
Introduction, Semantic Networks and the Others
...

Petr Křemen
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Course Information

web page [currently in czech]:
http://cw.felk.cvut.cz/doku.php/courses/a4m33rzn/start

three basic topics: description logics, probabilistic models,
fuzzy logic

Please go through the course web page carefully !!!
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Motivation

Let’s have the domain of a university. Each stakeholder needs
different type of information:

Student: “Which bachelor course should I enroll in order
to get at least 6 credits ?”
Teacher : “How many hours per week am I going to teach
this term ?”
Dean : “Which courses are popular among students ?”

Knowledge tries to capture relationships in the domain, so
that they can be used for answering various types of queries.

“Bachelor courses are courses.”
“In most cases a course can be opened only if 2 or more
students are enrolled.”
“Every head of a department is a school employee.”
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Motivation (2)

So, two questions remain ...
How to formally represent knowledge ?

declaratively × procedurally ? – this course will deal with
declarative knowledge. nap̌r.
(∀P)(BachelorCourse(P)⇒ Course(P))
without uncertainty (crisp) × with uncertainty – this course
will cover both, starting without uncertainty. nap̌r.
(∀K)(Course(K)⇒ (CourseWithException(K) ∨
((∃X1,X2)IsEnrolledTo(X1,K) ∧ IsEnrolledTo(X2,K) ∧ X1 6=
X2))

How to make use of the knowledge representation ?

knowledge management – search engines (databases, semantic
servers, semantics web)
multiagent systems – content of messages sent between agents
machine learning – language bias
... all AI branches
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Declarative Knowledge Representation without Uncertainty

sémantic networks, frames,

thesauri, topic maps

relational databases (relational calculus)

rule-based systems, Prolog (first-order predicate logics)

sémantic web, RDF(S), OWL, OWL 2 (description logics)
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Semantic Networks

10 / 163



Semantic Networks

( c©wikipedia.org)

Nodes = entities (individuals,
classes),

Edges = binary relations

The only possible inferrence
is inheritance by means of is
a relationship.

Example

Each Cat has a Vertebrate,
since each Cat is a Mammal.
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Semantic Networks (2)

However, this does not allow
distinguishing individuals
(instances) and groups (classes).

To solve this, a new relationship
type “is a kind of” ako can be
introduced and used for
inheritance, while is a
relationships would be restricted
to expressing individual-group
relationships.
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Semantic Networks (3)

, are simple – from the point of logics they are not much more
than a binary structure + ako and is a relationships with the
following semantics:

relation(X ,Y ) ∧ ako(Z ,X )⇒ relation(Z ,Y ).

isa(X ,Y ) ∧ ako(Y ,Z )⇒ isa(X ,Z ).

ako(X ,Y ) ∧ ako(Y ,Z )⇒ ako(X ,Z ).

/ no way to express non-monotonous knowledge (like FOL).
/ no easy way to express n-ary relationships (reification

needed).
/ no way to express binary relationships characteristics –

transitivity, functionality, reflexivity, etc., or their hierarchies
“to be a father means to be a parent”, aj.,

/ no way to express more complex constructs, like cardinality
restrictions: “Each person has at most two legs.”
Wordnet, Semantic Wiki, aj.
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Semantic Networks – Wordnet, MultiWordnet

Wordnet (http://wordnet.princeton.edu) and MultiWordnet
(http://multiwordnet.itc.it) are lexical databases. They are
represented as semantic networks extended with a bit more
semantics, e.g. :

hyponyms, hypernyms correspond to the ako relationship.

meronyms, holonyms denote “part-of” relationships between
terms.

synonyms, antonyms synonyms are grouped into synsets – i.e. sets
of terms that build up a single semantic
context/meaning (e.g.
S1 = {man, adult male},S2 = {man, human being})

14 / 163



Semantic Networks – Wordnet, MultiWordnet

Wordnet (http://wordnet.princeton.edu) and MultiWordnet
(http://multiwordnet.itc.it) are lexical databases. They are
represented as semantic networks extended with a bit more
semantics, e.g. :

hyponyms, hypernyms correspond to the ako relationship.

