
printf(" x=%.0f, y=%.0f, z=%.0f", x[0], x[1], x[2]);

This routine retrieves the values of an array-valued attribute. The third and fourth arguments
indicate the index of the first array element to be retrieved, and the number of elements to retrieve,
respectively. In this example we retrieve entries 0 through 2 (i.e., all three of them)

45

http://www.gurobi.com/documentation/5.6/reference-manual

Error reporting
We would like to point out one additional aspect of the example. Almost all of the Gurobi methods
return an error code. The code will typically be zero, indicating that no error was encountered, but
it is important to check the value of the code in case an error arises.

While you may want to print a specialized error code at each point where an error may occur,
the Gurobi interface provides a more flexible facility for reporting errors. The GRBgeterrormsg()
routine returns a textual description of the most recent error associated with an environment:

if (error) {
printf("ERROR: %s\n", GRBgeterrormsg(env));
exit(1);

}

Once the error reporting is done, the only remaining task in our example is to release the
resources associated with our optimization task. In this case, we populated one model and created
one environment. We call GRBfreemodel(model) to free the model, and GRBfreeenv(env) to free
the environment.

Building and running the example
To build and run the example, please refer to the files in <installdir>/examples/build. For
Windows platforms, this directory contains C_examples_2008.sln, C_examples_2010.sln, and
C_examples_2012.sln (Visual Studio 2008, 2010, and 2012 solution files for the C examples).
Double-clicking on the solution file will bring up Visual Studio. Clicking on the mip1_c project,
and then selecting Run from the Build menu will compile and run the example. For Linux or Mac
OS platforms, the <installdir>/examples/build directory contains an example Makefile. Typing
make mip1_c will build and run this example.

The C example directory <installdir>/examples/c contains a number of examples. We en-
courage you to browse and modify them in order to become more familiar with the Gurobi C
interface. We also encourage you to read the Gurobi Example Tour for more information.

46

http://www.gurobi.com/documentation/5.6/example-tour/

C++ Interface

This section will work through a simple C++ example in order to illustrate the use of the Gurobi
C++ interface. The example builds a model, optimizes it, and outputs the optimal objective value.
This section assumes that you are already familiar with the C++ programming language. If not,
a variety of books are available for learning the language (for example, The C++ Programming
Language, by Stroustrup).

Our example optimizes the following model:

maximize x + y + 2 z
subject to x + 2 y + 3 z ≤ 4

x + y ≥ 1
x, y, z binary

Note that this is the same model that was modeled and optimized in the C Interface section.

Example mip1_c++.cpp
This is the complete source code for our example (also available in
<installdir>/examples/c++/mip1_c++.cpp)...

#include "gurobi_c++.h"
using namespace std;

int
main(int argc,

char *argv[])
{

try {
GRBEnv env = GRBEnv();

GRBModel model = GRBModel(env);

// Create variables

GRBVar x = model.addVar(0.0, 1.0, 0.0, GRB_BINARY, "x");
GRBVar y = model.addVar(0.0, 1.0, 0.0, GRB_BINARY, "y");
GRBVar z = model.addVar(0.0, 1.0, 0.0, GRB_BINARY, "z");

// Integrate new variables

model.update();

47

// Set objective: maximize x + y + 2 z

model.setObjective(x + y + 2 * z, GRB_MAXIMIZE);

// Add constraint: x + 2 y + 3 z <= 4

model.addConstr(x + 2 * y + 3 * z <= 4, "c0");

// Add constraint: x + y >= 1

model.addConstr(x + y >= 1, "c1");

// Optimize model

model.optimize();

cout << x.get(GRB_StringAttr_VarName) << " "
<< x.get(GRB_DoubleAttr_X) << endl;

cout << y.get(GRB_StringAttr_VarName) << " "
<< y.get(GRB_DoubleAttr_X) << endl;

cout << z.get(GRB_StringAttr_VarName) << " "
<< z.get(GRB_DoubleAttr_X) << endl;

cout << "Obj: " << model.get(GRB_DoubleAttr_ObjVal) << endl;

} catch(GRBException e) {
cout << "Error code = " << e.getErrorCode() << endl;
cout << e.getMessage() << endl;

} catch(...) {
cout << "Exception during optimization" << endl;

}

return 0;
}

Example details

Let us now walk through the example, line by line, to understand how it achieves the desired result
of optimizing the indicated model.

The example begins by including file gurobi_c++.h. Gurobi C++ applications should always
start by including this file.

48

Creating the environment
The first executable statement in our example obtains a Gurobi environment (using the GRBEnv()
constructor):

GRBEnv env = GRBEnv();

Later calls to create an optimization model will always require an environment, so environment
creation is typically the first step in a Gurobi application.

Creating the model
Once an environment has been created, the next step is to create a model. A Gurobi model
holds a single optimization problem. It consists of a set of variables, a set of constraints, and the
associated attributes (variable bounds, objective coefficients, variable integrality types, constraint
senses, constraint right-hand side values, etc.). The first step towards building a model that contains
all of this information is to create an empty model object:

GRBModel model = GRBModel(env);

The constructor takes the previously created environment as its argument.

Adding variables to the model
The next step in our example is to add variables to the model.

// Create variables
GRBVar x = model.addVar(0.0, 1.0, 0.0, GRB_BINARY, "x");
GRBVar y = model.addVar(0.0, 1.0, 0.0, GRB_BINARY, "y");
GRBVar z = model.addVar(0.0, 1.0, 0.0, GRB_BINARY, "z");

Variables are added through the addVar() method on the model object. A variable is always
associated with a particular model.

The first and second arguments to the addVar() call are the variable lower and upper bounds,
respectively. The third argument is the linear objective coefficient (zero here - we’ll set the objective
later). The fourth argument is the variable type. Our variables are all binary in this example. The
final argument is the name of the variable.

The addVar() method has been overloaded to accept several different argument lists. Please
refer to the Gurobi Reference Manual for further details.

Updating the model - lazy modification
Model modifications in the Gurobi optimizer are done in a lazy fashion, meaning that the effects of
the modifications are not seen immediately. This approach makes it easier to perform a sequence
of model modifications, since the model doesn’t change while it is being modified. However, lazy
modifications do require you to manually integrate model changes when needed. This is done with
the update method:

// Integrate new variables
model.update();

49

http://www.gurobi.com/documentation/5.6/reference-manual

Setting the objective
The next step in the example is to set the optimization objective:

// Set objective: maximize x + y + 2 z
model.setObjective(x + y + 2 * z, GRB_MAXIMIZE);

The objective is built here using overloaded operators. The C++ API overloads the arithmetic
operators to allow you to build linear and quadratic expression involving Gurobi variables.

The second argument indicates that the sense is maximization.
Note that while this simple example builds the objective in a single statement using an explicit

list of terms, more complex programs will typically build it incrementally. For example:

GRBLinExpr obj = 0.0;
obj += x;
obj += y;
obj += 2*z;
model.setObjective(obj, GRB_MAXIMIZE);

Adding constraints to the model
The next step in the example is to add the constraints. The first constraint is added here:

// Add constraint: x + 2 y + 3 z <= 4
model.addConstr(x + 2 * y + 3 * z <= 4, "c0");

As with variables, constraints are always associated with a specific model. They are created using
the addConstr() or addConstrs() methods on the model object.

We again use overloaded arithmetic operators to build the linear expression. The comparison
operators are also overloaded to make it easy to build linear constraints.

The second argument to addConstr gives the (optional) constraint name.
Again, this simple example builds the linear expression for the constraint in a single state-

ment using an explicit list of terms. More complex programs will typically build the expression
incrementally.

The second constraint in our model is added with this similar call:

// Add constraint: x + y >= 1
model.addConstr(x + y >= 1, "c1");

Optimizing the model
Now that the model has been built, the next step is to optimize it:

// Optimize model
model.optimize();

This routine performs the optimization and populates several internal model attributes (including
the status of the optimization, the solution, etc.).

50

Reporting results - attributes
Once the optimization is complete, we can query the values of the attributes. In particular, we can
query the VarName and X attributes to obtain the name and solution value of each variable:

cout << x.get(GRB_StringAttr_VarName) << " "
<< x.get(GRB_DoubleAttr_X) << endl;

cout << y.get(GRB_StringAttr_VarName) << " "
<< y.get(GRB_DoubleAttr_X) << endl;

cout << z.get(GRB_StringAttr_VarName) << " "
<< z.get(GRB_DoubleAttr_X) << endl;

We can also query the ObjVal attribute on the model to obtain the objective value for the
current solution:

cout << "Obj: " << model.get(GRB_DoubleAttr_ObjVal) << endl;

The names and types of all model, variable, and constraint attributes can be found in the
Attributes section of the Gurobi Reference Manual.

Error handling
Errors in the Gurobi C++ interface are handled through the C++ exception mechanism. In the
example, all Gurobi statements are enclosed inside a try block, and any associated errors would be
caught by the catch block.

Building and running the example
To build and run the example, we refer the user to the files in <installdir>/examples/build.
For Windows platforms, this directory contains C++_examples_2008.sln, C++_examples_2010.sln,
and C++_examples_2012.sln (Visual Studio 2008, 2010, and 2012 solution files for the C++ ex-
amples). Double-clicking on the solution file will bring up Visual Studio. Clicking on the mip1_c++
project, and then selecting Run from the Build menu will compile and run the example. For Linux
or Mac OS platforms, the <installdir>/examples/build directory contains an example Makefile.
Typing make mip1_c++ will build and run this example.

If you want to create your own project or makefile to build a C++ program that calls Gurobi,
the details will depend on your platform and development environment, but we’d like to point out
a few common pitfalls:

• On Windows, be sure to choose the Gurobi C++ library that is compatible with your Vi-
sual Studio version and your choice of runtime library (Gurobi supports runtime library
options /MD, /MDd, /MT, and /MTd). To give an example, use file gurobi_c++md2010.lib
when you choose runtime library option /MD in Visual Studio 2010. Similarly, use file
gurobi_c++mtd2012.lib when you choose runtime library option /MTd in Visual Studio
2012.

• A C++ program that uses Gurobi must link in both the Gurobi C++ library (e.g., gurobi_c++mt2010.lib
on Windows, libgurobi_c++.a on Linux and Mac) and the Gurobi C library (gurobi56.lib
on Windows, libgurobi56.so on Linux and Mac).

51

http://www.gurobi.com/documentation/5.6/reference-manual

The C++ example directory <installdir>/examples/c++ contains a number of examples. We
encourage you to browse and modify them in order to become more familiar with the Gurobi C++
interface. We also encourage you to read the Gurobi Example Tour for more information.

52

http://www.gurobi.com/documentation/5.6/example-tour/

Java Interface

This section will work through a simple Java example in order to illustrate the use of the Gurobi
Java interface. The example builds a model, optimizes it, and outputs the optimal objective value.
This section assumes that you are already familiar with the Java programming language. If not, a
variety of books and websites are available for learning the language (for example, the online Java
tutorials).

Our example optimizes the following model:

maximize x + y + 2 z
subject to x + 2 y + 3 z ≤ 4

x + y ≥ 1
x, y, z binary

Note that this is the same model that was modeled and optimized in the C Interface section.

Example Mip1.java
This is the complete source code for our example (also available in
<installdir>/examples/java/Mip1.java)...

import gurobi.*;

public class Mip1 {
public static void main(String[] args) {

try {
GRBEnv env = new GRBEnv("mip1.log");
GRBModel model = new GRBModel(env);

// Create variables

GRBVar x = model.addVar(0.0, 1.0, 0.0, GRB.BINARY, "x");
GRBVar y = model.addVar(0.0, 1.0, 0.0, GRB.BINARY, "y");
GRBVar z = model.addVar(0.0, 1.0, 0.0, GRB.BINARY, "z");

// Integrate new variables

model.update();

// Set objective: maximize x + y + 2 z

GRBLinExpr expr = new GRBLinExpr();
expr.addTerm(1.0, x); expr.addTerm(1.0, y); expr.addTerm(2.0, z);

53

http://java.sun.com/docs/books/tutorial
http://java.sun.com/docs/books/tutorial

model.setObjective(expr, GRB.MAXIMIZE);

// Add constraint: x + 2 y + 3 z <= 4

expr = new GRBLinExpr();
expr.addTerm(1.0, x); expr.addTerm(2.0, y); expr.addTerm(3.0, z);
model.addConstr(expr, GRB.LESS_EQUAL, 4.0, "c0");

// Add constraint: x + y >= 1

expr = new GRBLinExpr();
expr.addTerm(1.0, x); expr.addTerm(1.0, y);
model.addConstr(expr, GRB.GREATER_EQUAL, 1.0, "c1");

// Optimize model

model.optimize();

System.out.println(x.get(GRB.StringAttr.VarName)
+ " " +x.get(GRB.DoubleAttr.X));

System.out.println(y.get(GRB.StringAttr.VarName)
+ " " +y.get(GRB.DoubleAttr.X));

System.out.println(z.get(GRB.StringAttr.VarName)
+ " " +z.get(GRB.DoubleAttr.X));

System.out.println("Obj: " + model.get(GRB.DoubleAttr.ObjVal));

// Dispose of model and environment

model.dispose();
env.dispose();

} catch (GRBException e) {
System.out.println("Error code: " + e.getErrorCode() + ". " +

e.getMessage());
}

}
}

Example details

Let us now walk through the example, line by line, to understand how it achieves the desired result
of optimizing the indicated model.

The example begins by importing the Gurobi classes (import gurobi.*). Gurobi Java applica-
tions should always start with this line.

54

Creating the environment
The first executable statement in our example obtains a Gurobi environment (using the GRBEnv()
constructor):

GRBEnv env = new GRBEnv("mip1.log");

Later calls to create an optimization model will always require an environment, so environment
creation is typically the first step in a Gurobi application. The constructor argument specifies the
name of the log file.

Creating the model
Once an environment has been created, the next step is to create a model. A Gurobi model
holds a single optimization problem. It consists of a set of variables, a set of constraints, and the
associated attributes (variable bounds, objective coefficients, variable integrality types, constraint
senses, constraint right-hand side values, etc.). The first step towards building a model that contains
all of this information is to create an empty model object:

GRBModel model = new GRBModel(env);

The constructor takes the previously created environment as its argument.

Adding variables to the model
The next step in our example is to add variables to the model.

// Create variables
GRBVar x = model.addVar(0.0, 1.0, 0.0, GRB.BINARY, "x");
GRBVar y = model.addVar(0.0, 1.0, 0.0, GRB.BINARY, "y");
GRBVar z = model.addVar(0.0, 1.0, 0.0, GRB.BINARY, "z");

Variables are added through the addVar()method on a model object. A variable is always associated
with a particular model.

The first and second arguments to the addVar() call are the variable lower and upper bounds,
respectively. The third argument is the linear objective coefficient (zero here - we’ll set the objective
later). The fourth argument is the variable type. Our variables are all binary in this example. The
final argument is the name of the variable.

The addVar() method has been overloaded to accept several different argument lists. Please
refer to the Gurobi Reference Manual for further details.

Updating the model - lazy modification
Model modifications in the Gurobi optimizer are done in a lazy fashion, meaning that the effects of
the modifications are not seen immediately. This approach makes it easier to perform a sequence
of model modifications, since the model doesn’t change while it is being modified. However, lazy
modifications do require you to manually integrate model changes when needed. This is done with
the update method:

// Integrate new variables
model.update();

55

http://www.gurobi.com/documentation/5.6/reference-manual

Setting the objective
The next step in the example is to set the optimization objective:

// Set objective: maximize x + y + 2 z

GRBLinExpr expr = new GRBLinExpr();
expr.addTerm(1.0, x); expr.addTerm(1.0, y); expr.addTerm(2.0, z);
model.setObjective(expr, GRB.MAXIMIZE);

The objective must be a linear or quadratic function of the variables in the model. In our example,
we build our objective by first constructing an empty linear expression and adding three terms to
it.

The second argument to setObjective indicates that the optimization sense is maximization.

Adding constraints to the model
The next step in the example is to add the constraints. The first constraint is added here:

// Add constraint: x + 2 y + 3 z <= 4
GRBLinExpr expr;

expr = new GRBLinExpr();
expr.addTerm(1.0, x); expr.addTerm(2.0, y); expr.addTerm(3.0, z);
model.addConstr(expr, GRB.LESS_EQUAL, 4.0, "c0");

As with variables, constraints are always associated with a specific model. They are created using
the addConstr() or addConstrs() methods on the model object.

The first argument to addConstr() is the left-hand side of the constraint. We built the left-hand
side by first creating an empty linear expression object, and then adding three terms to it. The
second argument is the constraint sense (GRB_LESS_EQUAL, GRB_GREATER_EQUAL, or GRB_EQUAL).
The third argument is the right-hand side (a constant in our example). The final argument is
the constraint name. Several signatures are available for addConstr(). Please consult the Gurobi
Reference Manual for details.

The second constraint is created in a similar manner:

// Add constraint: x + y >= 1

expr = new GRBLinExpr();
expr.addTerm(1.0, x); expr.addTerm(1.0, y);
model.addConstr(expr, GRB.GREATER_EQUAL, 1.0, "c1");

Optimizing the model
Now that the model has been built, the next step is to optimize it:

// Optimize model
model.optimize();

This routine performs the optimization and populates several internal model attributes (including
the status of the optimization, the solution, etc.).

56

http://www.gurobi.com/documentation/5.6/reference-manual
http://www.gurobi.com/documentation/5.6/reference-manual

Reporting results - attributes
Once the optimization is complete, we can query the values of the attributes. In particular, we can
query the VarName and X attributes to obtain the name and solution value for each variable:

System.out.println(x.get(GRB.StringAttr.VarName)
+ " " +x.get(GRB.DoubleAttr.X));

System.out.println(y.get(GRB.StringAttr.VarName)
+ " " +y.get(GRB.DoubleAttr.X));

System.out.println(z.get(GRB.StringAttr.VarName)
+ " " +z.get(GRB.DoubleAttr.X));

We can also query the ObjVal attribute on the model to obtain the objective value for the
current solution:

System.out.println("Obj: " + model.get(GRB.DoubleAttr.ObjVal));

The names and types of all model, variable, and constraint attributes can be found in the
Attributes section of the Gurobi Reference Manual.

Cleaning up
The example concludes with dispose calls:

model.dispose();
env.dispose();

These reclaim the resources associated with the model and environment. Garbage collection would
reclaim these eventually, but if your program doesn’t exit immediately after performing the opti-
mization, it is best to reclaim them explicitly.

Note that all models associated with an environment must be disposed before the environment
itself is disposed.

Error handling
Errors in the Gurobi Java interface are handled through the Java exception mechanism. In the
example, all Gurobi statements are enclosed inside a try block, and any associated errors would be
caught by the catch block.

Building and running the example
To build and run the example, please refer to the files in <installdir>/examples/build. For
Windows platforms, this directory contains runjava.bat, a simple script to compile and run a
java example. Say runjava Mip1 to run this example. For Linux or Mac OS platforms, the
<installdir>/examples/build directory contains an example Makefile. Typing make Mip1 will
build and run this example.

The Java example directory <installdir>/examples/java contains a number of examples. We
encourage you to browse and modify them in order to become more familiar with the Gurobi Java
interface. We also encourage you to read the Gurobi Example Tour for more information.

57

http://www.gurobi.com/documentation/5.6/reference-manual
http://www.gurobi.com/documentation/5.6/example-tour/

.NET Interface (C#)

This section will work through a simple C# example in order to illustrate the use of the Gurobi
.NET interface. The example builds a model, optimizes it, and outputs the optimal objective value.
This section assumes that you are already familiar with the C# programming language. If not, a
variety of books and websites are available for learning the language (for example, the Microsoft
online C# documentation).

Our example optimizes the following model:

maximize x + y + 2 z
subject to x + 2 y + 3 z ≤ 4

x + y ≥ 1
x, y, z binary

Note that this is the same model that was modeled and optimized in the C Interface section.