meronyms, holonyms denote “part-of” relationships between
terms.

synonyms, antonyms synonyms are grouped into synsets – i.e. sets
of terms that build up a single semantic
context/meaning (e.g.
S1 = {man, adult male},S2 = {man, human being})

14 / 163



Semantic Networks – Wordnet, MultiWordnet

Wordnet (http://wordnet.princeton.edu) and MultiWordnet
(http://multiwordnet.itc.it) are lexical databases. They are
represented as semantic networks extended with a bit more
semantics, e.g. :

hyponyms, hypernyms correspond to the ako relationship.

meronyms, holonyms denote “part-of” relationships between
terms.

synonyms, antonyms synonyms are grouped into synsets – i.e. sets
of terms that build up a single semantic
context/meaning (e.g.
S1 = {man, adult male},S2 = {man, human being})

14 / 163



Semantic Networks – http://www.visuwords.com/
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Frames

frame: Škoda Favorit
slots:

is a: car
has engine: four-stroke engine
has transmission system: manual
has carb: value: Jikov

default: Pierburg

more structured than
semantic networks

forms that contain slots
(binary relationships).

([MvL93])

Every slot has several facets
(slot use restrictions), e.g.
cardinality, defaults, etc.

, Facets allow non-monotonic
reasoning.

, Daemons are triggers for
actions perfomed on facets
(read, write, delete). Can be
used e.g for consistency
checking.
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Frames (2)

Example

Typically, Škoda Favorit has carb of type Pierburg, but this
particular Škoda Favorit has carb of type Jikov.

frames can be grouped into scenarios that represent typical
situations, e.g. going into a restaurant. [MvL93]

OKBC - http://www.ai.sri.com/ okbc

Protégé -
http://protege.stanford.edu/overview/protege-frames.html

Apollo - http://apollo.open.ac.uk

Apollo CH - http://labe.felk.cvut.cz/ falc/Apollo
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Typically, Škoda Favorit has carb of type Pierburg, but this
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Frames (3) - Apollo CH
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Frames (4) - Protégé
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Frames and Semantics Networks – Summary

, very simple structures for knowledge representation,

, nonmonotonic reasoning,

/ ad-hoc reasoning procedures, that complicates (and broadens
ambiguity during) translation to First Order Predicate Logic
(FOPL),

/ problems – querying, debugging.

... but semantic networks are basis for other technologies:

thesauri
topic maps
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Thesauri
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Thesauri

thesaurus is a taxonomy (hierarchy of terms) enriched with new
types of relationships, e.g.:

BT/NT (broader/narrower term) = term hierarchy.

Example

beef → NT → meat

SN (scope note) explains meaning of a given term.

Example

school → SN → institution for education

RT (related term) describes general term
relationships (excluding BT/NT, USE, ...).

Př́ıklad

topic maps → RT → knowledge management.

SKOS http://www.w3.org/2004/02/skos
23 / 163
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Thesauri – Example

http://metadaten-twr.org/2011/01/19/

skos-simple-knowledge-organisation-system, cit. 16.9.2012
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Thesauri – Summary

two ISO standards: single-language thesauri (ISO 2788:1986)
or multiple-language thesauri (ISO 5964:1985).

, simple, easy-to-use by non-experts in knowledge engineering

/ problems in formal semantics:

Example

BT relationships can be used in several meanings:

subsumption , e.g. fruit BT apple,
instance of , e.g. man BT David,

part of , e.g. auto BT wheel.
. . .

semantic search, disambiguation, NLP
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Topic Maps
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Topic Maps – Topics

ISO standard – ISO/IEC 13250:2003

three types of objects : topics, their occurences and mutual
associations.

topics

represent concepts – classes, instances, properties, etc.
topics can have several topic types. The relationship “has
type” build up a hierarchy of topics (analogy to isa
relationships in semantics networks, or property rdf:type in
RDF(S)).
each topics can have one or more names (e.g. nick, formal
name, login name, etc.), each of which in different variants
(e.g. visualization vs. sorting).
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Topic Maps – Occurences

occurences

represent “links” from topics to real documents/information
resources.
a topic is connected with an occurence by means of a role, that
determines the occurence type (web page, article, book, etc.)