Example mip1_cs.cs
This is the complete source code for our example (also available in
<installdir>/examples/c#/mip1_cs.cs)...

using System;
using Gurobi;

class mip1_cs
{

static void Main()
{

try {
GRBEnv env = new GRBEnv("mip1.log");
GRBModel model = new GRBModel(env);

// Create variables

GRBVar x = model.AddVar(0.0, 1.0, 0.0, GRB.BINARY, "x");
GRBVar y = model.AddVar(0.0, 1.0, 0.0, GRB.BINARY, "y");
GRBVar z = model.AddVar(0.0, 1.0, 0.0, GRB.BINARY, "z");

// Integrate new variables

model.Update();

// Set objective: maximize x + y + 2 z

58

http://msdn.microsoft.com/en-us/vcsharp
http://msdn.microsoft.com/en-us/vcsharp

model.SetObjective(x + y + 2 * z, GRB.MAXIMIZE);

// Add constraint: x + 2 y + 3 z <= 4

model.AddConstr(x + 2 * y + 3 * z <= 4.0, "c0");

// Add constraint: x + y >= 1

model.AddConstr(x + y >= 1.0, "c1");

// Optimize model

model.Optimize();

Console.WriteLine(x.Get(GRB.StringAttr.VarName)
+ " " + x.Get(GRB.DoubleAttr.X));

Console.WriteLine(y.Get(GRB.StringAttr.VarName)
+ " " + y.Get(GRB.DoubleAttr.X));

Console.WriteLine(z.Get(GRB.StringAttr.VarName)
+ " " + z.Get(GRB.DoubleAttr.X));

Console.WriteLine("Obj: " + model.Get(GRB.DoubleAttr.ObjVal));

// Dispose of model and env

model.Dispose();
env.Dispose();

} catch (GRBException e) {
Console.WriteLine("Error code: " + e.ErrorCode + ". " + e.Message);

}
}

}

Example details

Let us now walk through the example, line by line, to understand how it achieves the desired result
of optimizing the indicated model.

The example begins by importing the Gurobi namespace (using Gurobi). Gurobi .NET appli-
cations should always start with this line.

59

Creating the environment
The first executable statement in our example obtains a Gurobi environment (using the GRBEnv()
constructor):

GRBEnv env = new GRBEnv("mip1.log");

Later calls to create an optimization model will always require an environment, so environment
creation is typically the first step in a Gurobi application. The constructor argument specifies the
name of the log file.

Creating the model
Once an environment has been created, the next step is to create a model. A Gurobi model
holds a single optimization problem. It consists of a set of variables, a set of constraints, and the
associated attributes (variable bounds, objective coefficients, variable integrality types, constraint
senses, constraint right-hand side values, etc.). The first step towards building a model that contains
all of this information is to create an empty model object:

GRBModel model = new GRBModel(env);

The constructor takes the previously created environment as its argument.

Adding variables to the model
The next step in our example is to add variables to the model.

// Create variables
GRBVar x = model.AddVar(0.0, 1.0, 0.0, GRB.BINARY, "x");
GRBVar y = model.AddVar(0.0, 1.0, 0.0, GRB.BINARY, "y");
GRBVar z = model.AddVar(0.0, 1.0, 0.0, GRB.BINARY, "z");

Variables are added through the AddVar()method on a model object. A variable is always associated
with a particular model.

The first and second arguments to the AddVar() call are the variable lower and upper bounds,
respectively. The third argument is the linear objective coefficient (zero here - we’ll set the objective
later). The fourth argument is the variable type. Our variables are all binary in this example. The
final argument is the name of the variable.

The AddVar() method has been overloaded to accept several different argument lists. Please
refer to the Gurobi Reference Manual for further details.

Updating the model - lazy modification
Model modifications in the Gurobi optimizer are done in a lazy fashion, meaning that the effects of
the modifications are not seen immediately. This approach makes it easier to perform a sequence
of model modifications, since the model doesn’t change while it is being modified. However, lazy
modifications do require you to manually integrate model changes when needed. This is done with
the Update method:

// Integrate new variables
model.Update();

60

http://www.gurobi.com/documentation/5.6/reference-manual

Setting the objective
The next step in the example is to set the optimization objective:

// Set objective: maximize x + y + 2 z
model.SetObjective(x + y + 2 * z, GRB.MAXIMIZE);

The objective is built here using overloaded operators. The C# API overloads the arithmetic
operators to allow you to build linear and quadratic expression involving Gurobi variables.

The second argument indicates that the sense is maximization.
Note that while this simple example builds the objective in a single statement using an explicit

list of terms, more complex programs will typically build it incrementally. For example:

GRBLinExpr obj = 0.0;
obj.AddTerm(1.0, x);
obj.AddTerm(1.0, y);
obj.AddTerm(2.0, z);
model.SetObjective(obj, GRB.MAXIMIZE);

Adding constraints to the model
The next step in the example is to add the constraints:

// Add constraint: x + 2 y + 3 z <= 4
model.AddConstr(x + 2 * y + 3 * z <= 4.0, "c0");

// Add constraint: x + y >= 1
model.AddConstr(x + y >= 1.0, "c1");

As with variables, constraints are always associated with a specific model. They are created using
the AddConstr() or AddConstrs() methods on the model object.

We again use overloaded arithmetic operators to build linear expressions. The comparison
operators are also overloaded to make it easy to build constraints.

The second argument to AddConstr gives the constraint name.
The Gurobi .NET interface also allows you to add constraints by building linear expressions in

a term-by-term fashion:

GRBLinExpr expr = 0.0;
expr.AddTerm(1.0, x);
expr.AddTerm(2.0, x);
expr.AddTerm(3.0, x);
model.AddConstr(expr, GRB.LESS_EQUAL, 4.0, "c0");

This particular AddConstr() signature takes a linear expression that captures the left-hand side of
the constraint as its first argument, the sense of the constraint as its second argument, and a linear
expression that captures the right-hand side of the constraint as its third argument. The constraint
name is given as the fourth argument.

61

Optimizing the model

Now that the model has been built, the next step is to optimize it:

// Optimize model
model.Optimize();

This routine performs the optimization and populates several internal model attributes (including
the status of the optimization, the solution, etc.).

Reporting results - attributes

Once the optimization is complete, we can query the values of the attributes. In particular, we can
query the VarName and X attributes to obtain the name and solution value for each variable:

Console.WriteLine(x.Get(GRB.StringAttr.VarName) + " " + x.Get(GRB.DoubleAttr.X));
Console.WriteLine(y.Get(GRB.StringAttr.VarName) + " " + y.Get(GRB.DoubleAttr.X));
Console.WriteLine(z.Get(GRB.StringAttr.VarName) + " " + z.Get(GRB.DoubleAttr.X));

We can also query the ObjVal attribute on the model to obtain the objective value for the
current solution:

Console.WriteLine("Obj: " + model.Get(GRB.DoubleAttr.ObjVal));

The names and types of all model, variable, and constraint attributes can be found in the
Attributes section of the Gurobi Reference Manual.

Cleaning up

The example concludes with Dispose calls:

model.Dispose();
env.Dispose();

These reclaim the resources associated with the model and environment. Garbage collection would
reclaim these eventually, but if your program doesn’t exit immediately after performing the opti-
mization, it is best to reclaim them explicitly.

Note that all models associated with an environment must be disposed before the environment
itself is disposed.

Error handling

Errors in the Gurobi .NET interface are handled through the .NET exception mechanism. In the
example, all Gurobi statements are enclosed inside a try block, and any associated errors would be
caught by the catch block.

62

http://www.gurobi.com/documentation/5.6/reference-manual

Building and running the example
You can use the CS_examples_2008.sln, CS_examples_2010.sln, or CS_examples_2012.sln solu-
tion files in <installdir>/examples/build to build and run the example with Visual Studio 2008,
2010, or 2012, respectively. Clicking on the mip1_cs project, and then selecting Run from the Build
menu will compile and run the example.

The C# and Visual Basic example directories (<installdir>/examples/c# and
<installdir>/examples/vb) contain a number of examples. We encourage you to browse and
modify them in order to become more familiar with the Gurobi .NET interface. We also encourage
you to read the Gurobi Example Tour for more information.

63

http://www.gurobi.com/documentation/5.6/example-tour/

Python Interface

The Gurobi Python interface can be used in a number of ways. It is the basis of our Interactive
Shell, where it is typically used to work with existing models. It can also be used to write standalone
programs that create and solve models, in much the same way that you would use our other language
interfaces. Finally, our Python interface includes a few higher level constructs that allow you to build
models using a more mathematical syntax, similar to the way you might work with a traditional
modeling language. We’ve already introduced the Interactive Shell in an earlier section. This section
will work through two examples. The first will present a Python program that is similar to the C,
C++, Java, and C# programs presented in previous sections. The second demonstrates some of
the higher level modeling capabilities of our Python interface.

This section assumes that you are already familiar with the Python programming language, and
that you have read the preceding section on the Gurobi Interactive Shell. If you would like to learn
more about the Python language, we recommend that you visit the online Python tutorial.

Note that Gurobi does not require a separate Python installation; the Gurobi distribution in-
cludes all the tools needed to run Python programs. You will need to use a set of scripts we provide
in order to run Gurobi Python programs within the Python environment we distribute. Alterna-
tively, if you are already a Python user, we provide tools for installing the gurobipy module in your
Python environment. You should refer to the instructions for building and running the examples
for further details.

One big advantage of working within Python is that the Python language is popular and well
supported. One aspect of this support is the breadth of powerful Python Integrated Development
Environments (IDEs) that are available, most of which can be downloaded for free from the internet.
This document includes instructions for setting up Gurobi for use within the PyScripter IDE for
Windows. In our opinion, PyScripter strikes a nice balance between power and simplicity. If you are
a Windows user and would prefer to use a graphical environment over a more command-line driven
environment, we suggest that you install PyScripter now. You can also consult the PyScripter
instructions for pointers to other IDE options that might be of interest if you are on a different
platform or would like to try a different Windows Python IDE.

Important note for AIX users: due to limited Python support on AIX, our AIX port does not
include the Interactive Shell or the Python interface. You can use the C, C++, or Java interfaces.

The Python example directory contains a number of examples. We encourage you to browse
and modify them in order to become more familiar with the Gurobi Python interface. We also
encourage you to read the Gurobi Example Tour for more information.

11.1 Simple Python Example
This section will work through a simple Python example in order to illustrate the use of the Gurobi
Python interface. The example builds a model, optimizes it, and outputs the optimal objective
value.

Our example optimizes the following model:

64

http://docs.python.org/release/2.7.5/tutorial/
http://www.gurobi.com/documentation/5.6/example-tour/

maximize x + y + 2 z
subject to x + 2 y + 3 z ≤ 4

x + y ≥ 1
x, y, z binary

Note that this is the same model that was modeled and optimized in the C Interface section.

Example mip1.py

This is the complete source code for our example (also available in
<installdir>/examples/python/mip1.py)...

from gurobipy import *

try:

Create a new model
m = Model("mip1")

Create variables
x = m.addVar(vtype=GRB.BINARY, name="x")
y = m.addVar(vtype=GRB.BINARY, name="y")
z = m.addVar(vtype=GRB.BINARY, name="z")

Integrate new variables
m.update()

Set objective
m.setObjective(x + y + 2 * z, GRB.MAXIMIZE)

Add constraint: x + 2 y + 3 z <= 4
m.addConstr(x + 2 * y + 3 * z <= 4, "c0")

Add constraint: x + y >= 1
m.addConstr(x + y >= 1, "c1")

m.optimize()

for v in m.getVars():
print v.varName, v.x

print ’Obj:’, m.objVal

except GurobiError:
print ’Error reported’

65

Example details

Let us now walk through the example, line by line, to understand how it achieves the desired result
of optimizing the indicated model.

The example begins by importing the Gurobi functions and classes:

from gurobipy import *

Gurobi Python applications should always start with this line.
Note that in order for this command to succeed, the Python application needs to know how to

find the Gurobi functions and classes. Recall that you have two options here. The first is to use
the Python files that are included with our distribution. You would run this example by typing
gurobi.bat mip1.py (Windows) or gurobi.sh mip1.py (Linux and Mac). The second option is
to install the Gurobi functions and classes into your own Python installation.

Creating the model

The first step in our example is to create a model. A Gurobi model holds a single optimization
problem. It consists of a set of variables, a set of constraints, and the associated attributes (variable
bounds, objective coefficients, variable integrality types, constraint senses, constraint right-hand
side values, etc.). We start this example with an empty model object:

m = Model("mip1")

This function takes the desired model name as its argument.

Adding variables to the model

The next step in our example is to add variables to the model.

Create variables
x = m.addVar(vtype=GRB.BINARY, name="x")
y = m.addVar(vtype=GRB.BINARY, name="y")
z = m.addVar(vtype=GRB.BINARY, name="z")

Variables are added through the addVar()method on a model object. A variable is always associated
with a particular model.

Python allows you to pass arguments by position or by name. We’ve passed them by name here.
Each variable gets a type (binary), and a name. We use the default values for the other arguments.
Please refer to the online help (help(Model.addVar) in the Gurobi Shell) for further details on
addVar().

Updating the model - lazy modification

Model modifications in the Gurobi optimizer are done in a lazy fashion, meaning that the effects of
the modifications are not seen immediately. This approach makes it easier to perform a sequence
of model modifications, since the model doesn’t change while it is being modified. However, lazy
modifications do require you to manually integrate model changes when needed. This is done with
the update method:

Integrate new variables
m.update()

66

Setting the objective

The next step in the example is to set the optimization objective:

Set objective: maximize x + y + 2 z
model.setObjective(x + y + 2 * z, GRB.MAXIMIZE)

The objective is built here using overloaded operators. The Python API overloads the arithmetic
operators to allow you to build linear and quadratic expression involving Gurobi variables.

The second argument indicates that the sense is maximization.
Note that while this simple example builds the objective in a single statement using an explicit

list of terms, more complex programs will typically build it incrementally. For example:

obj = LinExpr();
obj += x;
obj += y;
obj += 2*z;
model.setObjective(obj, GRB.MAXIMIZE);

Adding constraints to the model

The next step in the example is to add the constraints. The first constraint is added here:

Add constraint: x + 2 y + 3 z <= 4
m.addConstr(x + 2 * y + 3 * z <= 4, "c0")

As with variables, constraints are always associated with a specific model. They are created using
the addConstr() method on the model object.

We again use overloaded arithmetic operators to build linear expressions. The comparison
operators are also overloaded to make it easy to build constraints.

The second argument to addConstr gives the (optional) constraint name.
Again, this simple example builds the linear expression for the constraint in a single state-

ment using an explicit list of terms. More complex programs will typically build the expression
incrementally.

The second constraint is created in a similar manner:

Add constraint: x + y >= 1
m.addConstr(x + y >= 1, "c1")

Optimizing the model

Now that the model has been built, the next step is to optimize it:

Optimize model
m.optimize()

This routine performs the optimization and populates several internal model attributes (including
the status of the optimization, the solution, etc.).

67

Reporting results - attributes

Once the optimization is complete, we can query the values of the attributes. In particular, we can
query the varName and x variable attributes to obtain the name and solution value for each variable:

for v in m.getVars():
print v.varName, v.x

We can also query the objVal attribute on the model to obtain the objective value for the
current solution:

print ’Obj:’, m.objVal

The names and types of all model, variable, and constraint attributes can be found in the online
Python documentation. Type help(GRB.attr) in the Gurobi Shell for details.

Error handling

Errors in the Gurobi Python interface are handled through the Python exception mechanism. In
the example, all Gurobi statements are enclosed inside a try block, and any associated errors would
be caught by the except block.

Running the example

When you run the example (gurobi.bat mip1.py on Windows, or gurobi.sh mip1.py on Linux
or Mac), you should see the following output:

Optimize a model with 2 rows, 3 columns and 5 nonzeros
Presolve removed 2 rows and 3 columns
Presolve time: 0.00s

Explored 0 nodes (0 simplex iterations) in 0.00 seconds
Thread count was 1 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 3.000000000000e+00, best bound 3.000000000000e+00, gap 0.0%
x 1.0
y 0.0
z 1.0
Obj: 3.0

11.2 Python Dictionary Example
In order to provide a gentle introduction to our interfaces, the examples so far have demonstrated
only very basic capabilities. We will now attempt to demonstrate some of the power of our Python
interface by describing a more complex example. This example is intended to capture most of the
common ingredients of large, complex optimization models. Implementing this same example in
another API would most likely have required hundreds of lines of code (ours is around 70 lines of
Python code).

68

We’ll need to present a few preliminaries before getting to the example itself. You’ll need to learn
a bit about the Python language, and we’ll need to describe a few custom classes and functions.
Our intent is that you will come away from this section with an appreciation for the power and
flexibility of this interface. It can be used to create quite complex models using what we believe
are very concise and natural modeling constructs. Our goal with this interface has been to provide
something that feels more like a mathematical modeling language than a programming language
API.

If you’d like to dig a bit deeper into the Python language constructs described here, we recom-
mend that you visit the online Python tutorial.

Motivation

At the heart of any optimization model lies a set of decision variables. Finding a convenient way to
store and access these variables can often represent the main challenge in implementing the model.
While the variables in some models map naturally to simple programming language constructs
(e.g., x[i] for contiguous integer values i), other models can present a much greater challenge.
For example, consider a model that optimizes the flow of multiple different commodities through
a supply network. You might have a variable x[’Pens’, ’Denver’, ’New York’] that captures
the flow of a manufactured item (pens in this example) from Denver to New York. At the same
time, you might not want to have a variable x[’Pencils’, ’Denver’, ’Seattle’], since not all
combinations of commodities, source cities, and destination cities represent valid paths through the
network. Representing a sparse set of decision variables in a typical programming language can be
cumbersome.

To compound the challenge, you typically need to build constraints that involve subsets of these
decision variables. For example, in our network flow model you might want to put an upper bound
on the total flow that enters a particular city. You could certainly collect the relevant decision
variables by iterating over all possible cities and selecting only those variables that capture possible
flow from that source city into the desired destination city. However, this is clearly wasteful if not all
origin-destination pairs are valid. In a large network problem, the inefficiency of this approach could
lead to major performance issues. Handling this efficiently can require complex data structures.

The Gurobi Python interface has been designed to make the issues we’ve just described quite easy
to manage. We’ll present a specific example of how this is done shortly. Before we do, though, we’ll
need to describe a few important constructs: lists, tuples, dictionaries, list comprehension,
and the tuplelist class. The first four are standard Python concepts that are particularly im-
portant in our interface, while the last is a custom class that we’ve added to the Gurobi Python
interface.

A quick reminder: you can consult the online Python documentation for additional information
on any of the Python data structures mentioned here.

Lists and Tuples

The list data structure is central to most Python programs; Gurobi Python programs are no
exception. We’ll also rely heavily on a similar data structure, the tuple. Tuples are crucial to
providing efficient and convenient access to Gurobi decision variables in Gurobi Python programs.
The difference between a list and a tuple is subtle but important. We’ll discuss it shortly.

69

http://docs.python.org/release/2.7.5/tutorial/
http://docs.python.org/release/2.7.5/tutorial/datastructures.html

Lists and tuples are both simply ordered collections of Python objects. A list is created and
displayed as a comma-separated list of member objects, enclosed in square brackets. A tuple is
similar, except that the member objects are enclosed in parenthesis. For example, [1, 2, 3] is
a list, while (1, 2, 3) is a tuple. Similarly, [’Pens’, ’Denver’, ’New York’] is a list, while
(’Pens’, ’Denver’, ’New York’) is a tuple.

You can retrieve individual entries from a list or tuple using square brackets and zero-based
indices:

gurobi> l = [1, 2.0, ’abc’]
gurobi> t = (1, 2.0, ’abc’)
gurobi> print l[0]
1
gurobi> print t[1]
2.0
gurobi> print l[2]
abc

What’s the difference between a list and a tuple? A tuple is immutable, meaning that you
can’t modify it once it has been created. By contrast, you can add new members to a list, remove
members, change existing members, etc. This immutable property allows you to use tuples as indices
for dictionaries.

Dictionaries

A Python dictionary allows you to map arbitrary key values to pieces of data. Any immutable
Python object can be used as a key: an integer, a floating-point number, a string, or even a tuple.