(http://www.ontopia.net/topicmaps/materials/tao.html)
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Topic Maps – Asociations

asociations

represent relationships between topics – analogy of n-ary
relationships,
an association type (which is a topic) is assigned to an
association (topic type is a special association type),
topics have so called association roles when connected to
associations,
each association role is assigned association role type, which
is a topic, in turn.
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Topic Maps – Example

T ... topics

P ... partially
expanded
topics (except
topic types)

R ... associations
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Topic Maps – Model
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Topic Maps – Contexts, Queries

additionally, topic maps can be grouped into contexts
(scopes,themes).

querying using

TMQL
tolog (syntactically similar to SQL)
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Topic Maps – Tools and Links

selected tools:

Ontopia (Ontopoly, Omnigator,Vizigator) – main stakeholder
in Topic Maps
TM4L
TM4J

links:

http://www.ontopia.net/topicmaps/materials/tm-vs-
thesauri.html
http://www.kosek.cz/xml/tmtut/

33 / 163



Topic Maps – Tools and Links

selected tools:

Ontopia (Ontopoly, Omnigator,Vizigator) – main stakeholder
in Topic Maps
TM4L
TM4J

links:

http://www.ontopia.net/topicmaps/materials/tm-vs-
thesauri.html
http://www.kosek.cz/xml/tmtut/

33 / 163



Topic Maps – Tools and Links

selected tools:

Ontopia (Ontopoly, Omnigator,Vizigator) – main stakeholder
in Topic Maps
TM4L
TM4J

links:

http://www.ontopia.net/topicmaps/materials/tm-vs-
thesauri.html
http://www.kosek.cz/xml/tmtut/

33 / 163



Topic Maps – Tools and Links

selected tools:

Ontopia (Ontopoly, Omnigator,Vizigator) – main stakeholder
in Topic Maps
TM4L
TM4J

links:

http://www.ontopia.net/topicmaps/materials/tm-vs-
thesauri.html
http://www.kosek.cz/xml/tmtut/

33 / 163



Topic Maps – Tools and Links

selected tools:

Ontopia (Ontopoly, Omnigator,Vizigator) – main stakeholder
in Topic Maps
TM4L
TM4J

links:

http://www.ontopia.net/topicmaps/materials/tm-vs-
thesauri.html
http://www.kosek.cz/xml/tmtut/

33 / 163



Topic Maps – Tools and Links

selected tools:

Ontopia (Ontopoly, Omnigator,Vizigator) – main stakeholder
in Topic Maps
TM4L
TM4J

links:

http://www.ontopia.net/topicmaps/materials/tm-vs-
thesauri.html
http://www.kosek.cz/xml/tmtut/

33 / 163



Topic Maps – Tools and Links

selected tools:

Ontopia (Ontopoly, Omnigator,Vizigator) – main stakeholder
in Topic Maps
TM4L
TM4J

links:

http://www.ontopia.net/topicmaps/materials/tm-vs-
thesauri.html
http://www.kosek.cz/xml/tmtut/

33 / 163



TM4L Viewer
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Omnigator
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Conceptual Graphs
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Example
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Conceptual Graphs

conceptual graph is a bipartite graph with two types of nodes (1)
concepts a (2) relations.

concept has the form concept type : referent.

Example (Quantifier type)

Dog Lucky Some dog All dogs Set of dogs
∃xDog(x) ∧ Name(x , Lucky) . . . ∃xDog(x) . . . ∀xDog(x)→ . . . / no FOPL

relation = predicate of arbitrary arity > 0.