To give an example, the following statements create a dictionary x, and then associates a value
1 with key (’Pens’, ’Denver’, ’New York’)

gurobi> x = {} # creates an empty dictionary
gurobi> x[(’Pens’, ’Denver’, ’New York’)] = 1
gurobi> print x[(’Pens’, ’Denver’, ’New York’)]
1

Python allows you to omit the parenthesis when accessing a dictionary using a tuple, so the following
is also valid:

gurobi> x = {}
gurobi> x[’Pens’, ’Denver’, ’New York’] = 2
gurobi> print x[’Pens’, ’Denver’, ’New York’]
2

We’ve stored integers in the dictionary here, but dictionaries can hold arbitrary objects. In partic-
ular, they can hold Gurobi decision variables:

gurobi> x[’Pens’, ’Denver’, ’New York’] = model.addVar()
gurobi> print x[’Pens’, ’Denver’, ’New York’]
<gurobi.Var *Awaiting Model Update*>

70

To initialize a dictionary, you can of course simply perform assignments for each relevant key:

gurobi> values = {}
gurobi> values[’zero’] = 0
gurobi> values[’one’] = 1
gurobi> values[’two’] = 2

You can also use the Python dictionary initialization construct:

gurobi> values = { ’zero’: 0, ’one’: 1, ’two’: 2 }
gurobi> print values[’zero’]
0
gurobi> print values[’one’]
1

We have included a utility routine in the Gurobi Python interface that simplifies dictionary
initialization for a case that arises frequently in mathematical modeling. The multidict function
allows you to initialize one or more dictionaries in a single statement. The function takes a dictionary
as its argument, where the value associated with each key is a list of length n. The function splits
these lists into individual entries, creating n separate dictionaries. The function returns a list. The
first result is the list of shared key values, followed by the n individual dictionaries:

gurobi> names, lower, upper = multidict({ ’x’: [0, 1], ’y’: [1, 2], ’z’: [0, 3] })
gurobi> print names
[’x’, ’y’, ’z’]
gurobi> print lower
{’x’: 0, ’y’: 1, ’z’: 0}
gurobi> print upper
{’x’: 1, ’y’: 2, ’z’: 3}

Note that you can also apply this function to a dictionary where each key maps to a scalar value. In
that case, the function simply returns the list of keys as the first result, and the original dictionary
as the second.

You will see this function in several of our Python examples.

List comprehension

List comprehension is an important Python feature that allows you to build lists in a concise fashion.
To give a simple example, the following list comprehension builds a list containing the squares of
the numbers from 1 through 5:

gurobi> print [x*x for x in [1, 2, 3, 4, 5]]
[1, 4, 9, 16, 25]

A list comprehension can contain more than one for clause, and it can contain one or more if
clauses. The following example builds a list of tuples containing all x,y pairs where x and y are
both less than 3 and are not equal:

gurobi> print [(x,y) for x in range(3) for y in range(3) if x != y]
[(0, 1), (0, 2), (1, 0), (1, 2) (2, 0), (2, 1)]

(Details on the range function can be found here). List comprehension is used extensively in our
Python examples.

71

http://docs.python.org/release/2.7.5/library/functions.html

The tuplelist class

The final important item we would like to discuss is the tuplelist class. This is a custom sub-class
of the Python list class that is designed to allow you to efficiently build sub-lists from a list of
tuples. To be more specific, you can use the select method on a tuplelist object to retrieve all
tuples that match one or more specified values in specified fields.

Let us give a simple example. We’ll begin by creating a simple tuplelist (by passing a list of
tuples to the constructor):

gurobi> l = tuplelist([(1, 2), (1, 3), (2, 3), (2, 4)])

To select a sub-list where particular tuple entries match desired values, you specify the desired values
as arguments to the select method. The number of arguments to select is equal to the number
of entries in the members of the tuplelist (they should all have the same number of entries). You
use a ’*’ string to indicate that any value is acceptable in that position in the tuple.

Each tuple in our example contains two entries, so we can perform the following selections:

gurobi> print l.select(1, ’*’)
[(1, 2), (1, 3)]
gurobi> print l.select(’*’, 3)
[(1, 3), (2, 3)]
gurobi> print l.select(1, 3)
[(1, 3)]
gurobi> print l.select(’*’, ’*’)
[(1, 2), (1, 3), (2, 3), (2, 4)]

You may have noticed that similar results could have been achieved using list comprehension.
For example:

gurobi> print l.select(1, ’*’)
[(1, 2), (1, 3)]
gurobi> print [(x,y) for x,y in l if x == 1]
[(1, 2), (1, 3)]

The problem is that the latter statement considers every member in the list, which can be quite
inefficient for large lists. The select method builds internal data structures that make these
selections quite efficient.

Note that tuplelist is a sub-class of list, so you can use the standard list methods to access
or modify a tuplelist:

gurobi> print l[1]
(1,3)
gurobi> l += [(3, 4)]
gurobi> print l
[(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)]

Returning to our network flow example, once we’ve built a tuplelist containing all valid
commodity-source-destination combinations on the network (we’ll call it flows), we can select all
arcs that flow into a specific destination city as follows:

gurobi> inbound = flows.select(’*’, ’*’, ’New York’)

We now present an example that illustrates the use of all of the concepts discussed so far.

72

netflow.py example

Our example solves a multi-commodity flow model on a small network. In the example, two com-
modities (Pencils and Pens) are produced in two cities (Detroit and Denver), and must be shipped
to warehouses in three cities (Boston, New York, and Seattle) to satisfy given demand. Each arc in
the transportation network has a cost associated with it, and a total capacity.

This is the complete source code for our example (also available in
<installdir>/examples/python/netflow.py)...

from gurobipy import *

Model data

commodities = [’Pencils’, ’Pens’]
nodes = [’Detroit’, ’Denver’, ’Boston’, ’New York’, ’Seattle’]

arcs, capacity = multidict({
(’Detroit’, ’Boston’): 100,
(’Detroit’, ’New York’): 80,
(’Detroit’, ’Seattle’): 120,
(’Denver’, ’Boston’): 120,
(’Denver’, ’New York’): 120,
(’Denver’, ’Seattle’): 120 })

arcs = tuplelist(arcs)

cost = {
(’Pencils’, ’Detroit’, ’Boston’): 10,
(’Pencils’, ’Detroit’, ’New York’): 20,
(’Pencils’, ’Detroit’, ’Seattle’): 60,
(’Pencils’, ’Denver’, ’Boston’): 40,
(’Pencils’, ’Denver’, ’New York’): 40,
(’Pencils’, ’Denver’, ’Seattle’): 30,
(’Pens’, ’Detroit’, ’Boston’): 20,
(’Pens’, ’Detroit’, ’New York’): 20,
(’Pens’, ’Detroit’, ’Seattle’): 80,
(’Pens’, ’Denver’, ’Boston’): 60,
(’Pens’, ’Denver’, ’New York’): 70,
(’Pens’, ’Denver’, ’Seattle’): 30 }

inflow = {
(’Pencils’, ’Detroit’): 50,
(’Pencils’, ’Denver’): 60,
(’Pencils’, ’Boston’): -50,
(’Pencils’, ’New York’): -50,
(’Pencils’, ’Seattle’): -10,
(’Pens’, ’Detroit’): 60,

73

(’Pens’, ’Denver’): 40,
(’Pens’, ’Boston’): -40,
(’Pens’, ’New York’): -30,
(’Pens’, ’Seattle’): -30 }

Create optimization model
m = Model(’netflow’)

Create variables
flow = {}
for h in commodities:

for i,j in arcs:
flow[h,i,j] = m.addVar(ub=capacity[i,j], obj=cost[h,i,j],

name=’flow_%s_%s_%s’ % (h, i, j))
m.update()

Arc capacity constraints
for i,j in arcs:

m.addConstr(quicksum(flow[h,i,j] for h in commodities) <= capacity[i,j],
’cap_%s_%s’ % (i, j))

Flow conservation constraints
for h in commodities:

for j in nodes:
m.addConstr(

quicksum(flow[h,i,j] for i,j in arcs.select(’*’,j)) +
inflow[h,j] ==

quicksum(flow[h,j,k] for j,k in arcs.select(j,’*’)),
’node_%s_%s’ % (h, j))

Compute optimal solution
m.optimize()

Print solution
if m.status == GRB.status.OPTIMAL:

for h in commodities:
print ’\nOptimal flows for’, h, ’:’
for i,j in arcs:

if flow[h,i,j].x > 0:
print i, ’->’, j, ’:’, flow[h,i,j].x

netflow.py example details

Let us now walk through the example, line by line, to understand how it achieves the desired result
of computing the optimal network flow. As with the simple Python example presented earlier, this
example begins by importing the Gurobi functions and classes:

74

from gurobipy import *

We then create a few lists that contain model data:

commodities = [’Pencils’, ’Pens’]
nodes = [’Detroit’, ’Denver’, ’Boston’, ’New York’, ’Seattle’]

arcs, capacity = multidict({
(’Detroit’, ’Boston’): 100,
(’Detroit’, ’New York’): 80,
(’Detroit’, ’Seattle’): 120,
(’Denver’, ’Boston’): 120,
(’Denver’, ’New York’): 120,
(’Denver’, ’Seattle’): 120 })

arcs = tuplelist(arcs)

The model works with two commodities (Pencils and Pens), and the network contains 5 nodes and
6 arcs. We initialize commodities and nodes as simple Python lists. We use the Gurobi multidict
function to initialize arcs (the list of keys) and capacity (a dictionary).

In our example, we plan to use arcs to select subsets of the arcs when building constraints later.
We therefore pass the list of tuples returned by multidict to the tuplelist constructor to create
a tuplelist object instead.

The model also requires cost data for each commodity-arc pair:

cost = {
(’Pencils’, ’Detroit’, ’Boston’): 10,
(’Pencils’, ’Detroit’, ’New York’): 20,
(’Pencils’, ’Detroit’, ’Seattle’): 60,
(’Pencils’, ’Denver’, ’Boston’): 40,
(’Pencils’, ’Denver’, ’New York’): 40,
(’Pencils’, ’Denver’, ’Seattle’): 30,
(’Pens’, ’Detroit’, ’Boston’): 20,
(’Pens’, ’Detroit’, ’New York’): 20,
(’Pens’, ’Detroit’, ’Seattle’): 80,
(’Pens’, ’Denver’, ’Boston’): 60,
(’Pens’, ’Denver’, ’New York’): 70,
(’Pens’, ’Denver’, ’Seattle’): 30 }

Once this dictionary has been created, the cost of moving commodity h from node i to j can be
queried as cost[(h,i,j)]. Recall that Python allows you to omit the parenthesis when using a
tuple to index a dictionary, so this can be shortened to just cost[h,i,j].

A similar construct is used to initialize node demand data:

inflow = {
(’Pencils’, ’Detroit’): 50,
(’Pencils’, ’Denver’): 60,
(’Pencils’, ’Boston’): -50,
(’Pencils’, ’New York’): -50,

75

(’Pencils’, ’Seattle’): -10,
(’Pens’, ’Detroit’): 60,
(’Pens’, ’Denver’): 40,
(’Pens’, ’Boston’): -40,
(’Pens’, ’New York’): -30,
(’Pens’, ’Seattle’): -30 }

Building a multi-dimensional array of variables

The next step in our example (after creating an empty Model object) is to add variables to the
model. The variables are stored in a dictionary flow:

flow = {}
for h in commodities:

for i,j in arcs:
flow[h,i,j] = m.addVar(ub=capacity[i,j], cost=cost[h,i,j],

name=’flow_%s_%s_%s’ % (h, i, j))
m.update()

The flow variable is triply subscripted: by commodity, source node, and destination node. Note
that the dictionary only contains variables for source, destination pairs that are present in arcs.

Arc capacity constraints

We begin with a straightforward set of constraints. The sum of the flow variables on an arc must
be less than or equal to the capacity of that arc:

for i,j in arcs:
m.addConstr(quicksum(flow[h,i,j] for h in commodities) <= capacity[i,j],

’cap_%s_%s’ % (i, j))

Note that we use list comprehension to build a list of all variables associated with an arc (i,j):

flow[h,i,j] for h in commodities

(To be precise, as we’ve used it here, this is actually called a generator expression in Python, but
it is similar enough to list comprehension that you can safely ignore the difference for the purpose
of understanding this example). The result is passed into the quicksum function to create a Gurobi
linear expression that captures the sum of all of these variables. The Gurobi quicksum function is
an alternative to the Python sum function that is much faster for building large expressions.

Flow conservation constraints

The next set of constraints are the flow conservation constraints. They require that, for each
commodity and node, the sum of the flow into the node plus the quantity of external inflow at that
node must be equal to the sum of the flow out of the node:

76

for h in commodities:
for j in nodes:

m.addConstr(
quicksum(flow[h,i,j] for i,j in arcs.select(’*’,j)) + inflow[h,j] ==
quicksum(flow[h,j,k] for j,k in arcs.select(j,’*’)),

’node_%s_%s’ % (h, j))

Results

Once we’ve added the model constraints, we call optimize and then output the optimal solution:

if m.status == GRB.status.OPTIMAL:
for h in commodities:

print ’\nOptimal flows for’, h, ’:’
for i,j in arcs:

if flow[h,i,j].x > 0:
print i, ’->’, j, ’:’, flow[h,i,j].x

If you run the example (gurobi.bat netflow.py on Windows, or gurobi.sh netflow.py on
Linux and Mac), you should see the following output:

Optimize a model with 16 rows, 12 columns and 36 nonzeros
Presolve removed 16 rows and 12 columns
Presolve time: 0.00s
Presolve: All rows and columns removed
Iteration Objective Primal Inf. Dual Inf. Time

0 5.5000000e+03 0.000000e+00 0.000000e+00 0s

Solved in 0 iterations and 0.00 seconds
Optimal objective 5.500000000e+03

Optimal flows for Pencils :
Detroit -> Boston : 50.0
Denver -> New York : 50.0
Denver -> Seattle : 10.0

Optimal flows for Pens :
Detroit -> Boston : 30.0
Detroit -> New York : 30.0
Denver -> Boston : 10.0
Denver -> Seattle : 30.0

11.3 Building and running the examples
Python is an interpreted language, so no explicit compilation step is required to run the examples.
For Windows platforms, you can simply type the following in the Gurobi Python example directory
(<installdir>/examples/python):

77

gurobi.bat mip1.py

For Linux or Mac OS platforms, type:

gurobi.sh mip1.py

If you are a Python user, and wish to use Gurobi from within your own Python environment,
you can install the gurobipy module directly into your environment. The steps for doing this
depend on your platform. On Windows, you can double-click on the pysetup program in the
Gurobi <installdir>/bin directory. This program will prompt you for the location of your Python
installation; it handles all of the details of the installation. On Linux or Mac OS, you will need to
open a terminal window, change your current directory to the Gurobi <installdir> (the directory
that contains the file setup.py), and issue the following command:

python setup.py install

Unless you are using your own private Python installation, you will need to run this command as
super-user. Once gurobipy is successfully installed, you can type python mip1.py (more generally,
you can type from gurobipy import * in your Python environment).

78

MATLAB Interface

This section describes the Gurobi MATLAB interface. We begin with information on how to set up
Gurobi for use within MATLAB. An example of how to use the MATLAB interface follows.

Setting up Gurobi for MATLAB
To begin, you’ll need to tell MATLAB where to find the Gurobi routines. We’ve provided a script
to assist you with this. The Gurobi MATLAB setup script, gurobi_setup.m, can be found in the
<installdir>/matlab directory of your Gurobi installation (e.g., /opt/gurobi560/linux64/matlab
for the 64-bit Linux version of Gurobi 5.6). To get started, type the following commands within
MATLAB to change to the matlab directory and call gurobi_setup:

>> cd /opt/gurobi560/linux64/matlab
>> gurobi_setup

You will need to be careful that the MATLAB binary and the Gurobi package you install both
use the same instruction set. For example, if you are using the 64-bit version of MATLAB, you’ll
need to install the 64-bit version of Gurobi, and you’ll need to use the 64-bit Gurobi MATLAB
libraries (i.e., the ones included with the 64-bit version of Gurobi). This is particularly important
on Windows systems, where the error messages that result from instruction set mismatches can be
quite cryptic.

Example
Let us now turn our attention to an example of using Gurobi to solve a simple MIP model. Our
example optimizes the following model:

maximize x + y + 2 z
subject to x + 2 y + 3 z ≤ 4

x + y ≥ 1
x, y, z binary

Note that this is the same model that was modeled and optimized in the C Interface section.
This is the complete source code for our example (also available in

<installdir>/examples/matlab/mip1.m)...

names = {’x’; ’y’; ’z’};

try
clear model;
model.A = sparse([1 2 3; 1 1 0]);
model.obj = [1 1 2];

79

model.rhs = [4; 1];
model.sense = ’<>’;
model.vtype = ’B’;
model.modelsense = ’max’;

clear params;
params.outputflag = 0;
params.resultfile = ’mip1.lp’;

result = gurobi(model, params);

disp(result)

for v=1:length(names)
fprintf(’%s %d\n’, names{v}, result.x(v));

end

fprintf(’Obj: %e\n’, result.objval);

catch gurobiError
fprintf(’Error reported\n’);

end

Example details
Let us now walk through the example, line by line, to understand how it achieves the desired result
of optimizing the indicated model.

Building the model
The example begins by building an optimization model. The data associated with an optimization
model must be stored in a MATLAB struct. Fields in this struct contain the different parts of
the model. A few fields are mandatory: the constraint matrix (A), the objective vector (obj), the
right-hand side vector (rhs), and the constraint sense vector (sense). A model can also include
optional fields (e.g., the objective sense modelsense).

The example uses the built-in sparse function to build the constraint matrix A. The Gurobi
MATLAB interface only accepts sparse matrices as input. If you have a dense matrix, use sparse
to convert it to a sparse matrix before passing it to our interface.

Subsequent statements populate other fields of the model variable, including the objective vector,
the right-hand-side vector, and the constraint sense vector.

In addition to the mandatory fields, this example also sets two optional fields: modelsense
and vtype. The former is used to indicate the sense of the objective function. The default is
minimization, so we’ve set the fields equal to ’max’ to indicate that we would like to maximize the
specified objective. The vtype field is used to indicate the types of the variables in the model. In our
example, all variables are binary (’B’). Note that our interface allows you to specify a scalar value

80

for the sense and vtype arguments. The Gurobi interface will expand that scalar to a constant
array of the appropriate length. In this example, the scalar value ’B’ will be expanded to an array
of length 3, containing one ’B’ value for each column of A.

Modifying Gurobi parameters

The next statements create a struct variable that will be used to modify two Gurobi parameters:

params.outputflag = 0;
params.resultfile = ’mip1.lp’;

In this example, we set the Gurobi OutputFlag parameter to 0 in order to shut off Gurobi output.
We also set the ResultFile parameter to request that Gurobi produce a file as output (in this case,
a LP format file that contains the optimization model). The Gurobi MATLAB interface allows you
to set as many Gurobi parameters as you would like. The field names in the parameter structure
simply need to match Gurobi parameter names, and the values of the fields should be set to the
desired parameter value. Please consult the Parameters section of the Gurobi Reference Manual for
a complete list of all Gurobi parameters.

Solving the model

The next statement is where the actual optimization occurs:

result = gurobi(model, params);

We pass the model and the optional list of parameter changes to the gurobi() function. It computes
an optimal solution to the specified model and returns the computed result.

Printing the solution

The gurobi() function returns a struct as its result. This struct contains a number of fields, where
each field contains information about the computed solution. The available fields depend on the
result of the optimization, the type of model that was solved (LP, QP, QCP, SOCP, or MIP), and
the algorithm used to solve the model. The returned struct will always contain a status field,
which indicates whether Gurobi was able to compute an optimal solution to the model. You should
consult the Status Codes section of the Gurobi Reference Manual for a complete list of all possible
status codes. If Gurobi was able to find a solution to the model, the return value will also include
objval and x fields. The former gives the objective value for the computed solution, and the latter
is the computed solution vector (one entry per column of the constraint matrix). For continuous
models, we will also return dual information (reduced costs and dual multipliers), and possibly an
optimal basis.

In our example, we simply print the optimal objective value (result.objval) and the optimal
solution vector (result.x).

81

http://www.gurobi.com/documentation/5.6/reference-manual
http://www.gurobi.com/documentation/5.6/reference-manual

Running the example
The Gurobi MATLAB examples can be found in the <installdir>/examples/matlab/ directory
of your Gurobi installation (e.g., /opt/gurobi560/linux64/examples/matlab for the 64-bit Linux
version of Gurobi 5.6). To run one of the examples, first change to this directory in MATLAB, then
type its name into the MATLAB prompt. For example, to run example mip1, you would say:

>> cd /opt/gurobi560/linux64/examples/matlab
>> mip1

If Gurobi was successfully set up for use in MATLAB, you should see the following output:

status: ’OPTIMAL’
versioninfo: [1x1 struct]

objval: 3
runtime: 0.0386

x: [3x1 double]
slack: [2x1 double]

objbound: 3
itercount: 0

baritercount: 0
nodecount: 0

x 1
y 0
z 1
Obj: 3.000000e+00

The MATLAB example directory contains a number of examples. We encourage you to browse
and modify them in order to become more familiar with the Gurobi MATLAB interface.