Example (Ternary relation)
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Conceptual Graphs (2)

referent consists of quantifier (existential, or defined
(universal, collective, etc.)), designator (instance
identifier, e.g. name) and possibly descriptor
(conceptual graph describing the concept).

context is a concept with empty descriptor

Example (Context)

“John says, that all dogs are clever.”
/ no FOL

39 / 163



Conceptual Graphs (2)

referent consists of quantifier (existential, or defined
(universal, collective, etc.)), designator (instance
identifier, e.g. name) and possibly descriptor
(conceptual graph describing the concept).

context is a concept with empty descriptor

Example (Context)

“John says, that all dogs are clever.”
/ no FOL

39 / 163



Conceptual Graphs (2)

referent consists of quantifier (existential, or defined
(universal, collective, etc.)), designator (instance
identifier, e.g. name) and possibly descriptor
(conceptual graph describing the concept).

context is a concept with empty descriptor

Example (Context)

“John says, that all dogs are clever.”
/ no FOL

39 / 163



Conceptual Graphs (2)

referent consists of quantifier (existential, or defined
(universal, collective, etc.)), designator (instance
identifier, e.g. name) and possibly descriptor
(conceptual graph describing the concept).

context is a concept with empty descriptor

Example (Context)

“John says, that all dogs are clever.”
/ no FOL

39 / 163



Conceptual Graphs (2)

referent consists of quantifier (existential, or defined
(universal, collective, etc.)), designator (instance
identifier, e.g. name) and possibly descriptor
(conceptual graph describing the concept).

context is a concept with empty descriptor

Example (Context)

“John says, that all dogs are clever.”
/ no FOL

39 / 163



Conceptual Graphs (2)

referent consists of quantifier (existential, or defined
(universal, collective, etc.)), designator (instance
identifier, e.g. name) and possibly descriptor
(conceptual graph describing the concept).

context is a concept with empty descriptor

Example (Context)

“John says, that all dogs are clever.”
/ no FOL

39 / 163



Conceptual Graphs (3)

lambda expressions correspond to “macros” – they allow defining
relations by means of a “pattern” of the conceptual
graph. Placeholders are denoted by λi symbols.

Example (lambda expressions)

def. binary relation “Go”. def. unary relation “Go to Prague”.
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Conceptual Graphs – Inference

inference makes use of several forward chaining rules1 (graph
generalization, specialization, equivalent changes).

querying is performed using projection that looks for a
conceptual graph pattern in another conceptual graph making
use of the conceptual type hierarchy and conceptual relations.

Example – Projection

1http://www.jfsowa.com/cg/cgstandw.htm
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Conceptual Graphs – Tools

CharGer – CG editor
(http://sourceforge.net/projects/charger)

Notio – Java library + API for CG manipulation
(http://backtrack.uwaterloo.ca/CG/projects/notio)

Prolog+CG – inference engine for CG in Prolog
(http://prologpluscg.sourceforge.net)

Amine – newer version of Prolog+CG
(http://amine-platform.sourceforge.net)

DNA – annotation tool that visualizes the knowledge base
using CG
(http://labe.felk.cvut.cz/ uhlir/DNATWeb/DNAThome.html)
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Amine4

editing/viewing
ontologies

editing/viewing
conceptual graphs

CG operations – e.g.:
JOIN

CG+Prolog inference

multiagent systems
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Conceptual Graphs – Summary

CG’s (J.F. Sowa 80’s) are representatives of formal (machine
readable) and at the same time well readable, intuitive
languages,

are based on Pierce existential graphs [Sow00], [Dau01],

are more expressive than FOPL – undecidability,

to keep things decidable, so called simple graphs (J.F. Sowa
80’s), were defined. They restrict the form of referents and
prohibit contexts.
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Summary – what else ?

we only quickly flew through the most important milestones in
the crisp knowledge representation during last decades,

/ most of these approaches have poorly defined semantics,
which is a necessary condition for automated processing of
large datasets,

now, let’s spend several weeks on formally precise logic-based
knowledge representation languages with acceptable
computational properties.
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