82

R Interface

This section describes the Gurobi R interface. We begin with information on how to set up Gurobi
for use within R. An example of how to use the R interface follows.

Installing the R Package
To begin, you’ll need to install the Gurobi package in R. The R command for doing this is:

install.packages(’<R-package-file>’)

The Gurobi R package file can be found in the <installdir>/R directory of your Gurobi installation
(e.g., /opt/gurobi560/linux64/R for the 64-bit Linux version of Gurobi 5.6). You should browse
the <installdir>/R directory to find the exact name of the file for your platform (the 64-bit Linux
package is in file gurobi_5.6-0_R_x86_64-pc-linux-gnu.tar.gz, while the Windows package is
in file gurobi_5.6-0.zip).

You will need to be careful that the R binary and the Gurobi package you install both use the
same instruction set. For example, if you are using the 64-bit version of R, you’ll need to install
the 64-bit version of Gurobi, and the 64-bit Gurobi R package. This is particularly important on
Windows systems, where the error messages that result from instruction set mismatches can be
quite cryptic.

If you are using R from RStudio Server, and you get an error indicating that R is unable to load
the Gurobi DLL or shared object, you may need to set the rsession-ld-library-path entry in
the server config file. Please consult the RStudio documentation for more information.

Example
Let us now turn our attention to an example of using Gurobi to solve a simple MIP model. Our
example optimizes the following model:

maximize x + y + 2 z
subject to x + 2 y + 3 z ≤ 4

x + y ≥ 1
x, y, z binary

Note that this is the same model that was modeled and optimized in the C Interface section.
This is the complete source code for our example (also available in

<installdir>/examples/R/mip.R)...

library(’gurobi’)

model <- list()

83

model$A <- matrix(c(1,2,3,1,1,0), nrow=2, ncol=3, byrow=T)
model$obj <- c(1,1,2)
model$modelsense <- "max"
model$rhs <- c(4,1)
model$sense <- c(’<’, ’>’)
model$vtype <- ’B’

params <- list(OutputFlag=0)

result <- gurobi(model, params)

print(’Solution:’)
print(result$objval)
print(result$x)

Example details

Let us now walk through the example, line by line, to understand how it achieves the desired result
of optimizing the indicated model.

The example begins by importing the Gurobi package (library(’gurobi’)). R programs that
call Gurobi must include this line.

Building the model

The example now builds an optimization model. The data associated with an optimization model
must be stored in a single list variable. Named components in this list contain the different parts
of the model. A few components are mandatory: the constraint matrix (A), the objective vector
(obj), the right-hand side vector (rhs), and the constraint sense vector (sense). A model variable
can also include optional components (e.g., the objective sense modelsense).

In our example, we use the built-in R matrix function to build the constraint matrix A. A
is stored as a dense matrix here. You can also store A as a sparse matrix, using either the
sparse_triplet_matrix function from the slam package or the sparseMatrix class from the Matrix
package. Sparse input matrices are illustrated in the lp2.R example.

Subsequent statements populate other components of the model variable, including the objective
vector, the right-hand-side vector, and the constraint sense vector. In each case, we use the built-in
c function to initialize the array arguments.

In addition to the mandatory components, this example also sets two optional components:
modelsense and vtype. The former is used to indicate the sense of the objective function. The
default is minimization, so we’ve set the components equal to ’max’ to indicate that we would like
to maximize the specified objective. The vtype component is used to indicate the types of the
variables in the model. In our example, all variables are binary (’B’). Note that our interface allows
you to specify a scalar value for any array argument. The Gurobi interface will expand that scalar
to a constant array of the appropriate length. In this example, the scalar value ’B’ will be expanded
to an array of length 3, containing one ’B’ value for each column of A.

84

Modifying Gurobi parameters
The next statement creates a list variable that will be used to modify a Gurobi parameter:

params <- list(OutputFlag=0)

In this example, we wish to set the Gurobi OutputFlag parameter to 0 in order to shut off Gurobi
output. The Gurobi R interface allows you to pass a list of the Gurobi parameters you would like
to change. Please consult the Parameters section of the Gurobi Reference Manual for a complete
list of all Gurobi parameters.

Solving the model
The next statement is where the actual optimization occurs:

result <- gurobi(model, params)

We pass the model and the optional list of parameter changes to the gurobi() function. It computes
an optimal solution to the specified model and returns the computed result.

Printing the solution
The gurobi() function returns a list as its result. This list contains a number of components, where
each component contains information about the computed solution. The available components
depend on the result of the optimization, the type of model that was solved (LP, QP, SOCP, or
MIP), and the algorithm used to solve the model. This result list will always contain an integer
status component, which indicates whether Gurobi was able to compute an optimal solution to
the model. You should consult the Status Codes section of the Gurobi Reference Manual for a
complete list of all possible status codes. If Gurobi was able to find a solution to the model, the
return value will also include objval and x components. The former gives the objective value for
the computed solution, and the latter is the computed solution vector (one entry per column of the
constraint matrix). For continuous models, we will also return dual information (reduced costs and
dual multipliers), and possibly an optimal basis.

In our example, we simply print the optimal objective value (result$objval) and the optimal
solution vector (result$x).

Running the example
To run one of the R examples provided with the Gurobi distribution, you can use the source
command in R. For example, if you are running R from the Gurobi R examples directory, you can
say:

> source(’mip.R’)

If the Gurobi package was successfully installed, you should see the following output:

[1] "Solution:"
[1] 3
[1] 1 0 1

85

http://www.gurobi.com/documentation/5.6/reference-manual
http://www.gurobi.com/documentation/5.6/reference-manual

The R example directory <installdir>/examples/R contains a number of examples. We en-
courage you to browse and modify them in order to become more familiar with the Gurobi R
interface.

86

Recommended Reading

The very basic introduction to mathematical programming and mathematical modeling in this
document barely scratches the surface of this very broad and rich field. We’ve collected a set of
recommended books here that provide more information on various aspects of math programming.

If you want more information on the algorithms and mathematics underlying the solution of
linear programming problems, we recommend Introduction to Linear Optimization by Bertsimas,
Tsitsiklis, and Tsitsiklis, or Linear Programming: Foundations and Extensions by R. Vanderbei. For
a detailed treatment of interior-point methods for linear programming, we recommend Primal-Dual
Interior-Point Methods by S. Wright.

For more information on the algorithms and mathematics underlying the solution of mixed-
integer programming problems, we recommend Integer Programming by L. Wolsey.

For an introduction to the process of creating mathematical programming representations of
business problems, we recommand Model Building in Mathematical Programming by H.P. Williams.

87

http://www.amazon.com/Introduction-Linear-Optimization-Scientific-Computation/dp/1886529191/
http://www.amazon.com/Linear-Programming-Foundations-Extensions-International/dp/0387743871/
http://www.amazon.com/Primal-Dual-Interior-Point-Methods-Stephen-Wright/dp/089871382X/
http://www.amazon.com/Primal-Dual-Interior-Point-Methods-Stephen-Wright/dp/089871382X/
http://www.amazon.com/Integer-Programming-Laurence-Wolsey/dp/0471283665/
http://www.amazon.com/Model-Building-Mathematical-Programming-Williams/dp/1118443330/

Installing a Python IDE

While command-line tools are likely to be familiar to Linux users and to most Mac users, we realize
that the command line can be quite foreign to a Windows user. This section guides you through
the steps involved in installing PyScripter, a free and widely-used Python Integrated Development
Environment (IDE) for Windows. PyScripter makes it easier for Windows users to use the Gurobi
Interactive Shell, and to develop and debug programs that use the Gurobi Python interface.

If you are using Gurobi on a Linux or Mac platform, or if you would like to consider other IDE
options on Windows, a number of other free Python IDEs are available. Popular choices include
Eric, iep, and PyDev. We won’t be covering the details of installing these other options for use
with Gurobi, but the PyScripter instructions that follow should provide a good outline for the steps
involved. We’ve found that PyScripter provides a nice balance between power and complexity, but
we realize that people may look for different things in their IDEs.

Step 1: Install Gurobi

The first step in using Gurobi from Pyscripter is to install Gurobi on your machine and install a
Gurobi license (if you haven’t already done so).

Step 2: Install Python

The next step is to install a stand-alone Python interpreter. Be sure to install a version that is
compatible with the version of Gurobi you installed. We recommend Python 2.7, but Python 3.2 is
also an option:

88

http://eric-ide.python-projects.org
http://code.google.com/p/iep
http://pydev.org
http://python.org/download

Choose the Windows X86-64 Installer if you installed the 64-bit version of Gurobi, or the
Windows Installer if you installed the 32-bit version of Gurobi.

Note that Python gives you the option of choosing an install directory, but PyScripter will only
be able to find it if you stick with the default.

Step 3: Install Gurobi into Python

The third step is to run a simple program that installs the Gurobi module into Python. Simply
double-click on pysetup in the bin folder of your Gurobi installation (c:\gurobi560\win64\bin for
a default installation of the 64-bit Windows version). The program will prompt you for the location
of your Python installation. When the program is finished, you should see output that looks like
the following:

Step 4: Install PyScripter

The final step is to install PyScripter:

89

https://code.google.com/p/pyscripter/

Again, choose the x64-Setup version if you installed the 64-bit version of Gurobi, or the Setup
version if you installed the 32-bit version of Gurobi.

One installation of PyScripter can work with multiple versions of Python. You will need to launch
the one that corresponds to the Python version you installed (we used PyScripter for Python 2.7
in this example):

90

Using PyScripter

Gurobi Interactive Shell commands can be typed directly into the Python Interpreter window of
PyScripter:

Unfortunately, a general-purpose Python IDE like PyScripter requires one extra step that isn’t
required when you launch the Gurobi shell from the Gurobi icon or by using the gurobi.sh com-
mand: you must type from gurobipy import * before issuing any Gurobi commands. Unlike our
icon or our gurobi.sh command, the IDE won’t load the Gurobi module automatically, so you must
do it manually.

You can also use PyScripter to run any of the Gurobi examples. For example, if you use Open
under the File menu to open Gurobi example mip1.py, and then click on the Run icon, you should
see:

91

Some Gurobi examples require command-line arguments. Those can be input from the Command
Line Parameters... item of the Run menu. For example, to run the sudoku.py example with file
sudoku1 as input...

92

A few Gurobi examples require additional Python modules. For example, our diet4 example
uses the Python xlrd module to extract data from an Excel spreadsheet. You can find missing
Python modules at the Python Package Index (PyPI) site. The Python interpreter that we include
with our distribution includes all the modules used by our examples. When you install your own
Python interpreter, you may have to install some modules yourself from this site.

93

http://pypi.python.org/pypi/xlrd
http://pypi.python.org

File Overview

This section briefly describes the purposes of the more important files in the Gurobi distribution.
The Windows, Linux, and Mac OS distributions have mostly the same file structure, but some files
differ between them, so we present them separately.

Note that the lists below may not precisely agree with your installation. We’ve omitted a few less
important files. In addition, a few file names depend on the exact version of the Gurobi optimizer
that is installed.

Windows file organization
The following files and directories are created in your installation directory (c:\gurobi560\win32
by default for the 32-bit Windows distribution):

• EULA.doc - Gurobi End User License Agreement - Microsoft Word format

• EULA.pdf - Gurobi End User License Agreement - PDF format

• ReleaseNotes.html - release notes

• bin

– Gurobi56.NET.XML - Visual Studio help for .NET wrapper

– Gurobi56.NET.dll - .NET wrapper

– GurobiJni56.dll - Java JNI wrapper

– grb_cs.exe - Gurobi Compute Server executable

– grb_csw.exe - Gurobi Compute Server executable

– grb_ts.exe - Gurobi Token Server executable

– grbgetkey.exe - retrieves your Gurobi license key from the Gurobi key server

– grbprobe.exe - probes system details (typically not used)

– grbtune.exe - parameter tuning tool

– gurobi.bat - starts the Gurobi interactive shell

– gurobi.env - sample parameter initialization file

– gurobi56.dll - Gurobi native DLL (used by all Gurobi interfaces)

– gurobi_cl.exe - simple command-line binary

• docs

– examples - Example Tour - HTML (open index.html in this directory)

– examples.pdf - Example Tour - PDF

94

– quickstart - Quick Start guide - HTML (open index.html in this directory)

– quickstart.pdf - Quick Start guide - PDF

– refman - Reference Manual - HTML (open index.html in this directory)

– refman.pdf - Reference Manual - PDF

• examples

– build - Visual Studio projects for C, C++, C#, and Visual Basic examples; run*.bat
files for Java and Python examples

– c - source code for C examples

– c# - source code for C# examples

– c++ - source code for C++ examples

– data - data files for examples

– java - source code for Java examples

– matlab - source code for MATLAB examples

– python - source code for Python examples

– R - source code for R examples

– vb - source code for Visual Basic examples

• include

– gurobi_c++.h - C++ include file

– gurobi_c.h - C include file

• lib

– gurobi.jar - Java interface

– gurobi.py - Python startup file

– gurobi56.lib - Gurobi library import file

– gurobi_c++md2008.lib - C++ interface (when using -MD compiler switch with Visual
Studio 2008)

– gurobi_c++md2010.lib - C++ interface (when using -MD compiler switch with Visual
Studio 2010)

– gurobi_c++md2012.lib - C++ interface (when using -MD compiler switch with Visual
Studio 2012)

– gurobi_c++mdd2008.lib - C++ interface (when using -MDd compiler switch with Visual
Studio 2008)

– gurobi_c++mdd2010.lib - C++ interface (when using -MDd compiler switch with Visual
Studio 2010)

– gurobi_c++mdd2012.lib - C++ interface (when using -MDd compiler switch with Visual
Studio 2012)

95

– gurobi_c++mt2008.lib - C++ interface (when using -MT compiler switch with Visual
Studio 2008)

– gurobi_c++mt2010.lib - C++ interface (when using -MT compiler switch with Visual
Studio 2010)

– gurobi_c++mt2012.lib - C++ interface (when using -MT compiler switch with Visual
Studio 2012)

– gurobi_c++mtd2008.lib - C++ interface (when using -MTd compiler switch with Visual
Studio 2008)

– gurobi_c++mtd2010.lib - C++ interface (when using -MTd compiler switch with Visual
Studio 2010)

– gurobi_c++mtd2012.lib - C++ interface (when using -MTd compiler switch with Visual
Studio 2012)

• matlab - Gurobi MATLAB interface

• python27 - Python 2.7 files used by the interactive shell and the Python interface (no need to
look inside this directory)

• python32 - Python 3.2 files (no need to look inside this directory)

• R - R Gurobi package

• setup.py - Python setup file - for installing the gurobipy module into your own Python envi-
ronment

Linux file organization
The following files and directories are created in your installation directory
(typically /opt/gurobi560/linux64 for the 64-bit Linux distribution):

• EULA.pdf - Gurobi End User License Agreement - PDF format

• ReleaseNotes.html - release notes

• bin

– grb_cs - Gurobi Compute Server executable

– grb_csw - Gurobi Compute Server executable

– grb_ts - Gurobi Token Server executable

– grbgetkey - retrieves your Gurobi license key from the Gurobi key server

– grbprobe - probes system details (typically not used)

– grbtune - parameter tuning tool

– gurobi_cl - simple command-line binary

– gurobi.env - sample parameter initialization file

– gurobi.sh - starts the Gurobi interactive shell

96

– python2.7 - Python shell

• docs

– examples - Example Tour - HTML (open index.html in this directory)

– examples.pdf - Example Tour - PDF

– quickstart - Quick Start guide - HTML (open index.html in this directory)

– quickstart.pdf - Quick Start guide - PDF

– refman - Reference Manual - HTML (open index.html in this directory)

– refman.pdf - Reference Manual - PDF

• examples

– build - Makefile for C, C++, Java, and Python examples

– c - source code for C examples

– c# - source code for C# examples (for Windows)

– c++ - source code for C++ examples

– data - data files for examples

– java - source code for Java examples

– matlab - source code for MATLAB examples

– python - source code for Python examples

– R - source code for R examples

– vb - source code for Visual Basic examples (for Windows)

• include

– gurobi_c.h - C include file

– gurobi_c++.h - C++ include file

– python2.7 - Dummy Python include files (no need to look inside this directory)

• lib

– gurobi.jar - Java interface

– gurobi.py - Python startup file

– libgurobi56.so - Gurobi library (symbolic link to current version)

– libgurobi_c++.a - C++ interface (symbolic link)

– libgurobi_g++4.1.a - C++ interface (when using g++ 4.1 - e.g., on a Red Hat 5 system)

– libgurobi_g++4.2.a - C++ interface (when using g++ 4.2 or later)

– libGurobiJni56.so - Java JNI wrapper

– libgurobi.so.5.6.0 - Gurobi native library (used by all interfaces)

– python2.7 - Python files used by the interactive shell and the Python interface (no need
to look inside this directory)

97

– python2.7_utf16 - Python 2.7 files for use with UTF-16 Python versions (no need to
look inside this directory)

– python2.7_utf32 - Python 2.7 files for use with UTF-32 Python versions (no need to
look inside this directory)

– python3.2_utf16 - Python 3.2 files for use with UTF-16 Python versions (no need to
look inside this directory)

– python3.2_utf32 - Python 3.2 files for use with UTF-32 Python versions (no need to
look inside this directory)

• matlab - Gurobi MATLAB interface

• R - R Gurobi package

• setup.py - Python setup file - for installing the gurobipy module into your own Python envi-
ronment

Mac OS file organization
The following files and directories are created in your installation directory
(typically /Library/gurobi560/mac64):

• EULA.pdf - Gurobi End User License Agreement - PDF format

• ReleaseNotes.html - release notes

• bin

– grb_cs - Gurobi Compute Server executable

– grb_csw - Gurobi Compute Server executable

– grb_ts - Gurobi Token Server executable

– grbgetkey - retrieves your Gurobi license key from the Gurobi key server

– grbprobe - probes system details (typically not used)

– grbtune - parameter tuning tool

– gurobi.env - sample parameter initialization file

– gurobi.sh - starts the Gurobi interactive shell

– gurobi_cl - simple command-line binary

• docs

– examples - Example Tour - HTML (open index.html in this directory)

– examples.pdf - Example Tour - PDF

– quickstart - Quick Start guide - HTML (open index.html in this directory)

– quickstart.pdf - Quick Start guide - PDF

– refman - Reference Manual - HTML (open index.html in this directory)

98

– refman.pdf - Reference Manual - PDF

• examples

– build - Makefile for C, C++, Java, and Python examples

– c - source code for C examples

– c# - source code for C# examples (for Windows)

– c++ - source code for C++ examples

– data - data files for examples

– java - source code for Java examples

– matlab - source code for MATLAB examples

– python - source code for Python examples

– R - source code for R examples

– vb - source code for Visual Basic examples (for Windows)

• include

– gurobi_c.h - C include file

– gurobi_c++.h - C++ include file

• lib

– gurobi.jar - Java interface

– gurobi.py - Python startup file

– gurobipy - Python files used by the interactive shell and the Python interface (no need
to look inside this directory)

– libGurobiJni56.jnilib - Java JNI wrapper

– libgurobi56.so - Gurobi native library (used by all interfaces)

– libgurobi_c++.a - C++ interface (symbolic link)

– libgurobi_g++4.2.a - C++ interface

• matlab - Gurobi MATLAB interface

• R - R Gurobi package

• setup.py - Python setup file - used by the installer to install the gurobipy module into your
Python environment

99

	Introduction
	Software Installation Guide
	How to Obtain and Install a Gurobi License
	Setting up a token server
	Setting up a compute server
	Creating a client license

	Solving a Simple Model - The Gurobi Command Line
	Interactive Shell
	Attributes
	C Interface
	C++ Interface
	Java Interface
	.NET Interface (C#)
	Python Interface
	Simple Python Example
	Python Dictionary Example
	Building and running the examples

	MATLAB Interface
	R Interface
	Recommended Reading
	Installing a Python IDE
	File Overview

